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We tackle the classical two-sample spherical location problem for directional data by having recourse to the Le Cam methodology, habitually used in classical "linear" multivariate analysis. More precisely we construct locally and asymptotically optimal (in the maximin sense) parametric tests, which we then turn into semi-parametric ones in two distinct ways. First, by using a studentization argument; this leads to so-called pseudo-FvML tests. Second, by resorting to the invariance principle; this leads to efficient rank-based tests. Within each construction, the semi-parametric tests inherit optimality under a given distribution (the FvML in the first case, any rotationally symmetric one in the second) from their parametric counterparts and also improve on the latter by being valid under the whole class of rotationally symmetric distributions. Asymptotic relative efficiencies are calculated and the finite-sample behavior of the proposed tests is investigated by means of a Monte Carlo simulation.

Introduction

Spherical or directional data naturally arise in a broad range of earth sciences such as geology and astrophysics (see, e.g., Watson 1983 or Mardia and[START_REF] Mardia | Directional Statistics[END_REF], as well as in studies of animal behavior (see [START_REF] Fisher | Statistical Analysis of Spherical Data[END_REF] or even in neuroscience (see [START_REF] Leong | Methods for spherical data analysis and visualization[END_REF]. Although this field of research is as old as mathematical statistics themselves and raises the same questions as the more classical "linear" statistics, its methodical and systematic study only started in the 1950s under the impetus of [START_REF] Fisher | Dispersion on a sphere[END_REF]'s pioneering work (see [START_REF] Mardia | Directional Statistics[END_REF]. It is now common practice to view directional data as realizations of random vectors X taking values on the surface of the unit hypersphere S k-1 := {v ∈ R k : v ′ v = 1}, k ≥ 2, the distribution of X depending only on its "angular distance" from a fixed point θ θ θ ∈ S k-1 (thus such spherical distributions belong to the category of statistical group models and enjoy the nice properties of that class of distributions; see Chang 2004 for details). This parameter θ θ θ, which can be viewed as a "north pole" (or "mean direction") for the problem under study, then is to be considered as a spherical location parameter.

In this paper, we investigate the two-sample spherical location testing problem H 0 : θ θ θ 1 = θ θ θ 2 against H 1 : θ θ θ 1 = θ θ θ 2 , where θ θ θ 1 ∈ S k-1 and θ θ θ 2 ∈ S k-1 are the respective spherical location parameters of two independent samples of i.i.d. observations with respective common distributions P 1 and P 2 , say.

Motivated by the fold test problem in palaeomagnetism (see McFadden and Jones 1981 and references therein), this problem has been extensively studied in the literature. Due to the difficulty of the task, most methods are either of parametric nature or restricted to small dimensions, or suffer from computational difficulties/slowness such as [START_REF] Wellner | Permutation tests for directional data[END_REF]'s permutation test or [START_REF] Beran | Nonparametric comparison of mean directions or mean axes[END_REF]'s bootstrap test. We refer the reader to the introduction section in [START_REF] Tsai | Asymptotically efficient two-sample rank tests for modal directions on spheres[END_REF] for a more complete description of the strengths and flaws of the different proposals. The paper [START_REF] Tsai | Asymptotically efficient two-sample rank tests for modal directions on spheres[END_REF] itself proposes a rank-based test for the two-sample problem. However, [START_REF] Tsai | Asymptotically efficient two-sample rank tests for modal directions on spheres[END_REF] considers the very restrictive case where the two samples share a common distribution, that is, P 1 = P 2 ; this is particularly uncomfortable when dealing with Fisher-von Mises-Langevin (FvML hereafter) distributions, where the additional concentration parameter κ > 0 then needs to be the same for both samples in order for the test to be valid. Thus, to the best of the authors' knowledge, the only computationally simple, efficient and asymptotically distribution-free test for the general null hypothesis H 0 above is the pseudo-FvML test given in [START_REF] Watson | Statistics on Spheres[END_REF]. The idea behind his test has the same flavor as the pseudo-Gaussian tests in the classical "linear" framework (see, for instance, [START_REF] Muirhead | Asymptotic distributions in canonical correlation analysis and other multivariate procedures for nonnormal populations[END_REF]Waternaux 1980 or Hallin and[START_REF] Hallin | A general method for constructing pseudo-Gaussian tests[END_REF] for more information on pseudo-Gaussian procedures). More concretely, since the FvML distribution is considered as the spherical analogue of the Gaussian distribution (see Section 2 for an explanation of this fact), Watson has chosen the FvML as basis distribution and hence constructed his pseudo-FvML tests by "correcting" the FvML-likelihood ratio test, optimal under a couple (P 1 , P 2 ) of FvML distributions with fixed concentration parameters κ 1 and κ 2 , in such a way that the resulting test remains valid under a large class of distributions.

Our aim in the present paper consists in proposing new tests for the two-sample spherical location problem. More concretely, we aim to construct tests that are optimal (in the maximin sense) under a given pair of distributions (P 1 , P 2 ) but remain valid (in the sense that they meet the nominal level constraint) under a broad class of distributions, namely the rotationally symmetric distributions (introduced by [START_REF] Saw | A family of distributions on the m-sphere and some hypothesis tests[END_REF]; see Section 2 below for a definition). The backbone of our approach is the so-called Le Cam methodology (see [START_REF] Cam | Asymptotic Methods in Statistical Decision Theory[END_REF], as adapted to the spherical setup by [START_REF] Ley | Optimal R-estimation of a spherical location[END_REF]. Of utmost importance for our aims here is the uniform local asymptotic normality (ULAN) of a sequence of rotationally symmetric distributions established therein. This property allows us to construct optimal 2 parametric tests under the pair (P 1 , P 2 ). This optimality, however, is thwarted by the non-validity of the tests under any pair (Q 1 , Q 2 ) distinct from (P 1 , P 2 ). In order to palliate this problem, we have recourse to two classical tools: a studentization argument, which eventually leads to [START_REF] Watson | Statistics on Spheres[END_REF]'s pseudo-FvML tests, and the invariance principle, yielding optimal rank-based tests. Both tests are of semi-parametric nature.

