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KERNEL SPATIAL DENSITY ESTIMATION IN INFINITE DIMENSION

SPACE

SOPHIE DABO-NIANG ♯ AND ANNE-FRANÇOISE YAO §

Abstract. In this paper, we propose a nonparametric estimation of the spatial density of

a functional stationary random �eld. This later is with values in some in�nite dimensional

space and admitted a density with respect to some reference measure. The weak and strong

consistencies of the estimator are shown and rates of convergence are given. Special attention is

paid to the links between the probabilities of small balls in the concerned in�nite dimensional

space and the rates of convergence. The practical use and the behavior of the estimator are

illustrated through some simulations and a real data application.

Key Words: Density estimation; Random �elds; Functional variables; In�nite dimensional

space; Small balls probabilities; mixing conditions.

1. Introduction

In many studies, the observations can be summarized as spatially dependent curves. It is

the case for example with hyper-spectral images analysis, growth curves of trees distribution

in a forester parcel or annual meteorological curves (temperature, precipitation, wind,...) of

some region. Furthermore, in some studies it can be interesting to see spatio-temporal data as

spatially dependent curves (see the example treated in Dabo-Niang et al. (2010)). For example

the space-time evolution of concentration of oil (in soil science) or a pollutant on earth's or

aquatic parcel (in environmental science), the observations can be summarized as curves (of

evolution) located at di�erent sites. In fact, such data occur in many �elds such as geology,

econometrics, epidemiology, and so on.

Looking at these data as functional spatially dependent data can provide some information as

spatial distribution of the concerned curves, spatial correlation between curves or in a general

way some statistics for functional spatial data.

Despite the many possible applications of such tools, there is a few literature dedicated to

models that take into account both the functional and spatial dependence features of the problem

that concerns us. We refer for example to Bar-Hen et al. (2008), Basse et al. (2008), Delicado

et al. (141), Nerini et al. (2010) or Dabo-Niang et al. (2010).
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In fact, on one hand, the recent abundant literature on functional data analysis concerns

either descriptive statistic for functional data (see e.g. Ramsay & Silverman (1997), Ramsay &

Silverman (2002)) or models for independent identically distributed (i.i.d.) or time dependent

data (Bosq (2000), Dabo-Niang et al. (2006), Ferraty & Vieu (2006),...).

On the other hand, most of spatial models goes to �nite dimensional observations, as one can

see in the relatively abundant parametric models literature (see for example Chilès & Del�ner

(1999), Guyon (1995), Anselin & Florax (1995), Cressie (1993) or Ripley (1981)), while the

nonparametric treatment of �nite dimensional spatial data is limited. Only some studies on

nonparametric estimation of spatial probability densities (see the key references: Tran (1990),

Tran & Yakowitz (1993), Carbon et al. (1997b), ?, Hallin et al. (2004a), Lu & Chen (1997),

Carbon (2006)) or regression models (see Biau & Cadre (2004), Lu & Chen (2002), Lu & Chen

(2004), Hallin et al. (2004a), Carbon et al. (2007), Dabo-Niang & Yao (2007)) have been tackled.

In this paper, we are interested in density estimation for spatially dependent functional data.

Nevertheless, contrary to the �nite dimensional setting, when dealing with probability density,

the functional aspect of the problem requires to specify the reference measure.

Indeed, in �nite dimensional setting, when talking about density of probability without spec-

ify the reference measure, µ, one implicitly deals with the Lebesgue measure. Unfortunately,

Lebesgue measure does not exist for in�nite dimensional spaces. Thus, de�ning µ is a crucial

problem in density estimation for functional data (particularly for functional spatially dependent

data).

In this work, we present some ideas for choosing µ and illustrate our purpose by some applica-

tions (Section 5) where µ is speci�ed. But, in the theoretical study, a part from some hypothesis,

we will not specify µ because the behavior of our estimator is the same for all measure, µ, σ-�nite

and such that 0 < µ (A) < ∞, for any open ball A ⊂ E and we suppose that all the reference

measures used in this paper belongs to this class of measures.

We note that, a similar work has been recently done in Dabo-Niang et al. (2010) which also

treats some applications where speci�cation of µ is not necessary.

About the spatial aspect of the problem, it requires the de�nition of some notions such as the

set-index and the dependence measure.

In �nite dimensional setting, nonparametric spatial density estimation models are constructed

on the rectangular region In =
{
i = (i1, ..., iN ) ∈ (N∗)N , 1 ≤ ik ≤ nk, k = 1, ..., N},

n = (n1, ..., nN ) ∈ (N∗)N (or more generally, a lattice in R
N ). These models appear as natural

extensions of the nonparametric estimation of the probability density for time dependent random

variables, using various nonparametric approaches. We refer to Robinson (1983, 1987), Masry

& Györ� (1987), Yakowitz (1987), Roussas (1988), Bosq (1998), Györ� et al. (1990), Truong &

Stone (1992), Tran (1990), Lu (1996) and Lu & Chen (1997) among others.
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Our aim is to extend the results of Bosq (1998) to in�nite dimensional spatial dependent

variables (we recall that Bosq (1998) deals with kernel density estimation for �nite dimensional

time dependent processes). But, this generalization is far from being trivial.

Indeed, such a generalization deals with many theoretical and practical di�culties essentially

due to the lack of canonical ordering for N > 1. As raised by Hallin et al. (2004b), this gap leads

to re-de�ned two important notions: asymptotic notion and, since we deal with index-dependent

data, the notion of neighborhood and the related notion of dependent measure.

In fact, when N > 1 the simple idea of a sample size going to in�nity has to be de�ned. To

keep the analogy with the case N = 1, in nonparametric spatial modeling, one often suppose;

without the loss of generality; that the �sample size� is the rectangular region In. But, as we

will see later on, the below theoretical results remain valid if In is replaced by any subset of a

lattice of RN .

We will measure the dependency in strong mixing meaning; this notion will be recalled on

Section 2.

The rest of the paper is organized as follows. In Section 2, devoted to the theoretical frame-

work, we de�ne the spatial kernel density estimator and give the assumptions required to study

the asymptotic behavior of our estimator, developed in Section 4. In Section 3, we present our

estimator in the special setting of local weighting and small ball probabilities.

Section 4 is devoted to convergence in probability and strong convergence of the kernel density

estimate, under various types of asymptotic and mixing assumptions.

In Section 5, we deal with the practical use of our estimator; we suggest a new method to

visualize the density estimator even the random �eld is with values in an in�nite dimension

space. We illustrate the behavior of our estimator through some simulations and also a real data

application. The dataset is composed of spatial grain size curves observed in a French lagoon

called: Berre Lagoon. Section 6 is devoted to discussions and conclusions. Proofs and technical

preliminary lemmas are given in the Appendix.

2. Theoretical framework

We deal with a measurable stationary spatial process
(
Xi, i ∈ (N∗)N

)
, N ≥ 1, de�ned on a

probability space (Ω, A,P) such that the X ′
is have the same distribution as a variable X valued

in an in�nite dimensional separable normed space (E , ∥.∥) (∥.∥ is the norm). We assume that

X has an unknown density f with respect to some given measure µ which is σ-�nite such that

0 < µ (A) < ∞, for any open ball A ⊂ E . All the theoretical properties studied in this paper

concern only this class of measure. So, we will give our results without specifying the reference

measure µ (as it is done for example in Ferraty & Vieu (2006) and references therein for N = 1).

One can choose as reference measure a Wiener measure for example in the case of di�usion

process as in Dabo-Niang (2004) or another Gaussian measure, see Section 3.2.
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In practice, we suggest the choice of an appropriate reference measure according to the problem

considered. For example, if the study concerns spatial distribution of curves (temperature, or

grain size curves,...) observed for K (K > 1) populations, on can choose as reference measure,

the distribution of one of the populations. Of course, if necessary, µ can be Gaussian measure

or any known measure over in�nite dimensional spaces.

In the following, for any x ∈ E , B(x, t) will denote the opened ball centered at x with radius

t > 0, the capital letter C (resp. Cx) will denote an arbitrary constant (resp. constant depending

on x) that may vary from line to line.

Let us now de�ne our estimator.

2.1. The spatial kernel estimator. We aim to estimate the spatial density from data, Xi's,

observed on a region On. In the following, without the loss of generality, we will often suppose

that On is the rectangular region, In, as previously de�ned. Before going further, let us consider

some notations.

We will denote by: i =(i1, ..., iN ) (in bold) a point in N
N , that will be referred to as a site. We

will write n → +∞ if mink=1,...,N nk → +∞. This means that the rectangular region does not

expand to in�nity at the same rate along all directions. Such an expansion is called non-isotropic

divergence (see e.g. Lu & Chen (2004), Hallin et al. (2004b)). However, in some problems the

assumption that this rate is the same in all directions is called isotropic divergence: that is

n → +∞ and
∣∣∣nj

nk

∣∣∣ ≤ C for some constant 0 < C < ∞ and ∀ j, k ∈ {1, ..., N} (see ? or Hallin

et al. (2004b)).

In the following, we consider the less restrictive non-isotropic case. But the proofs of results

obtained here are similar in the isotropic case.

We will set n̂ = n1 × ...× nN the sample size and denote by n̂V = Card(V) the cardinality of

any set V .

The kernel spatial density estimator for functional data based on (Xi, i ∈ In) is de�ned by:

fn (x) =
1

n̂axn

∑

i∈In

Kn (∥Xi − x∥) , x ∈ E ,

where (axn) is a sequence of normalization with limn→+∞ axn = 0 (+) and Kn(.) is a function

de�ned from R
+ to R which depends on a kernel. Discussion on some particular cases of axn and

Kn will be done later (see Section 3).

