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Abstract

We tackle the classical two-sample spherical location problem for directional data by having recourse to

the Le Cam methodology, habitually used in classical “linear” multivariate analysis. More precisely we

construct locally and asymptotically optimal (in the maximin sense) parametric tests, which we then

turn into semi-parametric ones in two distinct ways. First, by using a studentization argument; this

leads to so-called pseudo-FvML tests. Second, by resorting to the invariance principle; this leads to

efficient rank-based tests. Within each construction, the semi-parametric tests inherit optimality under

a given distribution (the FvML in the first case, any rotationally symmetric one in the second) from

their parametric counterparts and also improve on the latter by being valid under the whole class of

rotationally symmetric distributions. Asymptotic relative efficiencies are calculated and the finite-sample

behavior of the proposed tests is investigated by means of a Monte Carlo simulation.

Keywords: Directional statistics, local asymptotic normality, pseudo-FvML tests, rank-based inference,

two-sample spherical location problem.

2000 MSC: 62H11, 62H15, 62G10

1. Introduction

Spherical or directional data naturally arise in a broad range of earth sciences such as geology and

astrophysics (see, e.g., Watson 1983 or Mardia and Jupp 2000), as well as in studies of animal behavior

(see Fisher et al. 1987) or even in neuroscience (see Leong and Carlile 1998). Although this field of

research is as old as mathematical statistics themselves and raises the same questions as the more classical

“linear” statistics, its methodical and systematic study only started in the 1950s under the impetus

of Fisher (1953)’s pioneering work (see Mardia and Jupp 2000). It is now common practice to view
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directional data as realizations of random vectors X taking values on the surface of the unit hypersphere

Sk−1 := {v ∈ R
k : v′v = 1}, k ≥ 2, the distribution of X depending only on its “angular distance” from

a fixed point θθθ ∈ Sk−1 (thus such spherical distributions belong to the category of statistical group models

and enjoy the nice properties of that class of distributions; see Chang 2004 for details). This parameter

θθθ, which can be viewed as a “north pole” (or “mean direction”) for the problem under study, then is to

be considered as a spherical location parameter.

In this paper, we investigate the two-sample spherical location testing problem H0 : θθθ1 = θθθ2 against

H1 : θθθ1 6= θθθ2, where θθθ1 ∈ Sk−1 and θθθ2 ∈ Sk−1 are the respective spherical location parameters of

two independent samples of i.i.d. observations with respective common distributions P1 and P2, say.

Motivated by the fold test problem in palaeomagnetism (see McFadden and Jones 1981 and references

therein), this problem has been extensively studied in the literature. Due to the difficulty of the task, most

methods are either of parametric nature or restricted to small dimensions, or suffer from computational

difficulties/slowness such as Wellner (1979)’s permutation test or Beran and Fisher (1998)’s bootstrap

test. We refer the reader to the introduction section in Tsai (2009) for a more complete description of the

strengths and flaws of the different proposals. The paper Tsai (2009) itself proposes a rank-based test for

the two-sample problem. However, Tsai (2009) considers the very restrictive case where the two samples

share a common distribution, that is, P1 = P2; this is particularly uncomfortable when dealing with

Fisher-von Mises-Langevin (FvML hereafter) distributions, where the additional concentration parameter

κ > 0 then needs to be the same for both samples in order for the test to be valid. Thus, to the best of the

authors’ knowledge, the only computationally simple, efficient and asymptotically distribution-free test for

the general null hypothesisH0 above is the pseudo-FvML test given in Watson (1983). The idea behind his

test has the same flavor as the pseudo-Gaussian tests in the classical “linear” framework (see, for instance,

Muirhead and Waternaux 1980 or Hallin and Paindaveine 2008 for more information on pseudo-Gaussian

procedures). More concretely, since the FvML distribution is considered as the spherical analogue of

the Gaussian distribution (see Section 2 for an explanation of this fact), Watson has chosen the FvML

as basis distribution and hence constructed his pseudo-FvML tests by “correcting” the FvML-likelihood

ratio test, optimal under a couple (P1, P2) of FvML distributions with fixed concentration parameters κ1

and κ2, in such a way that the resulting test remains valid under a large class of distributions.