The paper is organized as follows. In Section 2, we collect the main assumptions of the paper, summarize asymptotic results in the context of rotationally symmetric distributions and show how to construct the announced optimal parametric tests for the two-sample spherical location problem. We then extend the latter to pseudo-FvML tests in Section 3 and to rank-based tests in Section 4, and study their respective asymptotic behavior in each section. Asymptotic relative efficiencies are provided in Section 4. The theoretical results are corroborated via a Monte Carlo simulation in Section 5. Finally an appendix collects the proofs.

Main assumptions, notations and important preliminary results

Rotational symmetry and the particular rôle of the FvML distribution

Throughout, the two samples of data points X 11 , . . . , X 1n1 and X 21 , . . . , X 2n2 are assumed to belong to the unit sphere S k-1 of R k , k ≥ 2, and to satisfy Assumption A. (Rotational symmetry) X 11 , . . . , X 1n1 (resp., X 21 , . . . , X 2n2 ) are i.i.d. with common distribution P θ θ θ;f1 (resp., P θ θ θ;f2 ) characterized by a density (with respect to the usual surface area measure on spheres)

x → c k,fi f i (x ′ θ θ θ), x ∈ S k-1 , (2.1)
where θ θ θ ∈ S k-1 is a location parameter and f i : [-1, 1] → R + 0 is absolutely continuous and (strictly) monotone increasing, i = 1, 2. Then, if X has density (2.1), the density of X ′ θ θ θ is of the form

t → fi (t) := ω k c k,fi B( 1 2 , 1 2 (k -1)) f i (t)(1 -t 2 ) (k-3)/2 , -1 ≤ t ≤ 1,
where

ω k = 2π k/2 /Γ(k/2) is the surface area of S k-1 and B(•, •) is the beta function. The corresponding cumulative distribution function (cdf) is denoted by Fi (t), i = 1, 2.
The f i 's are called angular functions (because the distribution of each X ij depends only on the angle between it and the location θ θ θ ∈ S k-1 ). Throughout the rest of this paper, we denote by F 2 the collection of pairs of angular functions f := (f 1 , f 2 ). Although not necessary for the definition to make sense, monotonicity of f i ensures that surface areas in the vicinity of the location parameter θ θ θ are allocated a higher probability mass than more remote regions of the sphere. This property happens to be very appealing from the modelling point of view. Rotationally symmetric distributions also enjoy some appealing stochastic properties. Indeed, as shown in [START_REF] Watson | Statistics on Spheres[END_REF], for a random vector X distributed according to some P θ θ θ;fi as in Assumption A, not only is the multivariate sign vector S θ θ θ (X) := (X -

(X ′ θ θ θ)θ θ θ)/||X -(X ′ θ θ θ)θ θ θ|| uniformly distributed on S θ θ θ ⊥ := {v ∈ R k | v = 1, v ′ θ θ θ = 0}
but also the angular distance X ′ θ θ θ and the sign vector S θ θ θ (X) are stochastically independent.

The class of rotationally symmetric distributions contains several spherical distributions such as the linear, the logarithmic, the logistic (all three are provided in Section 4 below) or the wrapped normal distribution; for other examples and a more detailed description of the aforementioned ones, we refer to [START_REF] Duerinckx | Maximum likelihood characterization of rotationally symmetric distributions[END_REF]. By far the most popular and most used rotationally symmetric distribution is the FvML distribution (named, according to [START_REF] Watson | Statistics on Spheres[END_REF], after von Mises 1918[START_REF] Fisher | Dispersion on a sphere[END_REF], and Langevin 1905), whose density is of the form

f FvML(κ) (x; θ θ θ) = C k (κ) exp(κx ′ θ θ θ), x ∈ S k-1 ,
where κ > 0 is a concentration or dispersion parameter, θ θ θ ∈ S k-1 a location parameter and the normal- 

ization constant C k (κ) is equal to C k (κ) = κ k/2-1 (2π) k/2 I k/2-1 (κ) , with I k/2-1 (κ)
:= n i=1 X i /|| n i=1 X i ||, X 1 , . . . , X n ∈ S k-1
, as the Maximum Likelihood Estimator (MLE) of its spherical location parameter, similarly as the Gaussian distribution can be characterized by the empirical mean n -1 n i=1 X i , X 1 , . . . , X n ∈ R k , as the MLE of its classical (linear) location parameter. More precisely, it has been shown that the Gaussian distribution is the only absolutely continuous (univariate and multivariate) distribution for which the sample mean is for all samples of fixed sample size n ≥ 3 the MLE of the location parameter (see [START_REF] Azzalini | On Gauss's characterization of the normal distribution[END_REF] 

Le Cam optimal parametric tests for the two-sample spherical location problem

As stated in the Introduction, our first objective is to construct locally and asymptotically optimal parametric tests by having recourse to the Le Cam methodology. The main ingredient for this construction rests on the ULAN property of the parametric model P

(n) θ θ θ1;f1 | θ θ θ 1 ∈ S k-1 , P (n) θ θ θ2;f2 | θ θ θ 2 ∈ S k-1
for a fixed pair of angular functions (f 1 , f 2 ), where P

(n) θ θ θi;fi stands for the joint distribution of X i1 , . . . , X ini , i = 1, 2. We further denote by P (n) (θ θ θ1,θ θ θ2);f the joint law combining P (n) θ θ θ1;f1 and P (n) θ θ θ2;f2 . In order to be able to state our results, we need to impose a certain control on the respective sample sizes n 1 and n 2 , which will be achieved via the following

Assumption B. Letting n = n 1 + n 2 , both r (n) 1 := n 1 /n and r (n) 2 := n 2 /n converge to finite constants r 1 and r 2 respectively as n → ∞.
This condition explains why, in what precedes and in what follows, we simply use the superscript (n) for the different quantities at play and do not specify whether they are associated with n 1 or n 2 .