Remark 2.1. Note that, since we are in a spatial setting, even the density f or its estimator fn

must be de�ned at any xj ∈ E and j ∈ Z
N . But, for ease of reading the paper, we will often use,

without the loss of generality, the generic notations f(x) (resp. fn(x)) instead of f(xj) (resp.

fn(xj)).
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In order to shorten the paper, we only consider the uniform consistency of fn over a set G.

The pointwise convergence of fn to f is easily deduced with weaker assumptions.

Uniform consistency results are particularly useful to study the kernel estimation of the mode

of the density f over G de�ned by:

(2.1) xmode = arg sup
G

f

which is an interesting centrality statistics that allows to analyze a dataset when the observations

are valued in a �nite or in�nite dimension space. This modal curve can be estimated by the

following:

(2.2) x̂mode = arg sup
G

fn.

As in the �nite-dimensional case, the density can have several spatial modal curves (In the

case N = 2, this can be seen through a graphical representation of fn). Then, for a given spatial

modal curve, it is interesting to control the size of the set in which one looks for the concerned

spatial modal curve (this remains interesting even if there is only one modal curve).

This being, we are interested in some set G such that G ⊂ Gn :=
∪dn
j=1B(xij , rn), where dn is

some integer and for j = 1, ..., dn, B(xij , rn) is the opened ball of center xij ∈ E and radius

rn > 0. For sake of simplicity, in the following we will set xij = xj . Note that such a set, G, can

always be built: it su�ces to take a �nite number of observed curves: x1, ..., xdn and construct

a set of open balls B(xj , rn), j = 1, ..., dn with rn (verifying Condition H5 below) such that

Gn =
∪dn
j=1B(xj , rn) covers the whole set of observations of interest.

Similarly to the �nite dimensional case (see for example Carbon et al. (1997b)), the study of the

asymptotic behavior of fn requires some assumptions on the kernel and some mixing conditions

which are respectively given in Sections 2.2 and 2.4 and the following regularity conditions on f :

Hf − f is uniformly continuous on G and sup
x∈G

|f(x)| <∞.

Note that this later condition is the in�nite dimensional counterpart of the condition used in the

�nite dimensional setting (see for example Bosq (1998), Carbon et al. (1997b)).

2.2. Assumptions on the kernel. In order to get convergence results (without rates), we

assume that the functionKn veri�es the following conditions. Particular cases of these conditions

will be discussed in Section 3.

H1 - ∀δ, 0 < δ ≤ +∞, lim
n→∞

sup
x∈G

∣∣∣∣∣
1

axn

ˆ

∥y−x∥<δ
Kn (∥y − x∥) dµ(y)− 1

∣∣∣∣∣ = 0.
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H2 - For some constant C > 0, we have:

sup
x∈G, y∈E

Kn (∥y − x∥)

axn
≤ CSn <∞,

where Sn is a sequence of positive numbers satisfying

lim
n→+∞

Sn = +∞, and lim
n→+∞

n̂

Sn log n̂
= +∞.

H3 - ∃β1 > 0, ∃β2 > 0, ∀x1, x2 ∈ G
o

, y ∈ E (G
o

is the interior of G).

∣∣∣∣
1

ax1n
Kn (∥y − x1∥)−

1

ax2n
Kn (∥y − x2∥)

∣∣∣∣ ≤ CSβ2n ∥x1 − x2∥
β1 .

H4 - For any δ > 0 :

lim
n→∞

sup
(x,u)∈G×{u/∥u∥>δ}

1

axn
∥u∥Kn (∥u∥) = 0.

These conditions are spatial counterpart of those used for the i.i.d. functional variables, see

Dabo-Niang et al. (2006) but as we will see later, the following hypothesis is a generalization of

the one used in the �nite dimensional case.

H5 - dn = n̂β and rn ≤ ((Sn)
κ log n̂/n̂)1/2β1 with β an integer and κ ≤ −2β2 + 1.

2.3. Assumptions to get rates of convergence. To get rates of convergence, we will need a

more restrictive condition on the regularity of f :

H′
f − f satis�es the Lipshitz condition : ∀x, y ∈ G |f(x)− f(y)| ≤ ∥x− y∥ .

We will replace Assumption H1 by:

H6− ∀δ, 0 < δ ≤ +∞, sup
x∈G

∣∣∣∣∣
1

axn

ˆ

∥y−x∥<δ
Kn (∥y − x∥) dµ(y)− 1

∣∣∣∣∣ = o (Dn) where

Dn = sup
(x,y)∈supp(Kn)2

∥x−y∥ is the diameter of the support of Kn, which is such that Dn = o(1).

2.4. Dependency conditions. As it often occurs in spatial dependent data analysis, we need

to de�ne the type of dependence. Here, we consider the following two dependence measures:

2.4.1. Local dependence conditions. We will assume that the joint probability density fi,j (x, y)

of Xi and Xj with respect to µ× µ exits and satis�es

(2.3) |fi,j (x, y)− f (x) f (y)| ≤ C,

for some constant C and for all x, y ∈ E and i, j ∈ N
N , i ̸= j.
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In fact, this local dependency condition can be replaced by the condition: for all i, j ∈ N
N the

joint probability distribution νi,j of (Xi, Xj) satis�es

(2.4) ∃ϵ1 ∈ (0, 1], νi,j (B(x, hn)×B(x, hn)) = (F x(hn))
1+ϵ1 ,

where F x(hn) = P (X ∈ B(x, hn)).

Such local dependency condition is necessary to reach the same rate of convergence as in the

i.i.d. case.

2.4.2. Mixing conditions. Another complementary dependency condition concerns the mixing

condition which measures the dependency by means of α-mixing. We assume that
(
Xi, i ∈ N

N
)

satis�es the following mixing condition: there exists a function φ (t) ↓ 0 as t→ ∞, such that for

E, E
′
subsets of NN with �nite cardinals,

α
(
B (E) , B

(
E

′
))

= sup
B∈B(E), C∈B(E′)

|P (B ∩ C)−P (B)P (C)|

(2.5) ≤ χ
(
Card (E) ,Card

(
E

′
))

φ
(
dist

(
E,E

′
))

,

where B (E)(resp. B
(
E

′
)
) denotes the Borel σ-�eld generated by (Xi, i ∈ E) (resp.

(
Xi, i ∈ E

′
)
),

Card(E) (resp. Card
(
E

′
)
) the cardinality of E (resp. E

′
), dist

(
E, E

′
)
the Euclidean distance

between E and E
′
and χ : N2 → R

+ is a nondecreasing symmetric positive function in each

variable. Throughout the paper, it will be assumed that χ satis�es either

(2.6) χ (n,m) ≤ Cmin (n,m) , ∀n,m ∈ N

or

(2.7) χ (n,m) ≤ C (n+m+ 1)β̃ , ∀n,m ∈ N

for some β̃ ≥ 1 and some C > 0. If χ ≡ 1, then (Xi) is said to strongly mixing. Many stochastic

processes (among the various useful time series models) satisfy strong mixing properties, which

are relatively easy to check. Conditions (2.6)-(2.7) are weaker than the strong mixing condition

and have been used for �nite dimensional variables see for example Tran (1990), Carbon et al.

(1997a,b) and Biau & Cadre (2004). We refer to Doukhan (1994) and Rio (2000) for discussion

on mixing and examples.

Concerning the function φ(.), as it is often done, two kind of conditions will be assumed: the

case where φ(i) tends to zero at a polynomial rate, ie.

(2.8) φ(i) ≤ Ci−θ, for some θ > 0

or the case where φ(i) tends to zero at an exponential rate: i.e φ(i) = C exp(−si) for some

s > 0. There is a link between these two dependence conditions (local and mixing), see for

example Bosq (1998) for details.
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3. Estimation in local weighting and small ball probabilities setting.

To �x idea, we consider in this Section, some cases that illustrate that our estimator and the

assumptions on the function Kn (previously mentioned) are less restrictive than they seem.

3.1. The kernel density estimator and concentration conditions.

This section deals with the well-known situation where the density estimator is based both on a

kernel function and on a smoothing parameter. Namely, we look at some special case where the

probability distribution of X satis�es some concentration condition as in the i.i.d. case suggested

for example by Dabo-Niang et al. (2006) and Ferraty & Vieu (2006). Then, the density estimate

is of the simple usual Parzen-Rosenblatt form, studied for example by Carbon et al. (1997a,b)

in the �nite dimensional spatial setting. This special case allows clearer interpretation of our

asymptotic results (see Section 4.3) by linking them directly with the small balls probabilities.

It will be also shown that the technical assumptions introduced in Section 2.2 are not really

restrictive.

In this setting, the previous estimator can be rewritten as follows:

(3.1) ∀x ∈ E , f̃n(x) =
1

n̂ axn

∑

i∈In

K (∥Xi − x∥ /hn) ,

where (hn) is a sequence of positive reals (the bandwidths), K is an integrable kernel and we set

Kn(u) = K(u/hn).

Concerning the sequence (axn), we will consider the case where a
x
n is a function of F x(hn) or

E
[
K
(
∥Y−x∥
hn

)]
if the reference measure is the distribution of a stationary random �eld (Yi).

These cases are similar to those proposed for example by respectively Dabo-Niang (2004) and

Ferraty & Vieu (2006) on one hand and by Ferraty et al. (2007) on the other hand. The two

later references concern regression estimation with functional variables. Other di�erent sequences

(axn) have been considered in the literature: for example Dabo-Niang et al. (2006) considered

axn = E
[
K
(
∥X−x∥
hn

)]
− o (g(hn)) where g is a positive valued function and Basse et al. (2008)

suggested axn = µ(B(x, hn)) in some particular kernel case.

