HYBRINFOX at CheckThat! 2024 - Task 2: Enriching BERT Models with the Expert System VAGO for Subjectivity Detection - INRIA 2
Communication Dans Un Congrès Année : 2024

HYBRINFOX at CheckThat! 2024 - Task 2: Enriching BERT Models with the Expert System VAGO for Subjectivity Detection

Résumé

This paper presents the HYBRINFOX method used to solve Task 2 of Subjectivity detection of the CLEF 2024 CheckThat! competition. The specificity of the method is to use a hybrid system, combining a RoBERTa model, fine-tuned for subjectivity detection, a frozen sentence-BERT (sBERT) model to capture semantics, and several scores calculated by the English version of the expert system VAGO, developed independently of this task to measure vagueness and subjectivity in texts based on the lexicon. In English, the HYBRINFOX method ranked 1st with a macro F1 score of 0.7442 on the evaluation data. For the other languages, the method used a translation step into English, producing more mixed results (ranking 1st in Multilingual and 2nd in Italian over the baseline, but under the baseline in Bulgarian, German, and Arabic). We explain the principles of our hybrid approach, and outline ways in which the method could be improved for other languages besides English.
Fichier principal
Vignette du fichier
CLEF_task2.pdf (700.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04871189 , version 1 (07-01-2025)

Licence

Identifiants

Citer

Morgane Casanova, Julien Chanson, Benjamin Icard, Géraud Faye, Guillaume Gadek, et al.. HYBRINFOX at CheckThat! 2024 - Task 2: Enriching BERT Models with the Expert System VAGO for Subjectivity Detection. CLEF 2024 - Conference and Labs of the Evaluation Forum, Sep 2024, Grenoble, France. pp.1-9, ⟨10.48550/arXiv.2407.03770⟩. ⟨hal-04871189⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More