Informally, a sequence of rotationally symmetric models P

(n) (θ θ θ1,θ θ θ2);f | θ θ θ 1 , θ θ θ 2 ∈ S k-1 is ULAN if the logarithm of the likelihood ratio P (n) (θ θ θ (n) 1 +n -1/2 1 t (n) 1 ,θ θ θ (n) 2 +n -1/2 2 t (n) 2 );f /P (n) (θ θ θ (n) 1 ,θ θ θ (n) 2 );f allows a specific form of (probabilistic) Taylor expansion, with θ θ θ (n) 1 , θ θ θ (n) 2 ∈ S k-1 such that θ θ θ (n) i -θ θ θ i = O(n -1/2 ), i = 1, 2, and t (n) 1 , t (n) 2 ∈ R k bounded sequences of perturbations such that θ θ θ (n) i + n -1/2 i t (n) i
remains on the unit sphere for i = 1, 2. The latter condition means that each t

(n) i needs to satisfy 0 = (θ θ θ (n) i + n -1/2 i t (n) i ) ′ (θ θ θ (n) i + n -1/2 i t (n) i ) -1 = 2n -1/2 i (θ θ θ (n) i ) ′ t (n) i + n -1 i (t (n) i ) ′ t (n) i . (2.2)
Consequently, t

(n) i must be such that 2n

-1/2 i (θ θ θ (n) i ) ′ t (n) i + n -1 i (t (n) i ) ′ t (n) i = 0 or, equivalently, such that 2n -1/2 i (θ θ θ (n) i ) ′ t (n) i +o(n -1/2 i ) = 0. In other words, for θ θ θ (n) i +n -1/2 i t (n) i to remain in S k-1 , t (n) i must belong, up to a o(n -1/2 i
) quantity, to the tangent space to S k-1 at θ θ θ

(n)

i . Now, S k-1 is a non-linear manifold and as a consequence, establishing the ULAN property of a sequence of rotationally symmetric models is all but easy. [START_REF] Ley | Optimal R-estimation of a spherical location[END_REF] handle this difficulty by resorting to a natural re-parameterization in terms of spherical coordinates, for which it is possible to prove ULAN, subject to the following necessary condition.

Assumption C. The Fisher information associated with the spherical location parameter is finite; this finiteness is ensured if, for i = 1, 2 and letting

ϕ fi := ḟi /f i ( ḟi is the a.e.-derivative of f i ), J k (f i ) := 1 -1 ϕ 2 fi (t)(1 -t 2 ) fi (t)dt < +∞.
After obtaining the ULAN property for this new parameterization, [START_REF] Ley | Optimal R-estimation of a spherical location[END_REF] 

P (n) (θ θ θ1,θ θ θ2);f | θ θ θ 1 , θ θ θ 2 ∈ S k-1 is ULAN with central sequence ∆ ∆ ∆ (n) (θ θ θ1,θ θ θ2);f := (∆ ∆ ∆ (n) θ θ θ1;f1 ) ′ , (∆ ∆ ∆ (n) θ θ θ2;f2 ) ′ ′
, where

∆ ∆ ∆ (n) θ θ θi;fi := n -1/2 i ni j=1 ϕ fi (X ′ ij θ θ θ i )(1 -(X ′ ij θ θ θ i ) 2 ) 1/2 S θ θ θi (X ij ), i = 1, 2,
and Fisher information matrix

Γ Γ Γ (θ θ θ1,θ θ θ2);f := diag(Γ Γ Γ θ θ θ1;f1 , Γ Γ Γ θ θ θ2;f2 ) where Γ Γ Γ θ θ θi;fi := J k (f i ) k -1 (I k -θ θ θ i θ θ θ ′ i ), i = 1, 2.
More precisely, for any θ θ θ 1 , θ θ θ 2 ∈ S k-1 and any bounded sequences t

(n) 1 , t (n) 2
as in (2.2), we have

log    P (n) (θ θ θ (n) 1 +n -1/2 1 t (n) 1 ,θ θ θ (n) 2 +n -1/2 2 t (n) 2 );f P (n) (θ θ θ (n) 1 ,θ θ θ (n) 2 );f    = (t (n) ) ′ ∆ ∆ ∆ (n) (θ θ θ (n) 1 ,θ θ θ (n) 2 );f - 1 2 (t (n) ) ′ Γ Γ Γ (θ θ θ1,θ θ θ2);f t (n) + o P (1),
where t (n) := ((t

(n) 1 ) ′ , (t (n) 2 ) ′ ) ′ , and ∆ ∆ ∆ (n) (θ θ θ (n) 1 ,θ θ θ (n) 2 );f L → N 2(k-1) (0 0 0, Γ Γ Γ (θ θ θ1,θ θ θ2);f ), both under P (n) (θ θ θ1,θ θ θ2);f , as n → ∞.
Proposition 2.1 is a straightforward consequence of the result in [START_REF] Ley | Optimal R-estimation of a spherical location[END_REF], and hence the proof is omitted. With this in hand, constructing optimal f -parametric procedures (that is, under the pair of densities with respective specified angular functions f 1 and f 2 ) for testing H 0 : θ θ θ 1 = θ θ θ 2 against H 1 : θ θ θ 1 = θ θ θ 2 is plain sailing. Indeed, denoting by θ θ θ ∈ S k-1 the common null hypothesis value of the location parameter, the corresponding parametric test statistic is given by

(∆ ∆ ∆ (n) (θ θ θ,θ θ θ);f ) ′ (Γ Γ Γ (θ θ θ,θ θ θ);f ) -1 ∆ ∆ ∆ (n) (θ θ θ,θ θ θ);f .
Evidently, the unknown value θ θ θ needs to be estimated, but we leave that issue to the subsequent sections.

Intuitively, this construction of optimal parametric tests follows from the fact that the second-order expansion of the log-likelihood ratio for the model P

(n) (θ θ θ1,θ θ θ2);f | θ θ θ 1 , θ θ θ 2 ∈ S k-1
strongly resembles the loglikelihood ratio for the classical Gaussian shift experiment, for which optimal procedures are well-known and are based on the corresponding first-order term. For more details and more formal explanations, we refer the reader to Le [START_REF] Cam | Asymptotic Methods in Statistical Decision Theory[END_REF], Section 11.9.

As mentioned in the Introduction, the optimal parametric tests suffer from the drawback of being only valid under the pair (f 1 , f 2 ). Since it is highly unrealistic in practice to assume that the underlying densities are known, these tests are useless for practitioners. The next two sections contain two distinct solutions allowing to set this problem right.

Pseudo-FvML tests.