Our aim in the present paper consists in proposing new tests for the two-sample spherical location

problem. More concretely, we aim to construct tests that are optimal (in the maximin sense) under a given

pair of distributions (P1, P2) but remain valid (in the sense that they meet the nominal level constraint)

under a broad class of distributions, namely the rotationally symmetric distributions (introduced by

Saw 1978; see Section 2 below for a definition). The backbone of our approach is the so-called Le

Cam methodology (see Le Cam 1986), as adapted to the spherical setup by Ley et al. (2012). Of

utmost importance for our aims here is the uniform local asymptotic normality (ULAN) of a sequence

of rotationally symmetric distributions established therein. This property allows us to construct optimal
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parametric tests under the pair (P1, P2). This optimality, however, is thwarted by the non-validity of the

tests under any pair (Q1, Q2) distinct from (P1, P2). In order to palliate this problem, we have recourse to

two classical tools: a studentization argument, which eventually leads to Watson (1983)’s pseudo-FvML

tests, and the invariance principle, yielding optimal rank-based tests. Both tests are of semi-parametric

nature.

The paper is organized as follows. In Section 2, we collect the main assumptions of the paper,

summarize asymptotic results in the context of rotationally symmetric distributions and show how to

construct the announced optimal parametric tests for the two-sample spherical location problem. We

then extend the latter to pseudo-FvML tests in Section 3 and to rank-based tests in Section 4, and study

their respective asymptotic behavior in each section. Asymptotic relative efficiencies are provided in

Section 4. The theoretical results are corroborated via a Monte Carlo simulation in Section 5. Finally

an appendix collects the proofs.

2. Main assumptions, notations and important preliminary results

2.1. Rotational symmetry and the particular rôle of the FvML distribution

Throughout, the two samples of data points X11, . . . ,X1n1
and X21, . . . ,X2n2

are assumed to belong

to the unit sphere Sk−1 of Rk, k ≥ 2, and to satisfy

Assumption A. (Rotational symmetry) X11, . . . ,X1n1
(resp., X21, . . . ,X2n2

) are i.i.d. with common

distribution Pθθθ;f1 (resp., Pθθθ;f2) characterized by a density (with respect to the usual surface area measure

on spheres)

x 7→ ck,fi fi(x
′θθθ), x ∈ Sk−1, (2.1)

where θθθ ∈ Sk−1 is a location parameter and fi : [−1, 1] → R
+
0 is absolutely continuous and (strictly)

monotone increasing, i = 1, 2. Then, if X has density (2.1), the density of X′θθθ is of the form

t 7→ f̃i(t) :=
ωk ck,fi

B( 12 ,
1
2 (k − 1))

fi(t)(1− t2)(k−3)/2, −1 ≤ t ≤ 1,

where ωk = 2πk/2/Γ(k/2) is the surface area of Sk−1 and B(·, ·) is the beta function. The corresponding

cumulative distribution function (cdf) is denoted by F̃i(t), i = 1, 2.

The fi’s are called angular functions (because the distribution of each Xij depends only on the

angle between it and the location θθθ ∈ Sk−1). Throughout the rest of this paper, we denote by F2

the collection of pairs of angular functions f := (f1, f2). Although not necessary for the definition to

make sense, monotonicity of fi ensures that surface areas in the vicinity of the location parameter θθθ are

allocated a higher probability mass than more remote regions of the sphere. This property happens to be

very appealing from the modelling point of view. Rotationally symmetric distributions also enjoy some
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appealing stochastic properties. Indeed, as shown in Watson (1983), for a random vector X distributed

according to some Pθθθ;fi as in Assumption A, not only is the multivariate sign vector Sθθθ(X) := (X −
(X′θθθ)θθθ)/||X− (X′θθθ)θθθ|| uniformly distributed on Sθθθ⊥

:= {v ∈ R
k | ‖v‖ = 1,v′θθθ = 0} but also the angular

distance X′θθθ and the sign vector Sθθθ(X) are stochastically independent.