As we will see in Section 4.2, the asymptotic results obtained for the more general setting (of

Section 2.1) in the �rst part of Section 4 can be reformulated for small balls probabilities under

the following concentration conditions.

Let ψ(.) be some increasing function taking values in ]0,+∞[ such that limt→0 ψ(t) = 0. We

consider the following concentration hypothesis:

H7 - lim
t→0

sup
x∈G

∣∣∣∣
P (X ∈ B(x, t))

ψ(t)
− f(x)

∣∣∣∣ = 0

and
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∃ϵ1 ∈ (0, 1], lim
t→0

sup
x∈G

∣∣∣∣∣
maxi ̸=j P ((Xi, Xj) ∈ B(x, t)×B(x, t))

ψ(t)1+ϵ1
− sup

i, j
fi, j(x, x)

∣∣∣∣∣ = 0.

Remark 3.1.

Note that in particular, ψ(t) can be seen as ψ(t) = µ(B(0, t)) if for all x ∈ G, limt→0 µ(B(0, t)) =

limt→0 µ(B(x, t)). Then, f(x) = limt→0
P (X∈B(x,t))

ψ(t) , see for example Ferraty & Vieu (2006) (p.

139) for more details which merge the de�nition of the classical density.

For sake of simplicity, we consider in this particular case, only kernels satisfying the following

classical assumptions (even if Lemma 7.4 in the Appendix takes into account a large family of

kernels):

H8- K is such that: supp(K) = (0, 1), K(1) = 0, its derivative function K ′ exists and

−∞ < τ1 ≤ K ′ ≤ τ2 < 0.

The two following assumptions on the bandwidth and the concentration function will be

needed:

H9 - ∃c > 0, ∃ε0 > 0, ∀ε < ε0,

ˆ ε

0
ψ(z) dz > cεψ(ε).

H10 - The smoothing parameter hn satis�es

lim
n→+∞

hn = 0 and lim
n→+∞

n̂ψ(hn)

log n̂
= +∞.

The �rst part of Assumption H7 and H10 allow us to choose axn = ψ(hn) ≃
Fx(hn)
f(x) . Under

the conditions H7 −H8, H10 and using the same arguments as Dabo-Niang et al. (2006) and

Ferraty & Vieu (2006) (p. 44 and p. 139), one gets E
[
K
(
∥X−x∥
hn

)]
= −

ˆ 1

0
K ′(t)F x(hnt) dt ≃

−f(x).

ˆ 1

0
K ′(t)ψ(hnt) dt. This motivates us to choose axn = −

ˆ 1

0
K ′(t)ψ(hnt) ≃

E
[
K
(

∥X−x∥
hn

)]

f(x) .

The choice ψ(hn) or −

ˆ 1

0
K ′(t)ψ(hnt) for a

x
n does not depend on x and is considered in what

follows for the particular estimate f̃n.

It is easy to see that H8 and H9 allow to satisfy H3 with Sn = 1/ψ(hn), β1 = 1 and β2 > 1

and H6 with Dn = hn. Assumption H5 is then satis�ed by the following:

H11 - dn = n̂β and rn ≤
(

log n̂
n̂(ψ(hn))κ

) 1
2
, where β is an integer κ ≤ −2β2 + 1.
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To get a rate of convergence, we use the following more restrictive assumption about the con-

centration of the probability of X:

H12 - lim
t→0

sup
x∈G

∣∣∣∣
P (X ∈ B(x, t))

ψ(t)
− f(x)

∣∣∣∣ = o (t) .

and

∃ϵ1 ∈ (0, 1], lim
t→0

sup
x∈G

∣∣∣∣∣
maxi ̸=j P ((Xi, Xj) ∈ B(x, t)×B(x, t))

ψ(t)1+ϵ1
− sup

i, j
fi, j(x, x)

∣∣∣∣∣ = o (t) .

Remark 3.2.

• Note that Conditions H7-H10 imply H1-H4 (the proof of this implication is easily

obtained by sketching the proof of Theorem 3 of Dabo-Niang et al. (2006)).

• Assumptions H1-H5 are veri�ed in �nite dimensional setting, see the next section.

Before going further, let us give some particular examples of random variables that are inter-

ested in the setting of small ball probabilities that are generally di�cult to evaluate.

3.2. Examples.

3.2.1. The class of fractal (or geometric) processes.

A special case of particular importance concerns the fractal processes for which, for all positive

real t,

(3.2) F x(t) ≃ Cxt
γ

where γ (called the fractal dimension) and Cx are positive constants. In this case, the value of

axn can be precise: axn ≃ Cxh
γ
n.

3.2.2. Case of a process with density respectively to Wiener measure.

Let µ be the standard Wiener measure. That is, X is a process whose probability distribution

is absolutely continuous with respect to the standard Wiener measure (for example di�usion

processes, fractional Brownian processes, ..., see for example Bogachev (1999), Li & man Shao

(2001)) and E = C[0, 1] is the space of all continuous functions on [0, 1] that vanish at 0. If

for simplicity, K is the indicator function and axn = µ(B(x, hn)), the consistency of the density

estimator f̃n, is related to Wiener measure of the ball B(x, hn). The Wiener measure on a ball

can be evaluated if the center of the ball lies in the subspace (see Csaki (1980))

S = {x ∈ C[0, 1] : x(0) = 0, x is absolutely continuous and

ˆ 1

0
x′2(t)dt <∞}.

That is, for x ∈ S and small hn

µ(B(x, hn)) ≃ Cxexp(−π
2/(8h2n)).

We refer to Basse et al. (2008), Dabo-Niang & Rhomari (2009), Ferraty & Vieu (2006), for more

discussions on these two types of processes.
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3.2.3. The �nite dimensional case.

In the case where E = R
d, as raised in Section 4 of Ferraty et al. (2007), any random variable

X on E which has a �nite and non zero density function at a point x satis�es (3.2) with γ = d.

Then, axn = hdn ≃ Cx

f(x) .h
d
n = V (d)hdn and does not depend on x (where Cx = V (d).f(x), V (d) is

the volume of the unit ball on R
d).

Since our results appear as generalization of those of Carbon et al. (1997b), let us show that

our assumptions are satis�ed under that of Carbon et al. (1997b) if E = R
d.

Clearly Hf and H′
f are in�nite dimension versions of the classical regularity Assumption 2 (f

is a Lipschitz function) of Carbon et al. (1997b).

Note that in the multivariate setting, the kernel is de�ned as K(∥u∥ /hn) = K∗ (u/hn) (where

K∗ is a multivariate kernel), ψ(hn) = hdn and G is a compact set, see Carbon et al. (1997b).

Under Assumption 1 (K∗ is a Lipschitz density then bounded) of Carbon et al. (1997b) we have:

• K∗ veri�es H1 since it is a density.

• Assumption H2 is satis�ed since supx∈Rd K∗(x) < C, for some constant C > 0.

In fact, we have Kn(∥y−x∥)
axn

=
K∗

(
y−x
hn

)

hdn
≤ C

hdn
. Furthermore, Carbon et al. (1997b)

supposed that:

lim
n→+∞

hn = 0 and lim
n→+∞

n̂hdn
log n̂

= +∞

• One easily gets H3 by setting β1 = 1, β2 = 1 + 1
d , since K∗ is such that:

∣∣∣∣
1

ax1n
Kn (∥y − x1∥)−

1

ax2n
Kn (∥y − x2∥)

∣∣∣∣ ≤ C h
−(d+1)
n ∥x1 − x2∥ .

Assumption H4 is satis�es by a kernel on R
d such that: lim∥x∥→∞ ∥x∥K∗(x) = 0.

AssumptionH5 corresponds to condition (5.1) of Carbon et al. (1997a): with rn = Ch
(d+1)
n

(
log n̂
n̂hdn

)1/2
=

((
1
hdn

)−(1+2/d)
log n̂
n̂

)1/2

(since β2 = 1 + 1
d) .

4. Asymptotic Results

This Section is devoted to consistency results of the density estimator under the general assump-

tions and also for the particular case of Section 3.1. We are particularly interested in the uniform

consistency of f over G.

4.1. Convergence under polynomial mixing condition. Let us �rst consider the case where

φ(i) tends to zero at a polynomial rate i.e. (2.8) is satis�ed. Then, we get the following consis-

tency results for di�erent values of θ (depending on the mixing conditions (2.6) and (2.7)).

4.1.1. Weak consistency.
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If condition (2.6) is satis�ed, θ is such that θ > 2N(β + 1) (β is the one of assumption H5)

and n̂Sθ1n (log n̂)θ2 → ∞ with,

θ1 =
θ

2N(β + 1)− θ
, θ2 =

θ − 2N

2N(β + 1)− θ
,

then, we have:

Theorem 4.1. Under the conditions Hf and H1-H5, (2.6) and (2.8)

(4.1) sup
x∈G

|fn(x)− f(x)| converges in probability to 0.

On the other hand, if the mixing coe�cient satis�es condition (2.7) and if θ is such that

θ > N(1 + 2β + 2β̃) and if n̂Sθ3n (log n̂)θ4 → ∞ with

θ3 =
θ +N

N(1 + 2β + 2β̃)− θ
, θ4 =

θ −N

N(1 + 2β + 2β̃)− θ
,

then we have:

Theorem 4.2. Under the conditions Hf and H1-H5, (2.7) and (2.8)

(4.2) sup
x∈G

|fn(x)− f(x)| converges in probability to 0.

To get rates of convergence, we replace Assumption H1 by H6 and Hf by H′
f and get the

following result:

Theorem 4.3. Under the conditions H′
f , H2-H6, if the mixing coe�cient is such that (2.6) is

satis�ed, θ > 2N(β + 1) and n̂Sθ1n (log n̂)θ2 → ∞, and (2.8), then we have:

(4.3) sup
x∈G

|fn(x)− f(x)| = Op

(
Dn +

√
Sn log n̂

n̂

)
.