For a given pair of FvML densities (φ κ1 , φ κ2 ) with respective concentration parameters κ 1 , κ 2 > 0 (where we do not assume κ 1 = κ 2 ), the quantities ϕ φκ i reduce to the constants κ i , i = 1, 2, and hence the central sequences for each sample take the form

∆ ∆ ∆ (n) θ θ θi;φκ i := κ i n -1/2 i ni j=1 (1 -(X ′ ij θ θ θ i ) 2 ) 1/2 S θ θ θi (X ij ) = κ i n -1/2 i ni j=1 (X ij -(X ′ ij θ θ θ i )θ θ θ i ) = κ i (I k -θ θ θ i θ θ θ ′ i )n -1/2 i ni j=1 X ij =: κ i (I k -θ θ θ i θ θ θ ′ i )n 1/2 i Xi = κ i (I k -θ θ θ i θ θ θ ′ i )n 1/2 i ( Xi -θ θ θ i ), i = 1, 2.
Optimal FvML-based procedures for the two-sample spherical location problem are then built upon

∆ ∆ ∆ (n) (θ θ θ,θ θ θ);(φκ 1 ,φκ 2 )
. We here again draw the reader's attention to the fact that this parametric test is only valid under the pair (φ κ1 , φ κ2 ) and becomes non-valid even if only the concentration parameters change.

In this section, this non-validity problem will be overcome in the following way. We will first study the asymptotic behavior of ∆ ∆ ∆ (n) (θ θ θ,θ θ θ);(φκ 1 ,φκ 2 ) under any given pair g = (g 1 , g 2 ) ∈ F 2 and consider the newly obtained quadratic form in ∆ ∆ ∆ (n) (θ θ θ,θ θ θ);(φκ 1 ,φκ 2 ) . Clearly, this quadratic form will now depend on the asymptotic variance of ∆ ∆ ∆ (n) (θ θ θ,θ θ θ);(φκ 1 ,φκ 2 ) under g, hence again, for each g, we are confronted to an onlyfor-g-valid test statistic. The next and final step then consists in applying a studentization argument, meaning that we estimate this asymptotic variance quantity and study the asymptotic behavior of the new quadratic form under any pair of rotationally symmetric distributions. The final outcome of this procedure will be tests which happen to be optimal under any pair of FvML distributions (that is, for any values κ 1 , κ 2 > 0) and valid under the entire class of rotationally symmetric distributions; these tests are our so-called pseudo-FvML tests.

For the sake of readability, we adopt the notation φ for any pair (φ κ1 , φ κ2 ) and E f [•] for expectation under the angular function f . The following result characterizes, for a given pair of angular functions g ∈ F 2 , the asymptotic properties of the FvML-based central sequence ∆ ∆ ∆ (n) (θ θ θ,θ θ θ);φ , both under P (n) (θ θ θ,θ θ θ);g and P

(n) (θ θ θ+n -1/2 1 t (n) 1 ,θ θ θ+n -1/2 2 t (n) 2 );g with t (n) 1 and t (n) 2
as in (2.2) for each sample. 

= 1-E gi (X ′ ij θ θ θ) 2 for i = 1, 2, we have that ∆ ∆ ∆ (n) (θ θ θ,θ θ θ);φ is (i) asymptotically normal under P (n)
(θ θ θ,θ θ θ);g with mean zero and covariance matrix

Γ Γ Γ * θ θ θ;g := diag Γ Γ Γ * θ θ θ;g1 , Γ Γ Γ * θ θ θ;g2 ,
where Γ Γ Γ * θ θ θ;gi :=

κ 2 i B k,g i k-1 (I k -θ θ θθ θ θ ′ ), i = 1, 2;
(ii) asymptotically normal under

P (n) (θ θ θ+n -1/2 1 t (n) 1 ,θ θ θ+n -1/2 2 t (n) 2 );g (t (n) 1 and t (n) 2
as in (2.2)) with mean Γ Γ Γ θ θ θ;φ,g t

(t := (t ′ 1 , t ′ 2 ) ′ with t 1 := lim n→∞ t (n) 1 and t 2 := lim n→∞ t (n) ii) for all θ θ θ ∈ S k-1 , Γ Γ Γ θ θ θ;φ,φ = Γ Γ Γ φ θ θ θ;φ .
The proof is provided in the Appendix. From these results, we can now deduce the new quadratic form to be used as a g-valid test statistic. This construction follows the ideas from [START_REF] Hallin | A general method for constructing pseudo-Gaussian tests[END_REF] where a very general theory for pseudo-Gaussian procedures is described. Defining

E k,gi := E gi X ′ ij θ θ θ , i = 1, 2
, and, for notational simplicity, D k,gi := E k,gi /B k,gi , i = 1, 2, and H φ,g := (r

(n) 1 D 2 k,g1 B k,g1 + r (n) 2 D 2 k,g2 B k,g2
), and letting

Ψ ⊥ θ θ θ;φ,g := (k -1)    1 κ 2 1 ( 1 B k,g 1 - r (n) 1 D 2 k,g 1 H φ,g )(I k -θ θ θθ θ θ ′ ) -1 κ1κ2 r (n) 1 r (n) 2 D k,g 1 D k,g 2 H φ,g (I k -θ θ θθ θ θ ′ ) -1 κ1κ2 r (n) 1 r (n) 2 D k,g 1 D k,g 2 H φ,g (I k -θ θ θθ θ θ ′ ) 1 κ 2 2 ( 1 B k,g 2 - r (n) 2 D 2 k,g 2 H φ,g )(I k -θ θ θθ θ θ ′ )    ,
the g-valid test statistic for the two-sample spherical location problem H 0 : θ θ θ 1 = θ θ θ 2 against H 1 : θ θ θ 1 = θ θ θ 2 corresponds to the quadratic form

Q (n) (g) := (∆ ∆ ∆ (n) ( θ θ θ, θ θ θ);φ ) ′ Ψ ⊥ θ θ θ;φ,g ∆ ∆ ∆ (n) ( θ θ θ, θ θ θ);φ .
At first sight, this construction might appear puzzling and the reader might wonder how the preceding results finally lead to this test statistic. It is easy to verify that the random quantity Q (n) (g) does not depend explicitly on the underlying concentrations κ 1 and κ 2 but still depends on the quantities B k,gi and E k,gi , i = 1, 2, still hampering the validity of the statistic outside of g. The last step in our construction thus consists in estimating these quantities. Consistent (via the Law of Large Numbers) estimators for each of them are provided by Bk,gi :