The class of rotationally symmetric distributions contains several spherical distributions such as the

linear, the logarithmic, the logistic (all three are provided in Section 4 below) or the wrapped normal

distribution; for other examples and a more detailed description of the aforementioned ones, we refer to

Duerinckx and Ley (2012). By far the most popular and most used rotationally symmetric distribution

is the FvML distribution (named, according to Watson 1983, after von Mises 1918, Fisher 1953, and

Langevin 1905), whose density is of the form

fFvML(κ)(x;θθθ) = Ck(κ) exp(κx
′θθθ), x ∈ Sk−1,

where κ > 0 is a concentration or dispersion parameter, θθθ ∈ Sk−1 a location parameter and the normal-

ization constant Ck(κ) is equal to

Ck(κ) =
κk/2−1

(2π)k/2Ik/2−1(κ)
,

with Ik/2−1(κ) the modified Bessel function of the first kind and of order k/2 − 1. In what follows,

we shall replace fFvML(κ) with the lighter notation φκ. As already mentioned in the Introduction, the

FvML is considered as the spherical analogue of the Gaussian distribution for purposes of mathematical

statistics (see Schaeben 1992 for a discussion on analogues of the Gaussian distribution). This analogy is

mainly due to the fact that the FvML distribution can be characterized by the empirical spherical mean

θ̂θθMean :=
∑n

i=1 Xi/||
∑n

i=1 Xi||, X1, . . . ,Xn ∈ Sk−1, as the Maximum Likelihood Estimator (MLE) of its

spherical location parameter, similarly as the Gaussian distribution can be characterized by the empirical

mean n−1
∑n

i=1 Xi, X1, . . . ,Xn ∈ R
k, as the MLE of its classical (linear) location parameter. More

precisely, it has been shown that the Gaussian distribution is the only absolutely continuous (univariate

and multivariate) distribution for which the sample mean is for all samples of fixed sample size n ≥ 3 the

MLE of the location parameter (see Azzalini and Genton 2007 for the latest version of this result first

expressed in Gauss 1809), and exactly the same result is known to hold true for the FvML distribution

among spherical distributions (see Duerinckx and Ley 2012, where the earlier findings of von Mises 1918

for dimension k = 2, Arnold 1941 and Breitenberger 1963 for dimension k = 3 and Bingham and

Mardia 1975 for any dimension have been generalized to yield the latter statement)1.

1It is interesting in this context to note that Gauss, in his manuscript “Theoria motus corporum coelestium in sectionibus

conicis solem ambientium” of 1809, has defined the famous distribution named after him by searching for the probability

law for which the sample mean is always the MLE of the location parameter, and that von Mises, in 1918, aiming at

constructing a circular analogue of the Gaussian distribution, started precisely from this classical MLE characterization.
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2.2. Le Cam optimal parametric tests for the two-sample spherical location problem

As stated in the Introduction, our first objective is to construct locally and asymptotically optimal

parametric tests by having recourse to the Le Cammethodology. The main ingredient for this construction

rests on the ULAN property of the parametric model
({

P
(n)
θθθ1;f1

| θθθ1 ∈ Sk−1
}
,
{
P
(n)
θθθ2;f2

| θθθ2 ∈ Sk−1
})

for

a fixed pair of angular functions (f1, f2), where P
(n)
θθθi;fi

stands for the joint distribution of Xi1, . . . ,Xini
,

i = 1, 2. We further denote by P
(n)
(θθθ1,θθθ2);f

the joint law combining P
(n)
θθθ1;f1

and P
(n)
θθθ2;f2

. In order to be able

to state our results, we need to impose a certain control on the respective sample sizes n1 and n2, which

will be achieved via the following

Assumption B. Letting n = n1 +n2, both r
(n)
1 := n1/n and r

(n)
2 := n2/n converge to finite constants r1

and r2 respectively as n → ∞.

This condition explains why, in what precedes and in what follows, we simply use the superscript (n) for

the different quantities at play and do not specify whether they are associated with n1 or n2.