The following result which proof is similar to that of Theorem 4.3 and then omitted, concerns

the mixing condition (2.7).

Theorem 4.4. Under the conditions H′
f , H2-H6, if the mixing coe�cient is such that (2.7) is

satis�ed and θ > N(1 + 2β + 2β̃) and if n̂Sθ3n (log n̂)θ4 → ∞, (2.8), we have

(4.4) sup
x∈G

|fn(x)− f(x)| = Op

(
Dn +

√
Sn log n̂

n̂

)
.

4.1.2. Strong consistency. The next results give the strong convergence of fn under additional

conditions.
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Let g(n) =
∏N
i=1(log ni)(log log ni)

1+ϵ (then
∑

n∈NN 1/ (n̂g(n)) < ∞). Let θ be such that

θ > 2N(β + 1) and n̂S
θ∗1
n (log n̂)θ

∗
2 (g(n))

−2N
θ−2N(β+2) → ∞ with

θ∗1 =
θ

2N(β + 2)− θ
, θ∗2 =

θ − 2N

2N(β + 2)− θ
,

θ∗3 =
θ +N

N(3 + 2β + 2β̃)− θ
, θ∗4 =

θ −N

N(3 + 2β + 2β̃)− θ
,

then, we have the following strong consistency result:

Theorem 4.5. Under the conditions Hf , H1-H5, and if (2.6) and (2.8) are satis�ed, then we

have

(4.5) sup
x∈G

|fn(x)− f(x)| converges almost surely to 0.

The following theorem gives an almost sure rate of convergence and is stated in the case where

the mixing coe�cient satis�es (2.7) and if θ > N(3 + 2β + 2β̃) and

n̂S
θ∗3
n (log n̂)θ

∗
4 (g(n))

−2N

θ−N(2β+2β̃+3) → ∞. The proof of this Theorem is similar to that of Theo-

rem 4.5 and is omitted.

Theorem 4.6. Under the conditions Hf , H1-H5, (2.7) and (2.8), we have

(4.6) sup
x∈G

|fn(x)− f(x)| converges almost surely to 0.

The strong rate of convergence of fn follows in the two cases of mixing as in the weak rate above.

Suppose that the mixing coe�cient satis�es (2.6), θ > 2N(β + 2) and

n̂S
θ∗1
n (log n̂)θ

∗
2 (g(n))

−2N
θ−2N(β+2) → ∞, then:

Theorem 4.7. Under the conditions H′
f , H2-H6, (2.6) and (2.8), we have

(4.7) sup
x∈G

|fn(x)− f(x)| = Oa.s

(
Dn +

√
Sn log n̂

n̂

)
.

Proof. It follows from Theorems 4.3 and 4.6. �

If (2.7) is satis�ed, θ > N(3 + 2β + 2β̃) and if n̂S
θ∗3
n (log n̂)θ

∗
4 (g(n))

−2N

θ−N(2β+2β̃+3) → ∞, then we

have:

Theorem 4.8. Under the conditions H′
f , H2-H6, (2.7) and (2.8), we have

(4.8) sup
x∈G

|fn(x)− f(x)| = Oa.s

(
Dn +

√
Sn log n̂

n̂

)
.
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Proof. It is similar to that of Theorem 4.3. �

4.2. Convergence under exponential mixing condition. It is worth to study the exponen-

tial mixing case where

(4.9) φ(i) = C exp(−si)

for some s > 0 since it includes the Geometrically Strong Mixing (GSM) case (with χ ≡ 1) which

is easier to check in practice.

The proof of the following Theorem is obtained by sketching the proof of Theorem 4.3 and by

using similar arguments as in the �nite dimensional case (Carbon, et al. Carbon et al. (1997b)).

It is then omitted.

Theorem 4.9. Under the conditions H′
f , H2-H6, (2.6) or 2.7), (4.9) and n̂S−1

n (log n̂)−2N−1 →

∞, then

(4.10) sup
x∈G

|fn(x)− f(x)| = O

(
Dn +

√
Sn log n̂

n̂

)
a.s.

4.3. The small balls probabilities e�ects.

In this section we look at consistency results of the density estimate of the simple usual Parzen-

Rosenblatt form of Section 3.1 when the probability distribution ofX satis�es some concentration

condition. In the following, we are only interested in strong rates of convergence. But under

the same conditions as Theorems 4.1, 4.3, 4.5 (respectively Theorems 4.2, 4.4, 4.6) except that

H1-H6 are replace by H7-H12, we get the weak (with rates) and strong consistencies under the

mixing condition (2.6) (respectively mixing condition (2.7)). So, the following theorems give the

strong rates of convergence.

Theorem 4.10. Under the conditions of Theorem 4.7 except that H2-H6 are replaced by H8-

H12, we have

(4.11) sup
x∈G

|f̃n(x)− f(x)| = O

(
hn +

√
log n̂

n̂ψ(hn)

)
, a.s.

Proof. The proof follows the same steps as that of Theorem 4.7, by using H12 instead of H6

and noting that Dn = hn. �

Theorem 4.11. Under the same conditions as Theorem 4.8 except that H2-H6 are replaced by

H8-H12, we have

(4.12) sup
x∈G

|f̃n(x)− f(x)| = O (hn) +O

(√
log n̂

n̂ψ(hn)

)
, a.s.
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Proof. It is similar to that of Theorem 4.10. �

Similar arguments used to prove Theorem 4.9 lead to:

Theorem 4.12. (Exponential mixing case) Under the conditions H′
f , H8-H12, (2.6) or 2.7),

(4.9) and n̂S−1
n (log n̂)−2N−1 → ∞, we have

(4.13) sup
x∈G

|f̃n(x)− f(x)| = O (hn) +O

(√
log n̂

n̂ψ(hn)

)
, a.s.

Remark 4.13.

• In this section, we obtain a rate of convergence of the form:

O (hn) +O

(√
log n̂

n̂ψ(hn)

)

where O (hn) is the rate of the bias of the estimator which only depends on the regularity

of f . Note that, by using the same approach as in this paper, one can easily shows that if

f satis�es a Hölder condition: ∀x, y ∈ G, |f(x)− f(y)| ≤ C ∥x− y∥κ for some C, κ > 0,

then the rate of convergence is the following:

O (hκn) +O

(√
log n̂

n̂ψ(hn)

)
.

• In the case of pointwise convergence at a given point x ∈ E , we do not need Assumption

H12 to get a rate of convergence. It su�ces in this particular case, to sketch the proof

of the previous results and get rates of the form:

O (hn) +O

(√
log n̂

n̂F x(hn)

)
.

• The bounds obtained here permit to derive the same rates of convergence as in the i.i.d

case only if the space E is of �nite dimension (for example R
d). If the case of in�nite

dimension, the obtained rates (derived from the bounds in the theorems above) are the

same for dependent and i.i.d cases (thanks to dependency condition like (2.3) or (2.4))

but these rates (present in the literature, see the references on non-parametric estimation

for functional variables therein) are far from being proved to be the optimal ones.

5. Applications

Before going further, let us �rst discuss brie�y in what follows, the practical use of our esti-

mator.
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5.1. The functional spaces considered. In the following applications problem, we deal with

density estimation with data taking place on the normed space, E = C(a, b) (space of continuous

functions over interval [a, b]) endowed with the norm de�ned by ||x|| =
´ b
a |x(t)|dt, x ∈ C(a, b).

(In fact, a discretization version over a sequence of 101 equi-spaced points of [a, b] is considered:
´ b
b |x(t)|dt ≃

1
b−a

∑b
ti=a

|x(ti)|).

5.2. Our estimator in practice. As previously mentioned, our kernel density estimator is

de�ned over a rectangular region In. Suppose that the process (Xi) is observed over a set

On ⊇ In. Let (xj, j ∈ On) be the observations.

Note that similar rates of convergence as above can be obtained if one replace In by any lattice

of RN . Namely, this rate is for example as follows:

(1) In the case of pointwise estimation, for each site j, if, as it will be done later on, one

computes f̃n(xj) with observations on V j
n ⊆ On instead of In, where V

j
n is a vicinity of

j (for example the set of the kn nearest neighbors). Then, if we set n̂
V j
n
= n̂λ

V j
n
with

0 < λ
V j
n
≤ 1, one can establish that |f̃n(xj) − f(xj)| = O

(
hn +

√
log n̂

n̂λ
V
j
n
ψ(hn)

)
since

log n̂j/n̂j ≤ log n̂/n̂λ
V j
n
, where n̂j = n̂

V j
n
.

(2) In the case of uniform control of the estimator over a set G, we propose to replace In by

VG
n ⊆ On, where VG

n is the set of all sites j such that xj ∈ G. For the same reasons as

before, one can prove that sup
j∈VG

n
|f̃n(xj)− f(xj)| = O

(
hn +

√
log n̂

n̂λ
VG
n
ψ(hn)

)
.

Moreover, formally, our estimator looks like its i.i.d. counterpart. However, as in any spatial

modeling, the spatial dependency must be taken into account for applications. Here, we deal

with the mixing coe�cient (2.5) that tends to zero at polynomial rate (Condition (2.6)) or at

exponential rate (Condition (2.7)). That is, without the loss of generality, let us consider the

strong mixing case that corresponds to χ ≡ 1 (and then α ≡ φ) in expression (2.5). Thus, for

any sites i and j, the closeness they are, the strongly is the dependence between Xi and Xj.

In order to take into account the spatial dependency at any set j ∈ On, we suggest to compute

f̃n(xj) based on observations on V j
n, ρn = {i ∈ On, ||i − j|| < ρn}, where (ρn) is an increasing

sequel of positive reals, tending to in�nity. Then, to estimate the spatial density f(xj) at xj, we

propose the following procedure.