= 1 -n -1 i ni j=1 (X ′ ij θ θ θ) 2 and Êk,gi := n -1 i ni j=1 (X ′ ij θ θ θ), i = 1, 2.
For the sake of readability, we naturally also use the notations Dk,gi := Êk,gi / Bk,gi , i = 1, 2, and Ĥφ,g := (r

(n) 1 D2 k,g1 Bk,g1 +r (n) 2 D2 k,g2
Bk,g2 ). Straightforward calculations then show that our pseudo-FvML test statistic for the two-sample spherical location problem is

Q (n) = (k -1)    Dk,g1 Êk,g1 - r (n) 1 D2 k,g1
Ĥφ,g

  1 n 1 n1 i,j=1 X ′ 1i (I k -θ θ θ θ θ θ ′ )X 1j   + Dk,g2 Êk,g2 - r (n) 2 D2 k,g2
Ĥφ,g

  1 n 2 n2 i,j=1 X ′ 2i (I k -θ θ θ θ θ θ ′ )X 2j   -2 Dk,g1 Dk,g2 Ĥφ,g   1 n n1 i=1 X ′ 1i (I k -θ θ θ θ θ θ ′ ) n2 j=1 X 2j      ,
which no more depends on g. The following proposition finally yields the asymptotic properties of this quadratic form under the entire class of rotationally symmetric distributions, showing that the test is well valid under that broad set of distributions.

Proposition 3.3 Let Assumptions A, B and C hold and let θ θ θ be an estimator of the common value θ θ θ such that Assumption D holds. Then,

(i) Q (n) is asymptotically chi-square with k -1 degrees of freedom under θ θ θ∈S k-1 g∈F 2 P (n) (θ θ θ,θ θ θ);g ; (ii) Q (n)
is asymptotically non-central chi-square with k -1 degrees of freedom and non-centrality parameter

l (θ θ θ,θ θ θ),t;φ,g := t ′ Γ Γ Γ θ θ θ;φ,g Ψ ⊥ θ θ θ;φ,g Γ Γ Γ θ θ θ;φ,g t under P (n) (θ θ θ+n -1/2 1 t (n) 1 ,θ θ θ+n -1/2 2 t (n)
2 );g

, where t

(n) 1 and t

(n) 2 are as in (2.2) and t :=

(t ′ 1 , t ′ 2 ) ′ with t 1 := lim n→∞ t (n) 1 and t 2 := lim n→∞ t (n) 2 .
From Part (i) we deduce that our pseudo-FvML tests for the two-sample spherical location problem, denoted by φ (n) , reject the null hypothesis H 0 : θ θ θ 1 = θ θ θ 2 in favor of H 1 : θ θ θ 1 = θ θ θ 2 at asymptotic level α as soon as Q (n) exceeds the α-upper quantile of a chi-square distribution with k -1 degrees of freedom. It is easy to verify as in [START_REF] Watson | Statistics on Spheres[END_REF] that it is asymptotically equivalent (the difference is a o P (1) quantity) to the FvML likelihood ratio test in the FvML case and therefore keeps its optimality properties in that configuration. Thus, our pseudo-FvML tests, although the construction is different, coincide with Watson's proposal. However, our work here is of intrinsic interest since we provide more insight on how to correct the optimal FvML test and, contrarily to [START_REF] Watson | Statistics on Spheres[END_REF], we investigate in detail the impact of the replacement of the unknown quantities by the corresponding estimators.

Rank-based tests.

The pseudo-FvML test constructed in the previous section is valid under any pair of (non-necessarily equal) rotationally symmetric distributions and retains the optimality properties of the FvML likelihood ratio test in the FvML case. In this section, we start from any given pair f ∈ F 2 and our objective is to turn the f -parametric tests into tests which are still valid under any pair of (non-necessarily equal) rotationally symmetric distributions but which are optimal under the pair f . To obtain such a test, we have recourse here to the second of the aforementioned tools to turn our parametric tests into semiparametric ones: the invariance principle. This principle advocates that, if the sub-model identified by the null hypothesis is invariant under the action of a group of transformations G T , one should exclusively use procedures whose outcome does not change along the orbits of that group G T . This is the case if and only if these procedures are measurable with respect to the maximal invariant associated with G T . The invariance principle is accompanied by a nice and appealing corollary for our purposes here: provided that the group G T is a generating group for H 0 , the invariant procedures are distribution-free under the null. In view of all this, our strategy in this section is the following: determine the correct group of transformations G T , re-express our f -parametric tests in terms of the corresponding maximal invariant and study the asymptotic properties of the resulting test statistic, after replacement of all the unknown quantities by consistent estimators, as in the previous section.

Invariance with respect to "common rotations" is crucial in this context. More precisely, letting

O ∈ SO k := {A ∈ R k×k , A ′ A = I k , det(A) = 1}
, the null hypothesis is unquestionably invariant with respect to a transformation of the form g O : X 11 , . . . , X 1n1 , X 21 , . . . , X 2n2 → OX 11 , . . . , OX 1n1 , OX 21 , . . . , OX 2n2 .

However, this group is not generating for H 0 as it does not take into account the underlying angular functions f , which are an infinite-dimensional nuisance under H 0 . This group is actually rather generating for θ θ θ∈S k-1 P (n) (θ θ θ,θ θ θ);f with fixed f . Now, denote as in the previous section the common value of θ θ θ 1 and θ θ θ 2 under the null as θ θ θ. Then

X ij = (X ′ ij θ θ θ)θ θ θ + 1 -(X ′ ij θ θ θ) 2 S θ θ θ (X ij
) for all j = 1, . . . , n i and i = 1, 2. Let (ii) is asymptotically normal under P (n) (θ θ θ,θ θ θ);g with mean zero and covariance matrix

Γ Γ Γ θ θ θ;K f := diag J k (K f1 ) k -1 (I k -θ θ θθ θ θ ′ ), J k (K f2 ) k -1 (I k -θ θ θθ θ θ ′ ) , where J k (K fi ) := 1 0 K 2 fi (u)du.
(iii) is asymptotically normal under