Informally, a sequence of rotationally symmetric models
{
P
(n)
(θθθ1,θθθ2);f

| θθθ1, θθθ2 ∈ Sk−1
}

is ULAN if the

logarithm of the likelihood ratio P
(n)

(θθθ
(n)
1 +n

−1/2
1 t

(n)
1 ,θθθ

(n)
2 +n

−1/2
2 t

(n)
2 );f

/P
(n)

(θθθ
(n)
1 ,θθθ

(n)
2 );f

allows a specific form of

(probabilistic) Taylor expansion, with θθθ
(n)
1 , θθθ

(n)
2 ∈ Sk−1 such that θθθ

(n)
i − θθθi = O(n−1/2), i = 1, 2, and

t
(n)
1 , t

(n)
2 ∈ R

k bounded sequences of perturbations such that θθθ
(n)
i +n

−1/2
i t

(n)
i remains on the unit sphere

for i = 1, 2. The latter condition means that each t
(n)
i needs to satisfy

0 = (θθθ
(n)
i + n

−1/2
i t

(n)
i )′(θθθ

(n)
i + n

−1/2
i t

(n)
i )− 1

= 2n
−1/2
i (θθθ

(n)
i )′t

(n)
i + n−1

i (t
(n)
i )′t

(n)
i . (2.2)

Consequently, t
(n)
i must be such that 2n

−1/2
i (θθθ

(n)
i )′t

(n)
i + n−1

i (t
(n)
i )′t

(n)
i = 0 or, equivalently, such that

2n
−1/2
i (θθθ

(n)
i )′t

(n)
i +o(n

−1/2
i ) = 0. In other words, for θθθ

(n)
i +n

−1/2
i t

(n)
i to remain in Sk−1, t

(n)
i must belong,

up to a o(n
−1/2
i ) quantity, to the tangent space to Sk−1 at θθθ

(n)
i .

Now, Sk−1 is a non-linear manifold and as a consequence, establishing the ULAN property of a

sequence of rotationally symmetric models is all but easy. Ley et al. (2012) handle this difficulty by

resorting to a natural re-parameterization in terms of spherical coordinates, for which it is possible to

prove ULAN, subject to the following necessary condition.

Assumption C. The Fisher information associated with the spherical location parameter is finite;

this finiteness is ensured if, for i = 1, 2 and letting ϕfi := ḟi/fi (ḟi is the a.e.-derivative of fi), Jk(fi) :=
∫ 1

−1
ϕ2
fi
(t)(1− t2)f̃i(t)dt < +∞.

After obtaining the ULAN property for this new parameterization, Ley et al. (2012) use a lemma

from Hallin et al. (2010) explaining how to transpose ULAN from one parameterization to another. This
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finally yields in the property given in Proposition 2.2 of Ley et al. (2012). Here, we obviously need a

slightly different version of that result since we are dealing with the two-sample problem. Fortunately,

the inner-sample independence and the mutual independence between the two samples entails that we

can readily write down the ULAN property in the present setup.

Proposition 2.1 [ULAN for the two-sample problem] Let Assumptions A, B and C hold. Then the model{
P
(n)
(θθθ1,θθθ2);f

| θθθ1, θθθ2 ∈ Sk−1
}

is ULAN with central sequence ∆∆∆
(n)
(θθθ1,θθθ2);f

:=
(
(∆∆∆

(n)
θθθ1;f1

)′, (∆∆∆
(n)
θθθ2;f2

)′
)′
, where

∆∆∆
(n)
θθθi;fi

:= n
−1/2
i

ni∑

j=1

ϕfi(X
′
ijθθθi)(1− (X′

ijθθθi)
2)1/2Sθθθi

(Xij), i = 1, 2,

and Fisher information matrix ΓΓΓ(θθθ1,θθθ2);f := diag(ΓΓΓθθθ1;f1 ,ΓΓΓθθθ2;f2) where

ΓΓΓθθθi;fi :=
Jk(fi)

k − 1
(Ik − θθθiθθθ

′
i), i = 1, 2.

More precisely, for any θθθ1, θθθ2 ∈ Sk−1 and any bounded sequences t
(n)
1 , t

(n)
2 as in (2.2), we have

log



P
(n)

(θθθ
(n)
1 +n

−1/2
1 t

(n)
1 ,θθθ

(n)
2 +n

−1/2
2 t

(n)
2 );f

P
(n)

(θθθ
(n)
1 ,θθθ

(n)
2 );f


 = (t(n))′∆∆∆

(n)

(θθθ
(n)
1 ,θθθ

(n)
2 );f

− 1

2
(t(n))′ΓΓΓ(θθθ1,θθθ2);ft

(n) + oP(1),

where t(n) := ((t
(n)
1 )′, (t

(n)
2 )′)′, and∆∆∆

(n)

(θθθ
(n)
1 ,θθθ

(n)
2 );f

L→ N2(k−1)(000,ΓΓΓ(θθθ1,θθθ2);f ), both under P
(n)
(θθθ1,θθθ2);f

, as n → ∞.