5.2.1. Procedure of estimation of f(xj), j ∈ On.

(1) Specify the sets of radius and bandwidths: S(ρ) and S(h).

(2) For each hn ∈ S(h) and ρn ∈ S(ρ) and each j ∈ On, compute:

f̃n(xj) =
1

n̂j a
xj
n

∑

i∈V j
n, ρn

K

(
∥xi − xj∥

hn

)
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where a
xj
n has been computed as below;

(3) Compute hn,opt and ρn,opt obtained by optimizing the Entropy (Ferraty & Vieu 2006) (or

any other criterion such as Cross-validation) over the sets S(h) and S(ρ);

(4) For each j, compute f̃n,opt(xj) which corresponds to hn,opt and ρn,opt.

5.2.2. The sequences
(
a
xj
n

)
.

Recall that each a
xj
n depends on the reference distribution µ. In �nite dimensional setting, µ is

often, the Lebesgue measure that does not exist in in�nite dimensional spaces. So, µ must be

speci�ed according the considered problem.

In the following applications, we apply our estimation method to detect if two spatial (sta-

tionary) distributions F (1) and F (2) are equal or not. Let respectively (X
(1)
i ) and (X

(2)
i ) the

processes corresponding respectively to F (1) and F (2). To solve the detection problem, we con-

sider one of the two distributions as a reference measure. That is, we set for example µ = F (2).

Then, for each xj, j ∈ On, observation of (F
(1)
i ), a

xj
n is de�ned by:

a
xj
n =

1

n̂j

∑

i∈V j
n

K

(
∥X

(2)
i − xj∥

hn

)

where V j
n is a vicinity of j. Then we have

(5.1) f̃n(xj) =

∑
i∈V j

n
K

(∥∥∥X(1)
i

−xj

∥∥∥
hn

)

∑
i∈V j

n
K

(
∥X

(2)
i

−xj∥

hn

) .

Remark 5.1.

(1) Visualization of the functional spatial feature.

The functions f , f̃n or fn are de�ned from E to R
+ where E is a functional space and

a graphical representation of its graph is impossible. However, since f (or its estimator)

is a spatial density, it is possible to get a graphical representation of the underline spatial

feature. Note that this later shows the spatial feature of the process in a given domain

(see Figures 5.2 and 5.4). Indeed, such graphics have been obtained by identifying the

function f (or its estimator) with the function H de�ned by:

H :
On → E → R

+

j 7→ xj 7→ f(xj) (or fn(xj) or f̃n(xj)).

(2) Spatial modal curves estimation

Estimation of a spatial modal curve over observations on a set VG
n can be obtained by

taking ρn such that VG
n ⊂ ∪

j∈VG
n
B(j, ρn) where B(j, ρn) is the opened ball of center j and

radius ρn; with G = {xj, j ∈ VG
n}.
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Figure 5.1. The simulated dataset

5.3. Simulations. We now illustrate our purpose through some simulations. In the following,

we will deal with N = 2, the simulated curves are located on subsets of the area I(26,26) =

{(i, j) , 1 ≤ i ≤ 26; 1 ≤ j ≤ 26} and we denote by GRF (m, σ2, s) a stationary Gaussian random

�eld with mean m and covariance function de�ned by C(h) = σ2 exp(−(∥h∥s )2), h ∈ R
2 and

s > 0. Then, we have simulated two datasets.

The �rst dataset (X
(1)
(i,j), (i, j) ∈ I(26,26)) is built from two di�erent groups of curves generated,

for t ∈ T = [0, 1], by:

X
(1)
(i,j)(t) =

{
F(i,j).(t− 0.5)3 + ε(i,j) for (i, j) ∈ R1(Group1)

F(i,j) cos(2πt)
5 + ε(i,j) for (i, j) ∈ R2(Group2)

with ε = GRF (0, 20, 5), R1, R2 are two disjoint sets of sites. The curves located at (i, j) in

R1 are in black on Figure 5.1 and the ones located (i, j) in R2 are in red on Figure 5.1. The

�eld (F(i,j) (i, j) ∈ I(26,26)) is the one presented in Figure 5.1 (on top of the left).

Concerning the dataset (X
(2)
(i,j), (i, j) ∈ I(26,26)), we have considered the two following cases:
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Case 1: The second dataset is generated as follows

∀(i, j) ∈ F(i,j) , X
(2)
(i,j) = F(i,j).(t− 0.5)3 + ε(i,j) + ϵ(i,j)

with ϵ(i,j) ∼ N(0, .01), the ϵ(i,j) are i.i.d.

Then, we have

X
(2)
(i,j) = X

(1)
(i,j) + ϵ(i,j) for (i, j) ∈ R1

X
(1)
(i,j) ̸= X

(2)
(i,j) otherwise

Case 2: X
(2)
(i,j) = H(i,j) cos(2πt)

5 + ε(i,j) + ϵ(i,j) where (H(i,j)) is the �eld of Figure 5.1-A. that

coincides with F(i,j) on I(26,26)\{[16, 23]× [4, 11]}. Then, we have

X
(2)
(i,j) = X

(1)
(i,j) + ϵ(i,j) for (i, j) ∈ {[2, 10]× [4, 13]} ∪ {[15, 24]× [13, 23]}

X
(2)
(i,j) ̸= X

(1)
(i,j) otherwise.

We aim to test if our procedure detect the di�erence or the similarity between the two distri-

butions of (X
(1)
(i,j)) and (X

(2)
(i,j)) in the two cases.

Then, we have computed the spatial density estimation (5.1) based on the simulated dataset.

For the two cases, we have get ρn, opt = 5; and, hn,opt ≃ .05 in Case 1 and hn,opt ≃ .15 in

Case 2. The results are given on graphics of Figure 5.2.This later shows clearly that, a part from

a few sites, our procedure is able to detect the di�erence in the two cases.

In fact, Figure 5.2 (left) shows that in Case 1, the kernel density of (X
(1)
(i,j)) with respect to the

distribution of (X
(2)
(i,j)) is near 1 in the region R1 when it is near by 0 in R2. That means that

our procedure detects X
(1)
(i,j) ≃ X

(2)
(i,j) on R1 and X

(1)
(i,j) di�erent from X

(2)
(i,j) on the region R2.

Similarly, in case 2 (Figure 5.2 (right)), the result detects thatX
(1)
(i,j) ≃ X

(2)
(i,j) if i ∈ [2, 10]∪[15, 24]

and j ∈ [4, 13] ∪ [13, 23] and X
(1)
(i,j) ̸= X

(2)
(i,j) otherwise.

5.4. Application to spatial grain size curves.

The dataset is a sample of grain size curves collected in the Berre Lagoon. This latter is situated

in the southeast of France, near Marseille. It can be divided into two areas separated by a sandy

zone: the main lagoon with NW-SE extension and the Vaines Lagoon in the SE. There are three

natural inputs: the Caronte pass in relation with the Gulf of Fos located in the North East of the

main lagoon and the Vallat river in the East of Vaines lagoon. Since 1962, an hydroelectric plant

is located in the north of the lagoon. The volume of the fresh water used to produce electricity

is very large and its injection caused major environmental modi�cations (Figure 5.4); thus it

has been considerably reduced since 1994 (new discharge policy). The Berre area is under the
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Figure 5.2. Representation of the kernel density of the spatial functional random (X
(1)

(i,j))

with respect to the distribution of (X
(2)

(i,j)).

in�uences of the wind in two main directions: N 340° i.e. Mistral and N 135° i.e. east wind; its

depth does not exceeds 10 meters.

The environmental modi�cations are handled by the geologist by comparing sediment trans-

port through grain size curves distributions.

5.4.1. De�nition of grain size curves. Grain-size curves are routinely used by geologists to iden-

tify sedimentary facies (Buller & McManus 1972), to classify pyroclastic deposits (Lirer & Vinci

1991), or to investigate the patterns of sediment transport (Gao & Collins 1994). Their partic-

ularity is that with some transformations, they can see as distribution functions. We deal here

with grain size curves.

Data sampling. Samples of sediment were collected in the lagoon according to a grid of half a mile

in each direction. Grain-size measurements were provided by a Malvern Instrument Ltd. Laser

Microsizer; the size detection ranges from 0.063 to 900 micrometer (µm). Some classes, namely

42, were detected, associated with a geometrical progression scale subdivisions. These classes

cover a large sedimentologic spectrum: colloids, i.e. organic matter, (0.063µm ≤ size ≤ 1µm),

clay (1µm ≤ size < 10µm), silt (10µm ≤ size ≤ 63µm) and sand (63µm ≤ size ≤ 900µm). All

grain-size curves will be displayed according to the natural logarithmic scale. There have been

two campaigns to collect these grain size curves: one in year 1992 and another in year 1997.

Figure 5.3 displays the dataset.

The problem. Since, the environmental modi�cations are handled by the geologist by comparing

sediment transport through grain size curves distributions. We aim to provide tools that both

measure and allow to visualize the change of spatial distribution of the grain size curve.

To do that, we consider the two spatial processes: (X
(1992)
(i,j) (t)) and (X

(1997)
(i,j) (t)), t ∈ [0.063, 900],

where the sites (i, j) of the observations are in the region given in Figure 5.3.C.
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A. The Berre lagoon and its main features.
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Figure 5.3. The dataset.
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To solve the problem of change in spatial distribution, we propose to estimate the density

of (X
(1992)
(i,j) (.)) (or (X

(1997)
(i,j) (.))) with respect to the distribution of (X

(1997)
(i,j) (.)) (or (X

(1992)
(i,j) (.)))

using the spatial density estimator, f̃n(.) previously de�ned.