P (n) (θ θ θ+n -1/2 1 t (n) 1 ,θ θ θ+n -1/2 2 t (n) 2 );g (t (n) 1 and t (n) 2
as in (2.2)) with mean

Γ Γ Γ θ θ θ;K f ,g t (t := (t ′ 1 , t ′ 2 ) ′ with t 1 := lim n→∞ t (n) 1
and t 2 := lim n→∞ t

(n)

2 ) and covariance matrix

Γ Γ Γ θ θ θ;K f ,g := diag J k (K f1 , g 1 ) k -1 (I k -θ θ θθ θ θ ′ ), J k (K f2 , g 2 ) k -1 (I k -θ θ θθ θ θ ′ ) ,
where

J k (K fi , g i ) := 1 0 K fi (u)K gi (u)du for i = 1, 2.
(iv) satisfies, under P

(θ θ θ,θ θ θ);g as n → ∞, the asymptotic linearity property

∆ ∆ ∆ (n) (θ θ θ+n -1/2 1 t (n) 1 ,θ θ θ+n -1/2 2 t (n) 2 );K f -∆ ∆ ∆ (n) (θ θ θ,θ θ θ);K f = -Γ Γ Γ θ θ θ;K f ,g t (n) + o P (1), for t (n) = ((t (n) 1 ) ′ , (t (n) 2 ) ′ ) ′ with t (n) 1 and t (n) 2
as in (2.2).

Now, as for the pseudo-FvML test, our rank-based procedures are not complete since we still have to estimate the common value θ θ θ of θ θ θ 1 and θ θ θ 2 under H 0 . Therefore, we will assume the existence of an estimator θ θ θ satisfying Assumption D; as explained in Section 3, such an estimator is easy to construct.

In order to deal with these rank-based test statistics, we however need to strengthen Assumption D into Assumption D'. Besides root-n consistency under P

(θ θ θ,θ θ θ);g for any g ∈ F 2 , the estimator θ θ θ ∈ S k-1 is further locally and asymptotically discrete, meaning that it only takes a bounded number of distinct values in θ θ θ-centered balls with O(n -1/2 ) radius.

This discretization condition is a purely technical requirement (see pages 125 and 188 of Le Cam and

Yang 2000 for a discussion), with little practical implications (in fixed-n practice, such discretizations are irrelevant as the radius can be taken arbitrarily large). We will therefore tacitly assume that θ θ θ is locally discrete throughout this section. Following Lemma 4.4 in [START_REF] Kreiss | On adaptive estimation in stationary ARMA processes[END_REF], the local discreteness allows to replace in Part (iv) of Proposition 4.1 the non-random perturbations θ θ θ + n

-1/2 i t (n) i , i = 1, 2, (of θ θ θ) by θ
θ θ (see also [START_REF] Hallin | One-step R-estimation in linear models with stable errors[END_REF]. Based on the asymptotic result of Proposition 4.1 and letting

H K f ,g := r (n) 1 J 2 k (K f 1 ,g1) J k (K f 1 ) + r (n) 2 J 2 k (K f 2 ,g2) J k (K f 2 ) and Ψ ⊥ θ θ θ;K f ,g := (k-1)     ( 1 J k (K f 1 ) - r (n) 1 J 2 k (K f 1 ,g1) J 2 k (K f 1 )H K f ,g )(I k -θ θ θθ θ θ ′ ) - r (n) 1 r (n) 2 J k (K f 1 ,g1)J k (K f 2 ,g2) J k (K f 1 )J k (K f 2 )H K f ,g (I k -θ θ θθ θ θ ′ ) - r (n) 1 r (n) 2 J k (K f 1 ,g1)J k (K f 2 ,g2) J k (K f 1 )J k (K f 2 )H K f ,g (I k -θ θ θθ θ θ ′ ) ( 1 J k (K f 2 ) - r (n) 2 J 2 k (K f 2 ,g2) J 2 k (K f 2 )H K f ,g )(I k -θ θ θθ θ θ ′ )     ,
the g-valid rank-based test statistic (built in a similar way as the pseudo-FvML statistic, see Section 3) we propose for the two-sample spherical location problem H 0 : θ θ θ 1 = θ θ θ 2 against H 1 : θ θ θ 1 = θ θ θ 2 corresponds As in [START_REF] Ley | Optimal R-estimation of a spherical location[END_REF], consistent estimators of J -1 k (K f1 , g 1 ) and J -1 k (K f2 , g 2 ) (and therefore readily of J k (K f1 , g 1 ) and J k (K f2 , g 2 )) can be obtained by taking respectively ρ1 := inf{ρ > 0 :

h (n) 1 (ρ) < 0} and ρ2 := inf{ρ > 0 : h (n) 2 (ρ) < 0}.
Denoting by Ĵk (K f1 , g 1 ) and Ĵk (K f2 , g 2 ) the resulting estimators, ĤK f ,g :=

r (n) 1 Ĵ 2 k (K f 1 ,g1) J k (K f 1 ) + r (n) 2 Ĵ 2 k (K f 2 ,g2) J k (K f 2 )
and letting

U ij := K fi Rij ni+1 S θ θ θ (X ij ), i = 1, 2, ( Rij naturally stands for the rank of X ′ ij θ θ θ among X ′ i1 θ θ θ, . . . , X ′ ini θ θ θ), the proposed rank test φ (n) K f
rejects the null hypothesis of homogeneity of the locations when