Proposition 2.1 is a straightforward consequence of the result in Ley et al. (2012), and hence the

proof is omitted. With this in hand, constructing optimal f -parametric procedures (that is, under the

pair of densities with respective specified angular functions f1 and f2) for testing H0 : θθθ1 = θθθ2 against

H1 : θθθ1 6= θθθ2 is plain sailing. Indeed, denoting by θθθ ∈ Sk−1 the common null hypothesis value of the

location parameter, the corresponding parametric test statistic is given by

(∆∆∆
(n)
(θθθ,θθθ);f )

′(ΓΓΓ(θθθ,θθθ);f )
−1∆∆∆

(n)
(θθθ,θθθ);f .

Evidently, the unknown value θθθ needs to be estimated, but we leave that issue to the subsequent sections.

Intuitively, this construction of optimal parametric tests follows from the fact that the second-order

expansion of the log-likelihood ratio for the model
{
P
(n)
(θθθ1,θθθ2);f

| θθθ1, θθθ2 ∈ Sk−1
}
strongly resembles the log-

likelihood ratio for the classical Gaussian shift experiment, for which optimal procedures are well-known

and are based on the corresponding first-order term. For more details and more formal explanations, we

refer the reader to Le Cam (1986), Section 11.9.

As mentioned in the Introduction, the optimal parametric tests suffer from the drawback of being

only valid under the pair (f1, f2). Since it is highly unrealistic in practice to assume that the underlying

densities are known, these tests are useless for practitioners. The next two sections contain two distinct

solutions allowing to set this problem right.
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3. Pseudo-FvML tests.

For a given pair of FvML densities (φκ1
, φκ2

) with respective concentration parameters κ1, κ2 > 0

(where we do not assume κ1 = κ2), the quantities ϕφκi
reduce to the constants κi, i = 1, 2, and hence

the central sequences for each sample take the form

∆∆∆
(n)
θθθi;φκi

:= κin
−1/2
i

ni∑

j=1

(1− (X′
ijθθθi)

2)1/2Sθθθi
(Xij)

= κin
−1/2
i

ni∑

j=1

(Xij − (X′
ijθθθi)θθθi)

= κi(Ik − θθθiθθθ
′
i)n

−1/2
i

ni∑

j=1

Xij

=: κi(Ik − θθθiθθθ
′
i)n

1/2
i X̄i

= κi(Ik − θθθiθθθ
′
i)n

1/2
i (X̄i − θθθi), i = 1, 2.

Optimal FvML-based procedures for the two-sample spherical location problem are then built upon

∆∆∆
(n)
(θθθ,θθθ);(φκ1 ,φκ2 )

. We here again draw the reader’s attention to the fact that this parametric test is only

valid under the pair (φκ1 , φκ2) and becomes non-valid even if only the concentration parameters change.

In this section, this non-validity problem will be overcome in the following way. We will first study

the asymptotic behavior of ∆∆∆
(n)
(θθθ,θθθ);(φκ1

,φκ2
) under any given pair g = (g1, g2) ∈ F2 and consider the

newly obtained quadratic form in ∆∆∆
(n)
(θθθ,θθθ);(φκ1 ,φκ2 )

. Clearly, this quadratic form will now depend on the

asymptotic variance of ∆∆∆
(n)
(θθθ,θθθ);(φκ1 ,φκ2 )

under g, hence again, for each g, we are confronted to an only-

for-g-valid test statistic. The next and final step then consists in applying a studentization argument,

meaning that we estimate this asymptotic variance quantity and study the asymptotic behavior of the

new quadratic form under any pair of rotationally symmetric distributions. The final outcome of this

procedure will be tests which happen to be optimal under any pair of FvML distributions (that is, for

any values κ1, κ2 > 0) and valid under the entire class of rotationally symmetric distributions; these tests

are our so-called pseudo-FvML tests.