In section 2, we assume that the data are strictly stationary, for this real data application we

check throw some density computations if this stationary assumption is satis�ed. For this, we

consider the density of (X
(1992)
(i,j) (.)) (or (X

(1997)
(i,j) (.))) with respect to the distribution of (X

(1997)
(i,j) (.))

(or (X
(1992)
(i,j) (.))) and compute its estimator, f̃n(.) using di�erent sets of sample observation sites

(i, j). The densities estimates f̃n(.) obtained look very similar. That permits to think that our

real data seems stationary. For seek of simplicity and shortness of the paper, we do not present

these graphical density stationary results obtained. Other future investigations can be done to

con�rm the stationary behavior of this real data.

The spatial density estimation.

We have computed the spatial density estimation (5.1) based on the simulated dataset. This

later was computed using ρn,opt = 35 and the bandwidth, obtained by minimizing the entropy

of f̃n over a set of bandwidths is hn,opt ≃ 1.4. The results are displayed in Figure 5.4.

Figure 5.4.A. shows that the spatial distribution has not changes except at a few locations.

Note that, these sites (where the distribution has change) are located near the main cities:

Martigues, Vitrolles and Berre. These changes are due to the vanishing of the silt in these zones

which could be due to the rainwater network. Other changes can be observed near the natural

inputs of the Lagoon: Arc river, Caronte pass and Vallat river. The later could be due to the

fact that Sediment become coarser in these natural inputs.

To con�rm or deny the change in distribution, we have displayed Figures 5.4.B. and 5.4.C.

where one can see that each site for which fn(x
(1992)
(i,j) ) ≥ .8 (i.e. fn(x

(1992)
(i,j) ) closes to 1) on red

in Figure 5.4.B. corresponds to x(1992)(i,j) (t) ≃ x
(1997)
(i,j) (t), t ∈ [0.063, 900]. Indeed, except some cases,

the graph of x(1992)(i,j) (t) versus x
(1997)
(i,j) (t) are closed to the �rst bisector for the curves on red.

6. Conclusion and discussions

In this paper, we have proposed a new method to estimate the spatial density of a stationary

functional random �eld. This work combines asymptotic properties and practical use. The theory

is directly linked with the applications through the concentration of the probability measure of the

underlying functional variable. This concentration on small balls controls the rate of convergence

of the nonparametric estimator and allows to select in practice the smoothing parameter. A rule

for selecting this later parameter is obtained by minimizing the entropy of f̃n over a set of

bandwidths that is the spatial counter part of that suggested in the i.i.d case for example in

Ferraty & Vieu (2006).
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Figure 5.4. Representation of the kernel density of the spatial functional random

(X
(1992)
i (.)) with respect to the distribution of (X

(1997)
i (.)).

However, from the previous section, a question remains: do the two estimation procedures

(i.i.d. and spatial dependence cases) lead to so di�erent results in practice? To answer to this

question, we refer to Dabo-Niang et al. (2010), where, through some simulations, a �rst and rel-

evant work shows the e�ect of taking into account or not the spatial dependency on the unsuper-

vised clustering rule based on kernel modal curves estimation. Namely, Dabo-Niang et al. (2010)

shows that these two procedures (i.i.d and spatial procedures) do not lead to the same results:

the i.i.d procedure classi�es according to the closeness between curves (functional distance), the

spatial procedure classi�es according to both closeness between locations and proximity between
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curves. That is, Dabo-Niang et al. (2010) provided an heterogeneity measure based on functional

spatial modal curve estimation for classi�cation problem. Contrary to the problem treated in this

paper, Dabo-Niang et al. (2010) raises some situations where the speci�cation of the reference

measure µ is not necessary.

Other interesting �elds of real applications are:

• Space-time data problem: In this setting, let (Xi(t)) a space-time process. Let [a1, b1] and

[a2, b2] (a1 ≤ b1 < a2 ≤ b2) two periods of observations of the process. Our procedure can

be used to detect spatial feature that has changes at [a2, b2] since [a1, b1]. The �elds of

applications are very large: meteorology (spatio-temporal evolution of the wind), ecology

(spatio-temporal dynamic of a population), archeology,...

• Unsupervised clustering methods of hyper-spectral images which are spatially distributed

spectra: such data are collected in a large �eld of real-life applications: geology, agricul-

ture, surveillance, identify surface materials,....

• One can compare the distribution of a spatial process with a Wiener measure or any

other known functional spatial process distribution.

Now, since our estimator is nonparametric, it is subject to the well-known curse of dimen-

sionality problem. Let us discuss this problem.

The curse of dimensionality problem in functional spatial setting.

This well-known problem for high-dimensionality studies, appears in nonparametric statistical

setting as: �the number of observations required for a good estimation (of the density or the

regression function for example) increases exponentially with the dimension of the space (of

study)�. Then, if such a defect is observed in multidimensional setting, naturally, that should be

more crucial in in�nite dimensional space.

Really, as raised by Donoho (2000) and Ferraty & Vieu (2006) in the i.i.d. case, this problem

depends on the �concentration of the distribution measure� of the underlying variable.

Let us go back to our estimator and to �x ideas consider the small ball probabilities case where

the rate of convergence of f̃n(x) at a given point x ∈ E is of the form:

O (hn) +O

(√
log n̂

n̂F x(hn)

)
.

As we said before, the term O (hn) controls the bias and O
(√

log n̂
n̂Fx(hn)

)
comes from the

variability of f̃n(x)−E
(
f̃n(x)

)
. So the rate of convergence of our estimator crucially depends on

the small ball probabilities F x(hn). The role of the small ball probabilities have been discussed in

Dabo-Niang & Rhomari (2009), Ferraty & Vieu (2006) (p. 206) and their arguments remain true

in the spatial case. In fact, since F x(hn) = P (X ∈ B(x, hn)), the rate of convergence of f̃n(x)

depends on the concentration of the spatial process around x. Thus, the more the observations

are closed to x, the faster f̃n(x) will converge (since in such situation, P (X ∈ B(x, hn)) is higher).
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Now, in R
d, as remarked in Section 3, P (X ∈ B(x, hn)) ≃ f(x)hdn. So, we retrieve both

the curse of dimensionality and the following property: in multidimensional setting, the rate

of convergence of f(x) depends on the value of f(x). If f(x) is small, the rate of convergence

depends crucially on d and high values of f(x) are better estimated with much less data than

small values of f(x) for a �xed d.

In short, we can say that actually, the curse of dimensionality is a �curse of small ball probabil-

ities� problem. Thus, the rate of convergence of our estimator will crucially su�er from a �curse

of small ball probabilities� as soon as the data are very sparse and the challenge is to look for

solutions (as in multidimensional case) that �increase� the small ball probabilities. Such solutions

can be seen as the functional counterparts of the well-known reduction dimension methods.

This motivate some authors such as Ferraty & Vieu (2006), Dabo-Niang et al. (2006, 2010),

Dabo-Niang & Rhomari (2009), Ferraty & Vieu (2006), to endow the space E with a suitable

topological structure. They choose a semi-metric according to a given statistical problem. Note

that the most known semi-metrics are those based on projection on �nite dimensional subspaces

such as �rst directions of the PCA, B-splines basis, Fourier basis, wavelets basis,... which are

well-known as dimension reduction methods.
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7. Appendix

This section is devoted to prove the asymptotic properties of the kernel density estimate.

Before the proofs of the results, we need to present some preliminary results. The �rst three

lemmas are given in Carbon et al. (1997b).

Lemma 7.1. Suppose E1, ..., Er be sets containing m sites each with dist(Ei, Ej) ≥ γ for all

i ̸= j where 1 ≤ i ≤ r and 1 ≤ j ≤ r. Suppose Z1, ..., Zr is a sequence of real-valued r.v.'s

measurable with respect to B(E1), ...,B(Er) respectively, and Zi takes values in [a, b]. Then there

exists a sequence of independent r.v.'s Z∗
1 , ..., Z

∗
r independent of Z1, ..., Zr such that Z∗

i has the

same distribution as Zi and satis�es

(7.1)

r∑

i=1

E|Zi − Z∗
i | ≤ 2r(b− a)ψ((r − 1)m,m)φ(γ).

Lemma 7.2.

(i) Suppose that (2.5) holds. Denote by Lr(F) the class of F−measurable r.v.'s X satisfying
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∥X∥r = (E|X|r)1/r < ∞. Suppose X ∈ Lr(B(E)) and Y ∈ Ls(B(E
′)). Assume also that

1 ≤ r, s, t <∞ and r−1 + s−1 + t−1 = 1. Then

(7.2) |EXY − EXEY | ≤ C∥X∥r∥Y ∥s{χ(Card(E), Card(E′))φ(dist(E,E′))}1/t.

(ii) For r.v.'s bounded with probability 1, the right-hand side of (7.2)

can be replaced by Cχ(Card(E), Card(E′))φ(dist(E,E′)).

Lemma 7.3.

If (2.8) holds for θ > 2N , then

(7.3)

∞∑

i=1

iN−1(φ(i))a <∞

for some 0 < a < 1/2.

The following lemma is due to Dabo-Niang et al. (2006) and will be useful in the case of small

balls probabilities e�ects.

Lemma 7.4.

Let K be a continuous kernel on (0, 1) with supp(K) = (0, 1) and K−1 integrable where K−1(u) =

inft{t ∈ (0, 1), K(t) = u}. Then we have:

ˆ

E
K

(
∥y − x∥

hn

)
dµ(y) = K(1)µ (B(x, h)) +

ˆ K(0)

K(1)
µ
(
B(x,K−1(u)h)

)
du.