Q (n) K f := (k -1)    1 J k (K f1 ) - r (n) 1 Ĵ 2 k (K f1 , g 1 ) J 2 k (K f1 ) ĤK f ,g   1 n 1 n1 i,j=1 U ′ 1i (I k -θ θ θ θ θ θ ′ )U 1j   + 1 J k (K f2 ) - r (n) 2 Ĵ 2 k (K f2 , g 2 ) J 2 k (K f2 ) ĤK f ,g   1 n 2 n2 i,j=1 U ′ 2i (I k -θ θ θ θ θ θ ′ )U 2j   -2 Ĵk (K f1 , g 1 ) Ĵk (K f2 , g 2 ) J k (K f1 )J k (K f2 ) ĤK f ,g   1 n n1 i=1 U ′ 1i (I k -θ θ θ θ θ θ ′ ) n2 j=1 U 2j     
exceeds the α-upper quantile of the chi-square distribution with k -1 degrees of freedom. This asymptotic behavior under the null as well as the asymptotic distribution of Q 

i) Q (n) K f is asymptotically chi-square with k -1 degrees of freedom under θ θ θ∈S k-1 g∈F 2 {P (n) (θ θ θ,θ θ θ);g }; (ii) Q (n) K f
is asymptotically non-central chi-square, still with k -1 degrees of freedom, but with noncentrality parameter

l (θ θ θ,θ θ θ),t;K f ,g := t ′ Γ Γ Γ θ θ θ;K f ,g Ψ ⊥ θ θ θ;K f ,g Γ Γ Γ θ θ θ;K f ,g t under P (n) (θ θ θ+n -1/2 1 t (n) 1 ,θ θ θ+n -1/2 2 t (n)
2 );g

, where t Thanks to Proposition 4.1, the proof of this result follows along the same lines as that of Proposition 3.3 and is therefore omitted. Exactly as the pseudo-FvML tests φ (n) , our rank-based tests φ 

f = (K f1 , K f2 ) with K fi (u) = ϕ fi ( F -1 i (u))(1 -( F -1 i (u)) 2 ) 1/2 , i = 1, 2, the rank- based central sequence ∆ ∆ ∆ (n) (θ θ θ,θ θ θ);K f is asymptotically equivalent to the parametric central sequence ∆ ∆ ∆ (n) (θ θ θ,θ θ θ);f under P (n) (θ θ θ,θ θ θ);f . Therefore, the test φ (n) K f based on the central sequence ∆ ∆ ∆ (n) (θ θ θ,θ θ θ);K f
keeps the optimality properties of the f -parametric test for any f ∈ F 2 . Thus, while the pseudo-FvML tests are logically FvML-based and only enjoy optimality under FvML densities, one can construct f -optimal rank-based tests on basis of any pair f ∈ F 2 . This, in particular, provides practitioners with much more flexibility than was previously available.

We conclude this section by comparing the optimal pseudo-FvML test φ (n) with optimal rank-based tests φ

(n) K f
for several choices of f ∈ F 2 by means of Pitman's asymptotic relative efficiency (ARE). Letting ARE (θ θ θ,θ θ θ);g (φ

(n) 1 , φ (n) 2 ) denote the ARE of a test φ (n) 1 with respect to another test φ (n) 2 under P (n) (θ θ θ,θ θ θ);g , we have that ARE (θ θ θ,θ θ θ);g (φ (n) K f , φ (n) ) = l (θ θ θ,θ θ θ),t;K f ,g /l (θ θ θ,θ θ θ),t;φ,g .
In the homogeneous case g = (g 1 , g 1 ) (the angular density is the same for both samples) and if the same score function-namely, K f1 -is used for the two rankings (the test is therefore denoted by φ

(n) K f 1
), the ratio in (4) simplifies into ARE (θ θ θ,θ θ θ);g (φ 

(n) K f 1 /φ (n) ) = J 2 k (K f1 , g 1 ) J k (K f1 )D 2 k,g1 B k,g1
f logis(a,b) (t) := a exp(-b arccos(t)) (1 + a exp(-b arccos(t))) 2 .
The constants a and b are chosen so that all the above functions are true angular functions satisfying Assumption A. The score functions associated with these angular functions are denoted by K lin(a) for f lin(a) , K log(a) for f log(a) and K logis(a,b) for f logis(a,b) . For the FvML distribution with concentration κ, the score function will be denoted by K φκ .

Inspection of Table 1 confirms the theoretical results. As expected, the pseudo-FvML test φ (n) dominates the rank-based tests under FvML densities, whereas rank-based tests mostly outperform the pseudo-FvML test under other densities, especially so when they are based on the score function associated with the underlying density (in which case the rank-based tests are optimal).

ARE(φ

(n) K f 1 /φ (n) ) Underlying density φ (n) K φ 2 φ (n) K φ 6 φ (n) K lin(2) φ (n) K lin(4) φ (n) K log(2.5) φ (n) K logis(1,1) φ (n) K logis(2,1)
FvML( 1 with respect to the pseudo-FvML test φ (n) under various three-dimensional rotationally symmetric densities.

Simulation results

In this section, we perform a Monte Carlo study to compare the small-sample behavior of the pseudo-FvML test φ (n) and various rank-based tests φ

(n) K f
. For this purpose, we generated M = 2, 500 replications of four pairs of mutually independent samples (with respective sizes n 1 = 100 and n 2 = 150) of threedimensional rotationally symmetric random vectors ε ε ε ℓ;iji , ℓ = 1, 2, 3, 4, j i = 1, . . . , n i , i = 1, 2, with FvML densities and linear densities: the ε ε ε 1;1j1 's have a FvML(15) distribution and the ε ε ε 1;2j2 's have a FvML(2) distribution; the ε ε ε 2;1j1 's have a Lin(2) distribution and the ε ε ε 2;2j2 's have a Lin(1.1) distribution; the ε ε ε 3;1j1 's have a FvML(15) distribution and the ε ε ε 3;2j2 's have a Lin(1.1) distribution and finally the ε ε ε 4;1j1 's have a Lin(2) distribution and the ε ε ε 4;2j2 's have a FvML(2) distribution.