For the sake of readability, we adopt the notation φ for any pair (φκ1
, φκ2

) and Ef [·] for expectation
under the angular function f . The following result characterizes, for a given pair of angular functions

g ∈ F2, the asymptotic properties of the FvML-based central sequence ∆∆∆
(n)
(θθθ,θθθ);φ, both under P

(n)
(θθθ,θθθ);g and

P
(n)

(θθθ+n
−1/2
1 t

(n)
1 ,θθθ+n

−1/2
2 t

(n)
2 );g

with t
(n)
1 and t

(n)
2 as in (2.2) for each sample.

Proposition 3.1 Let Assumptions A, B and C hold. Then, letting Bk,gi := 1−Egi

[
(X′

ijθθθ)
2
]
for i = 1, 2,

we have that ∆∆∆
(n)
(θθθ,θθθ);φ is

(i) asymptotically normal under P
(n)
(θθθ,θθθ);g with mean zero and covariance matrix

ΓΓΓ∗
θθθ;g := diag

(
ΓΓΓ∗
θθθ;g1 ,ΓΓΓ

∗
θθθ;g2

)
,
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where ΓΓΓ∗
θθθ;gi :=

κ2
iBk,gi

k−1 (Ik − θθθθθθ′), i = 1, 2;

(ii) asymptotically normal under P
(n)

(θθθ+n
−1/2
1 t

(n)
1 ,θθθ+n

−1/2
2 t

(n)
2 );g

(t
(n)
1 and t

(n)
2 as in (2.2)) with mean ΓΓΓθθθ;φ,gt

(t := (t′1, t
′
2)

′ with t1 := limn→∞ t
(n)
1 and t2 := limn→∞ t

(n)
2 ) and covariance matrix ΓΓΓ∗

θθθ;g, where,

putting Ck,gi := Egi [(1− (X′
ijθθθ)

2)ϕgi(X
′
ijθθθ)] for i = 1, 2,

ΓΓΓθθθ;φ,g := diag
(
ΓΓΓθθθ;φκ1 ,g1

,ΓΓΓθθθ;φκ2 ,g2

)

with ΓΓΓθθθ;φκi
,gi :=

κiCk,gi

k−1 (Ik − θθθθθθ′), i = 1, 2.

See the Appendix for the proof. As the null hypothesis only specifies that both spherical locations

coincide, we need to estimate the unknown common value θθθ. Therefore, we assume in the sequel the

existence of an estimator θ̂θθ of θθθ such that the following assumption holds.

Assumption D. The estimator θ̂θθ ∈ Sk−1 is such that θ̂θθ − θθθ is OP(n
−1/2) under P

(n)
(θθθ,θθθ);g for any g ∈ F2.

Typical examples of estimators satisfying Assumption D belong to the class ofM -estimators (see Chang 2004)

or R-estimators (see Ley et al. 2012). Put simply, instead of ∆∆∆
(n)
(θθθ,θθθ);φ we have to work with ∆∆∆

(n)

(θ̂θθ,θ̂θθ);φ
for

some estimator θ̂θθ satisfying Assumption D. The next crucial result explains in how far this replacement

affects the asymptotic properties established in Proposition 3.1.

Proposition 3.2 Let Assumptions A, B and C hold and let θ̂θθ be an estimator of the common value θθθ

such that Assumption D holds. Then

(i) letting ΥΥΥ(n) :=

(√
r
(n)
1 Ik

...

√
r
(n)
2 Ik

)′

, ∆∆∆
(n)
(θθθ,θθθ);φ satisfies, under P

(n)
(θθθ,θθθ);g and as n → ∞,

∆∆∆
(n)

(θ̂θθ,θ̂θθ);φ
−∆∆∆

(n)
(θθθ,θθθ);φ = −ΓΓΓφ

θθθ;gΥΥΥ
(n)√n

(
θ̂θθ − θθθ

)
+ oP(1),

where

ΓΓΓ
φ

θθθ;g := diag
(
ΓΓΓ
φκ1

θθθ;g1
,ΓΓΓ

φκ2

θθθ;g2

)

with ΓΓΓ
φκi

θθθ;gi
:= κiEgi

[
X′

ijθθθ
]
(Ik − θθθθθθ′), i = 1, 2;

ii) for all θθθ ∈ Sk−1, ΓΓΓθθθ;φ,φ = ΓΓΓ
φ

θθθ;φ.