To state the convergence results stated in Section 4, it su�ces to study the consistency of the

bias supx∈G |E (fn (x))− f(x)| on one hand and that of supx∈G |fn (x)− E (fn (x))| on the other

hand, since supx∈G |fn (x)− f (x)| ≤ supx∈G |fn (x)− E (fn (x))|+ supx∈G |E (fn (x))− f(x)| .

Concerning the bias, because of the properties of the expectation, the uniform convergence

result of the bias to zero proved by Dabo-Niang et al. (2006) remains valid here.

Concerning the term supx∈G |fn (x)− E (fn (x))| the following approach is the same for the

weak and the strong consistencies.

We set:

Qn(x) = fn (x)− E (fn (x)) =
∑

i∈In

Zi,n, x, x ∈ G,

where

Zi,n, x =
1

n̂axn
(Kn (∥Xi − x∥)− E (Kn (∥Xi − x∥))) .

De�ne

S1n = max
1≤j≤dn

sup
x∈Bj

|fn(x)− fn(xj)|,
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S2n = max
1≤j≤dn

sup
x∈Bj

|Efn(xj)− Efn(x)|,

S3n = max
1≤j≤dn

|fn(xj)− Efn(xj)|.

Since G is covered by dn balls Bj = B(xj , rn) of radius rn and center at xj , then,

sup
x∈G

|fn(x)− Efn(x)| ≤ S1n + S2n + S3n.

Using assumptionsH3 andH5, one can easily show that S1n and S2n are equal to o

(√
Sn log n̂

n̂

)
a.s.

(or in probability for the weak consistency study). To study the consistency of S3n = max1≤j≤dn |Qn(xj)|,

we use the following classical spatial block decomposition (due to ?) .

For that, without loss of generality we assume that each ni, i = 1, ..., N is of the form:

(7.4) ni = 2pti,

for some integers p ≥ 1 and t1, ..., tN .

Remark 7.5. As raised by ?, if one does not have the equalities (7.4), the term say T (n, x, 2N+1)

(which contains the Zi,n, x's at the ends not included in the blocks above) can be added.

Then, the random variables Zi,n, x are grouped into blocks of di�erent sizes such that, we can

set:

U(1,n, x, j) =

(2jk+1)p∑

ik=2jkp+1, 1≤k≤N

Zi,n, x,

U(2,n, x, j) =

(2jk+1)p∑

ik=2jkp+1, 1≤k≤N−1

2(jN+1)p∑

iN=(2jN+1)p+1

Zi,n, x,

U(3,n, x, j) =

(2jk+1)p∑

ik=2jkp+1, 1≤k≤N−2

2(jN−1+1)p∑

iN−1=(2jN−1+1)p+1

(2jN+1)p∑

iN=2jNp+1

Zi,n, x,

U(4,n, x, j) =

(2jk+1)p∑

ik=2jkp+1, 1≤k≤N−2

2(jN−1+1)p∑

iN−1=(2jN−1+1)p+1

2(jN+1)p∑

iN=(2jN+1)p+1

Zi,n, x,

and so on. Note that

U(2N−1,n, x, j) =

2(jk+1)p∑

ik=(2jk+1)p+1, 1≤k≤N−1

(2jN+1)p∑

iN=2jNp+1

Zi,n, x.

Finally,

U(2N ,n, x, j) =

2(jk+1)p∑

ik=(2jk+1)p+1, 1≤k≤N

Zi,n, x.
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Setting T = {0, ..., t1 − 1} × ...× {0, ..., tN − 1}, we de�ne for each integer l = 1, ..., 2N ,

T (n, x, l) =
∑

j∈T

U(l,n, x, j).

Then, we obtain the following decomposition

Qn(x) = fn(x)− Efn(x) =
2N∑

l=1

T (n, x, l).

To prove that max1≤j≤dn ∥Qn(xj)∥ = O

(√
Sn log n̂

n̂

)
a.s. (resp. in probability), it is su�cient to

show that

(7.5) max
1≤j≤dn

|T (n, xj , l)| = O

(√
Sn log n̂

n̂

)
a.s. (resp. in probability)

for each l = 1, ..., N . Without loss of generality we will show (7.5) for l = 1.

For that, we set ϵn = η
√

Sn log n̂
n̂

(where η > 0 is a constant to be chosen later) and β1n̂ =

Snχ(n̂, p
N )φ(p)ϵ−1

n .

Lemma 7.6. Given an arbitrary large positive constant c, there exists a positive constant C such

that for any η > 0

P

[
max

1≤j≤dn
|T (n, xj , 1)| > η

√
Sn log n̂

n̂

]
≤ Cdn(n̂

−c + β1n̂).

Proof. Let

T (n, x, 1) =
∑

j∈T

U(1,n, x, j).

be the sum of t̂ = t1× ...× tN of the U(1,n, x, j)'s. Note that each U(1,n, x, j)'s is measurable

with respect to the σ−�eld generated by Xi with i belonging to the set of sites

Ii, j = {i : 2jkp+ 1 ≤ ik ≤ (2jk + 1)p, k = 1, ..., N}.

These sets of sites are separated by a distance greater than p. Enumerate the random variables's

U(1,n, x, j) and the corresponding σ−�eld with which they are measurable in an arbitrary man-

ner and refer to them respectively as V1, ..., Vt̂ and B1, ...,Bt̂
. Then, T (n, x, 1) =

∑t̂
i=1 Vi, with

(7.6) |Vi| = |U(1,n, x, j)| < CpN n̂−1Sn,

Lemma 7.1 allows us to approximate V1, ..., Vt̂ by V
∗
1 , ..., V

∗
t̂
such that:

(7.7) P [|T (n, x, 1)| > ϵn] ≤ P



∣∣∣∣∣∣

t̂∑

i=1

V ∗
i

∣∣∣∣∣∣
> ϵn/2


+ P




t̂∑

i=1

|Vi − V ∗
i | > ϵn/2


 .

Now, using: Markov's inequality, (7.6), (7.1) and the fact that the sets of sites (with respect to

which Vi's are measurable) are separated by a distance greater than p, we get:
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(7.8) P




t̂∑

i=1

|Vi − V ∗
i | > ϵn


 ≤ C t̂pN n̂−1Snχ(n̂, p

N )φ(p)ϵ−1
n ∼ β1n̂ .

Let

(7.9) λn =
(
n̂S−1

n log n̂
)1/2

,

then,

(7.10) p =

[(
n̂

4Snλn

)1/N
]
∼

(
n̂

Sn log n̂

)1/2N

,

and λnϵn = η log n̂.

If (2.8) holds for θ > 2N , then we prove such as in ? (follow the same steps as those of the proof

of Lemma 2.2 of ?) by using our hypotheses Hf , H1-H4 and Lemma 7.3, that

(7.11) lim
n→∞

n̂S−1
n (Rn(x) + Un(x)) < C

where C is a constant independent of x ∈ G and

Un(x) =
∑

i∈In

E(Zi,n,x)
2

Rn(x) =
∑

i∈In

∑

l∈In, ik ̸=lk for some k

|Cov(Zi,n,x, Zl,n,x)|.

In the case of small balls probabilities e�ects (Section 3.1) H7−H9 help us to have this result.

By (7.3) and (7.11), we have

λ2n

t̂∑

i=1

E(V ∗
i )

2 ≤ Cn̂S−1
n (Un(x) +Rn(x)) log n̂ < C log n̂.

Using (7.6), we get |λnV
∗
i | < 1/2 for large n̂. We deduce from Bernstein's inequality (see

Theorem 1.2 of Bosq (1998), page 24) that

(7.12) P



∣∣∣∣∣∣

t̂∑

i=1

V ∗
i

∣∣∣∣∣∣
> ϵn


 ≤ 2 exp(−λnϵn + λ2n

t̂∑

i=1

E(V ∗
i )

2) ≤ 2 exp((−η + C) log n̂) ≤ n̂−c

for su�ciently large n̂ and η > C. We get from (7.7), (7.8) and (7.12) that

P [ max
1≤j≤dn

|T (n, xj , 1)| > ϵn] ≤ Cdn(n̂
−c + β1n̂).

�

Proof of Theorem 4.1.
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To prove this result it su�ces to show that dnn̂
−c → 0 and dnβ1n̂ → 0 (see Lemma 7.6 with

the speci�ed assumptions). In fact, we have

dnn̂
−c ≤ Cn̂β−c

which goes to zero as soon as c > β, note that this inequality is possible since c is chosen as

a large positive constant as stated in Lemma 7.6.

Moreover we have:

(7.13) dnβ1n̂ = dnSnχ(n̂, p
N )φ(p)ϵ−1

n .

We have also that n̂Sθ1n (log n̂)θ2 → ∞ is equivalent to (dnβ1n̂)
−1 → ∞ by assumption (2.6).

Then, dnβ1n̂ → 0 since

dnβ1n̂ ≤ Cn̂βSnχ(n̂, p
N )p−θϵ−1

n

≤ Cn̂βSn

(
n̂

Sn log n̂

)(1/2)−(θ/2N)

((n̂/Sn log n̂))
1
2

= C(n̂Sθ1n (log n̂)θ2)
−θ+2N(β+1)

2N .

So

(7.14) lim
n→+∞

sup
x∈G

|fn (x)− E (fn (x))| = 0, in probability

by the way. �

Proof of Theorem 4.2. Analogously to Theorem 4.1, (2.7) allows to show that n̂Sθ3n (log n̂)θ4 →

∞ is equivalent to dnβ1n̂ → 0. In e�ect, we have

dnβ1n̂ ≤ Cn̂βSnχ(n̂, p
N )p−θϵ−1

n

≤ Cn̂β+β̃Sn

(
n̂

Sn log n̂

)−(θ/2N)

((n̂/Sn log n̂))
1
2

= C(n̂Sθ3n (log n̂)θ4)
−θ+N(2β+2β̃+1)

2N . �

Proof of Theorem 4.3.