The rotationally symmetric vectors ε ε ε ℓ;iji 's have all been generated with a common spherical location Clearly, the spherical locations of the X ℓ;1j1 's and the X ℓ;2j2;0 's coincide while the spherical location of the X ℓ;2j2;ξ 's, ξ = 1, 2, 3, is different from the spherical location of the X ℓ;1j1 's characterizing alternatives .0504 .1180 .3660 .6916

Table 2: Rejection frequencies (out of M = 2, 500 replications), under the null and under increasingly distant alternatives, of the pseudo-FvML test φ (n) and various rank-based tests φ (n) (K φ 15 ,K φ 2 ) (based on FvML(15) and FvML(2) scores), φ (n) (K Lin(2) ,K Lin(1.1) ) (based on Lin(2) and Lin(1.1) scores), φ (n) (K Lin(2) ,K φ 2 ) (based on Lin(2) and FvML(2) scores) and φ for more details) we know that

E gi 1 -(X ′ ij θ θ θ) 2 (S θ θ θ (X ij )) ′ = E gi 1 -(X ′ ij θ θ θ) 2 E gi [(S θ θ θ (X ij )) ′ ] = 0 0 0 ′ .
This concludes Part (i) of the proposition. Regarding Part (ii), let X be a random vector distributed according to an FvML distribution with concentration κ. Then, writing c for the normalization constant, a simple integration by parts yields

C k,φκ = κ E φκ [1 -(X ′ θ θ θ) 2 ] = κ c 1 -1
(1u 2 ) exp(κu)(1u 2 ) (k-3)/2 du = κ c u exp(κu)(1u 2 ) (k-3)/2 du

  for the latest version of this result first expressed in Gauss 1809), and exactly the same result is known to hold true for the FvML distribution among spherical distributions (see Duerinckx and Ley 2012, where the earlier findings of von Mises 1918 for dimension k = 2, Arnold 1941 and Breitenberger 1963 for dimension k = 3 and Bingham and Mardia 1975 for any dimension have been generalized to yield the latter statement) 1 .

Proposition 3. 1

 1 Let Assumptions A, B and C hold. Then, letting B k,gi :

  Let Assumptions A, B, C and E hold and let θ θ θ be an estimator of the common value θ θ θ such that Assumption D' holds. Then

(

  

(

  

  -necessarily equal) pair of rotationally symmetric densities. Furthermore, as shown in Part (i) of Proposition 4.1, for K

  ′ . Then, each replication of the ε ε ε ℓ;iji 's was transformed into    X ℓ;1j1 = ε ε ε ℓ;1j1 , ℓ = 1, 2, 3, 4, j 1 = 1, . . . , n 1 X ℓ;2j2;ξ = O ξ ε ε ε ℓ;2j2 , ℓ = 1, 2, 3, 4, j 2 = 1, . . . , n 2 , ξ = 0

  15 ,K Lin(1.1) ) (based on FvML(15) and Lin(1.1) scores). Sample sizes are n1 = 100 and n2 = 150.which is o P (1) from the boundedness of θ θ θ and since from[START_REF] Watson | Statistics on Spheres[END_REF] (see the proof of Proposition 3.1

  the modified Bessel function of the first kind and of order k/2 -1. In what follows, we shall replace f FvML(κ) with the lighter notation φ κ . As already mentioned in the Introduction, the

	FvML is considered as the spherical analogue of the Gaussian distribution for purposes of mathematical
	statistics (see Schaeben 1992 for a discussion on analogues of the Gaussian distribution). This analogy is
	mainly due to the fact that the FvML distribution can be characterized by the empirical spherical mean
	θ θ θ Mean

  Thisfinally yields in the property given in Proposition 2.2 of[START_REF] Ley | Optimal R-estimation of a spherical location[END_REF]. Here, we obviously need a slightly different version of that result since we are dealing with the two-sample problem. Fortunately, the inner-sample independence and the mutual independence between the two samples entails that we can readily write down the ULAN property in the present setup.

	Proposition 2.1 [ULAN for the two-sample problem] Let Assumptions A, B and C hold. Then the model

use a lemma from

[START_REF] Hallin | Optimal rank-based testing for principal components[END_REF] 

explaining how to transpose ULAN from one parameterization to another.

Table 1 :

 1 Asymptotic relative efficiencies of (homogeneous) rank-based tests φ

	)	0.9744 0.8787	0.9813	0.9979	0.9027	0.9321	0.7364
	FvML(2)	1	0.9556	0.9978	0.9586	0.9749	0.9823	0.8480
	FvML(6)	0.9555	1	0.9381	0.8517	0.9768	0.9911	0.9280
	Lin(2)	1.0539 0.9909	1.0562	1.0215	1.0212	1.0247	0.8796
	Lin(4)	0.9709 0.8627	0.9795	1.0128	0.8856	0.9231	0.7097
	Log(2.5)	1.1610 1.1633	1.1514	1.0413	1.1908	1.1625	1.0951
	Log(4)	1.0182 0.9216	1.0261	1.0347	0.9503	0.9741	0.7851
	Logis(1,1)	1.0768 1.0865	1.0635	0.9991	1.0701	1.0962	0.9778
	Logis(2,1)	1.3182 1.4426	1.2946	1.0893	1.4294	1.3865	1.5544
						(n)		
						K f 1		

It is interesting in this context to note that Gauss, in his manuscript "Theoria motus corporum coelestium in sectionibus conicis solem ambientium" of 1809, has defined the famous distribution named after him by searching for the probability law for which the sample mean is always the MLE of the location parameter, and that von Mises, in 1918, aiming at constructing a circular analogue of the Gaussian distribution, started precisely from this classical MLE characterization.

) and covariance matrix Γ Γ Γ * θ θ θ;g , where, puttingC k,gi := E gi [(1 -(X ′ ij θ θ θ) 2 )ϕ gi (X ′ ij θ θ θ)] for i = 1, 2,

(n) (θ θ θ,θ θ θ);f under P (n) (θ θ θ,θ θ θ);f .
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to the null hypothesis of common spherical locations. Rejection frequencies based on the asymptotic chi-square critical values at nominal level 5% are reported in Table 2 below. The inspection of the latter reveals expected results:

(i) The pseudo-FvML test and all the rank-based tests are valid under heterogeneous densities. They reach the 5% nominal level constraint under any considered pair of densities.

(ii) The comparison of the empirical powers reveals that when based on scores associated with the underlying distributions, the rank-based test performs nicely. The pseudo-FvML test is clearly optimal in the FvML case.

Appendix A.

Proof of Proposition 3.1. From [START_REF] Watson | Statistics on Spheres[END_REF] (and the beginning of Section 2) we know that, under P (n) (θ θ θ,θ θ θ);g , the sign vectors S θ θ θ (X ij ) are independent of the scalar products

for i = 1, 2 and for all j = 1, . . . , n i . These results readily allow to obtain Part (i) by applying the multivariate central limit theorem, while Part (ii) follows from the ULAN structure of the model in Proposition 2.1 and Le Cam's third Lemma.

Proof of Proposition 3.2. We start by proving Part (i). First note that easy computations yield (for