The proof is provided in the Appendix. From these results, we can now deduce the new quadratic

form to be used as a g-valid test statistic. This construction follows the ideas from Hallin and Pain-

daveine (2008) where a very general theory for pseudo-Gaussian procedures is described. Defining

Ek,gi := Egi

[
X′

ijθθθ
]
, i = 1, 2, and, for notational simplicity, Dk,gi := Ek,gi/Bk,gi , i = 1, 2, and Hφ,g :=

(r
(n)
1 D2

k,g1
Bk,g1 + r

(n)
2 D2

k,g2
Bk,g2), and letting

Ψ⊥
θθθ;φ,g := (k − 1)




1
κ2
1
( 1
Bk,g1

− r
(n)
1 D2

k,g1

Hφ,g
)(Ik − θθθθθθ′) − 1

κ1κ2

√

r
(n)
1 r

(n)
2 Dk,g1

Dk,g2

Hφ,g
(Ik − θθθθθθ′)

− 1
κ1κ2

√

r
(n)
1 r

(n)
2 Dk,g1

Dk,g2

Hφ,g
(Ik − θθθθθθ′) 1

κ2
2
( 1
Bk,g2

− r
(n)
2 D2

k,g2

Hφ,g
)(Ik − θθθθθθ′)


 ,
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the g-valid test statistic for the two-sample spherical location problem H0 : θθθ1 = θθθ2 against H1 : θθθ1 6= θθθ2

corresponds to the quadratic form

Q(n)(g) := (∆∆∆
(n)

(θ̂θθ,θ̂θθ);φ
)′Ψ⊥

θ̂θθ;φ,g
∆∆∆

(n)

(θ̂θθ,θ̂θθ);φ
.

At first sight, this construction might appear puzzling and the reader might wonder how the preceding

results finally lead to this test statistic. It is easy to verify that the random quantity Q(n)(g) does

not depend explicitly on the underlying concentrations κ1 and κ2 but still depends on the quantities

Bk,gi and Ek,gi , i = 1, 2, still hampering the validity of the statistic outside of g. The last step in our

construction thus consists in estimating these quantities. Consistent (via the Law of Large Numbers)

estimators for each of them are provided by B̂k,gi := 1−n−1
i

∑ni

j=1(X
′
ijθ̂θθ)

2 and Êk,gi := n−1
i

∑ni

j=1(X
′
ijθ̂θθ),

i = 1, 2. For the sake of readability, we naturally also use the notations D̂k,gi := Êk,gi/B̂k,gi , i = 1, 2, and

Ĥφ,g := (r
(n)
1 D̂2

k,g1
B̂k,g1+r

(n)
2 D̂2

k,g2
B̂k,g2). Straightforward calculations then show that our pseudo-FvML

test statistic for the two-sample spherical location problem is

Q(n) = (k − 1)





(
D̂k,g1

Êk,g1

−
r
(n)
1 D̂2

k,g1

Ĥφ,g

)
 1

n1

n1∑

i,j=1

X′
1i(Ik − θ̂θθθ̂θθ

′
)X1j




+

(
D̂k,g2

Êk,g2

−
r
(n)
2 D̂2

k,g2

Ĥφ,g

)
 1

n2

n2∑

i,j=1

X′
2i(Ik − θ̂θθθ̂θθ

′
)X2j




−2
D̂k,g1D̂k,g2

Ĥφ,g


 1

n

n1∑

i=1

X′
1i(Ik − θ̂θθθ̂θθ

′
)

n2∑

j=1

X2j






 ,

which no more depends on g. The following proposition finally yields the asymptotic properties of this

quadratic form under the entire class of rotationally symmetric distributions, showing that the test is

well valid under that broad set of distributions.