Since H6 implies H1, we can apply Lemma 7.6 and get

sup
x∈G

|fn (x)− E (fn (x))| = O

(√
Sn log n̂

n̂

)
, a.s.

Dabo-Niang et al. (2006) showed that

sup
x∈G

|Efn (x)− f (x)| = O (Dn) .
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This �nishes the proof of the theorem. �

Proof of Theorem 4.5.

We have:

dnβ1n̂ ≤ C(n̂Sθ1n (log n̂)θ2)
−θ+2N(β+1)

2N = φη(n).

Then,

dnβ1n̂n̂g(n) ≤ C(n̂Sθ1n (log n̂)θ2)
−θ+2N(β+1)

2N n̂g(n)

≤ C(n̂S
θ∗1
n (log n̂)θ

∗
2g(n)−2N/(θ−(β+2)2N))

−θ+(β+2)2N)
2N .

Thus, the condition n̂S
θ∗1
n (log n̂)θ

∗
2 (g(n))

−2N
θ−2N(β+2) → ∞ is equivalent to

n̂g(n)φη(n) → 0 which implies that
∑

n∈NN φη(n) <∞. Then, the theorem follows by Borel-

Cantelli Lemma. �

References

Anselin, L. & Florax, R. J. M. (1995). New Directions in Spatial Econometrics. Berlin: Springer.

Bar-Hen, A., Bel, L., & Cheddadi, R. (2008). Spatio-temporal functional regression on paleoeco-

logical data In Functional and Operatorial Statistics. Springer Verlag: Edited by S. Dabo-Niang

and F. Ferraty.

Basse, M., Dabo-Niang, S., & Diop, S. (2008). Kernel density estimation for functional random

�elds. Pub. Inst. Stat. Univ.Paris, LII(1-2), 91�108.

Biau, G. & Cadre, B. (2004). Nonparametric spatial prediction. Stat. Inference Stoch. Process.,

7, 327�349.

Bogachev, V. (1999). Gaussian measures(Math. surveys and monographs). American Mathemat-

ical Society.

Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes - Estimation and Prediction

- 2nd Edition. New York: Lecture Notes in Statistics, Springer-Verlag.

Bosq, D. (2000). Linear Processes in Function Spaces: Theory and applications. New York:

Lecture Notes in Statistics, Springer-Verlag.

Buller, A. & McManus, J. (1972). Simple metric sedimentary statistics used to recognize di�erent

environments. Sedimentology, 18, 1�21.

Carbon, M. (2006). Polygone des fréquences pour des champs aléatoires. C. R. Math. Acad. Sci.

Paris, 342(9), 693�696.

Carbon, M., Francq, C., & Tran, L. T. (2007). Kernel regression estimation for random �elds.

J. Statist. Plann. Inference, 137(Issue 3), 778�798.



KERNEL SPATIAL DENSITY ESTIMATION IN INFINITE DIMENSION SPACE 32

Carbon, M., Hallin, M., & Tran, L. T. (1997a). Kernel density estimation for random �elds: The

l1 theory. Nonparametric Statistics, 6, 157�170.

Carbon, M., Tran, L. T., & Wu, B. (1997b). Kernel density estimation for random �elds. Stat.

and Probab. Lett., 36, 115�125.

Chilès, J. & Del�ner, P. (1999). Geostatistics. Modeling spatial uncertainty. New-York: Wiley

Series in Probability and Mathematical Statistics.

Cressie, N. A. (1993). Statistics for Spatial Data. New-York: Wiley Series in Probability and

Mathematical Statistics.

Csaki, E. (1980). A relation between chung's and strassen laws of the iterated logarithm. Zeit.

Wahrs. Ver. Geb., 19, 287�301.

Dabo-Niang, S. (2004). Kernel density estimator in an in�nite dimensional space with a rate of

convergence in the case of di�usion process. App. Math. Lett., 17, 381�386.

Dabo-Niang, S., Ferraty, F., & Vieu, P. (2006). Mode estimation for functional random variable

and its application for curves classi�cation. Far East J. of Theoretical Stat., 18(1), 93 � 119.

Dabo-Niang, S. & Rhomari, N. (2009). Kernel regression estimate in a banach space. J. Statist.

Plann. Inf., 139, 1421�1434.

Dabo-Niang, S., Yao, A., Pischedda, L., Cuny, P., & Gilbert, F. (2010). Spatial kernel mode

estimation for functional random, with application to bioturbation problem. Stochastic Envi-

ronmental Research and Risk Assessment, 24(4), 487�497.

Dabo-Niang, S. & Yao, A. F. (2007). Kernel regression estimation for continuous spatial pro-

cesses. Math. Method. Stat., 16(4), 1�20.

Delicado, P., Giraldo, R., & Mateu, J. (2008, pp 135-141). Point-wise kriging for spatial prediction

of functional data. Functional and Operatorial Statistics, edited by S. Dabo-Niang and F.

Ferraty: Springer Verlag.

Donoho, D. (2000). High-dimensional data analysis: The curses and blessings of dimensional-

ity. Lecture delivered at the conference "Math Challenges of the 21st Century" held by the

American Math. Society organised in Los Angeles, August 6-11.

Doukhan, P. (1994). Mixing - Properties and Examples. New York: Lecture Notes in Statistics,

Springer-Verlag.

Ferraty, F., Mas, A., & Vieu, P. (2007). Advances in nonparametric regression for functional

variables. Australian and New-Zealand J. of Statist., 49(3), 1�20.

Ferraty, F. & Vieu, P. (2006). Nonparametric Functional Data Analysis. berlin: Springer-Verlag.

Gao, S. & Collins, M. (1994). Analysis of grain size trends, for de�ning sediment transport

pathways in marine environments. J. Coastal Res., 10(1), 70�78.

Guyon, X. (1995). Random Fields on a Network - Modeling, Statistics, and Applications. New-

York: Springer.

Györ�, L., Härdle., Sarda, P., & Vieu, P. (1990). Nonparametric Curve Estimation from Time

Series. Number 60. New-York.: Lecture Notes in Statistics, Springer-Verlag.

Hallin, M., Lu, Z., & Tran, L. T. (2004a). Kernel density estimation for spatial processes: The

l1 theory. J. Multivariate Anal., 88(1), 61�75.



KERNEL SPATIAL DENSITY ESTIMATION IN INFINITE DIMENSION SPACE 33

Hallin, M., Lu, Z., & Tran, L. T. (2004b). Local linear spatial regression. Ann. Statist., 32(6),

2469�2500.

Li, W. V. & man Shao, Q. (2001). Gaussian processes: inequalities, small ball probabilities and

applications. stochastic processes: theory and methods. Handbook of Statist, (pp. 1861734).

Lirer, L. & Vinci, A. (1991.). Grain-size distributions of pyroclastic deposits. Sedimentology, 38,

1075�1083.

Lu, Z. (1996). Weak consistency of nonparametric kernel regression under alpha-mixing depen-

dence. Chinese Sci. Bull., 41, 2219�2221.

Lu, Z. & Chen, P. (1997). Distribution-free strong conistency for nonparametric kernel regression

involving nonlinear time series. J. Statist. Plann. Inference, 65, 67�86.

Lu, Z. & Chen, X. (2002). Spatial nonparametric regression estimation: Non-isotropic case. Acta

Math. Appl. Sin. Engl. Ser., 18(4), 641�656.

Lu, Z. & Chen, X. (2004). Spatial kernel regression estimation: Weak concistency. Stat. Proba.

Lett, 68, 125�136.

Masry, E. & Györ�, L. (1987). Strong consistency and rates for recursive density estimators for

stationary mixing processes. J. Multivariate Anal., 22, 79�93.

Nerini, D., Monestiez, P., & Manté, C. (2010). A cokriging method for spatial functional. Journal

of Multivariate Analysis, 101(2), 409�418.

Ramsay, J. & Silverman, B. (1997). Functional data analysis. New York: Springer Series in

Statistics.

Ramsay, J. & Silverman, B. (2002). Applied functional data analysis; Methods and case studies.

New York: Springer-Verlag.

Rio, E. (2000). Théorie Asymptotic des Processus Aléatoires Faiblement Dépendants. Berlin:

Springer-Verlag.

Ripley, B. (1981). Spatial Statistics. New-York: Wiley.

Robinson, P. M. (1983). Nonparametric estimators for time series. J. Time Ser. Anal., 4,

185�207.

Robinson, P. M. (1987). Time series residuals with applocation to probability density estimation.

J. Time Ser. Anal., 8, 329�344.

Roussas, G. G. (1988). Nonparametric estimation in mixing sequences of random variables. J.

Statist. Plann. Inference, 18, 135�149.

Tran, L. T. (1990). Kernel density estimation on random �elds. J. Multivariate Anal., 34, 37�53.

Tran, L. T. & Yakowitz, S. (1993). Nearest neighbor estimators for random �elds. J. Multivariate

Anal., 44, 23�46.

Truong, Y. M. & Stone, C. J. (1992). Nonparametric function estimation involving time series.

Ann. Statist., 20, 77�97.

Yakowitz, S. (1987). Nearest-neighbor methods for times series analysis. J. Time Ser. Anal., 8,

235�247.



Documents de travail récents  
 
 

� Xavier Chojnicki, Lionel Ragot: “Impacts of Immigration on Aging 
Welfare-State - An Applied General Equilibrium Model for France” 
[2011–2] 

 

� Kirill Borissov, Stephane Lambrecht : “Education, Wage Inequality 
and Growth“ [2011–1] 

 

 

 
 