Proposition 3.3 Let Assumptions A, B and C hold and let θ̂θθ be an estimator of the common value θθθ

such that Assumption D holds. Then,

(i) Q(n) is asymptotically chi-square with k − 1 degrees of freedom under
⋃

θθθ∈Sk−1

⋃
g∈F2 P

(n)
(θθθ,θθθ);g;

(ii) Q(n) is asymptotically non-central chi-square with k − 1 degrees of freedom and non-centrality pa-

rameter

l(θθθ,θθθ),t;φ,g := t′ΓΓΓθθθ;φ,gΨ
⊥
θθθ;φ,gΓΓΓθθθ;φ,gt

under P
(n)

(θθθ+n
−1/2
1 t

(n)
1 ,θθθ+n

−1/2
2 t

(n)
2 );g

, where t
(n)
1 and t

(n)
2 are as in (2.2) and t := (t′1, t

′
2)

′ with t1 :=

limn→∞ t
(n)
1 and t2 := limn→∞ t

(n)
2 .

From Part (i) we deduce that our pseudo-FvML tests for the two-sample spherical location problem,

denoted by φ(n), reject the null hypothesis H0 : θθθ1 = θθθ2 in favor of H1 : θθθ1 6= θθθ2 at asymptotic level α as

9



soon as Q(n) exceeds the α-upper quantile of a chi-square distribution with k−1 degrees of freedom. It is

easy to verify as in Watson (1983) that it is asymptotically equivalent (the difference is a oP(1) quantity)

to the FvML likelihood ratio test in the FvML case and therefore keeps its optimality properties in

that configuration. Thus, our pseudo-FvML tests, although the construction is different, coincide with

Watson’s proposal. However, our work here is of intrinsic interest since we provide more insight on how

to correct the optimal FvML test and, contrarily to Watson (1983), we investigate in detail the impact

of the replacement of the unknown quantities by the corresponding estimators.

4. Rank-based tests.

The pseudo-FvML test constructed in the previous section is valid under any pair of (non-necessarily

equal) rotationally symmetric distributions and retains the optimality properties of the FvML likelihood

ratio test in the FvML case. In this section, we start from any given pair f ∈ F2 and our objective is

to turn the f -parametric tests into tests which are still valid under any pair of (non-necessarily equal)

rotationally symmetric distributions but which are optimal under the pair f . To obtain such a test,

we have recourse here to the second of the aforementioned tools to turn our parametric tests into semi-

parametric ones: the invariance principle. This principle advocates that, if the sub-model identified by

the null hypothesis is invariant under the action of a group of transformations GT , one should exclusively

use procedures whose outcome does not change along the orbits of that group GT . This is the case if and

only if these procedures are measurable with respect to the maximal invariant associated with GT . The

invariance principle is accompanied by a nice and appealing corollary for our purposes here: provided

that the group GT is a generating group for H0, the invariant procedures are distribution-free under the

null. In view of all this, our strategy in this section is the following: determine the correct group of

transformations GT , re-express our f -parametric tests in terms of the corresponding maximal invariant

and study the asymptotic properties of the resulting test statistic, after replacement of all the unknown

quantities by consistent estimators, as in the previous section.

Invariance with respect to “common rotations” is crucial in this context. More precisely, letting

O ∈ SOk := {A ∈ R
k×k,A′A = Ik, det(A) = 1}, the null hypothesis is unquestionably invariant with

respect to a transformation of the form

gO : X11, . . . ,X1n1
,X21, . . . ,X2n2

7→ OX11, . . . ,OX1n1
,OX21, . . . ,OX2n2

.

However, this group is not generating for H0 as it does not take into account the underlying angular

functions f , which are an infinite-dimensional nuisance underH0. This group is actually rather generating

for
⋃

θθθ∈Sk−1 P
(n)
(θθθ,θθθ);f with fixed f . Now, denote as in the previous section the common value of θθθ1 and θθθ2

under the null as θθθ. Then Xij = (X′
ijθθθ)θθθ +

√
1− (X′

ijθθθ)
2Sθθθ(Xij) for all j = 1, . . . , ni and i = 1, 2. Let

10



Gh (h := (h1, h2)) be the group of transformations of the form

ghi
: Xij 7→ ghi

(Xij)

= hi(X
′
ijθθθ)θθθ +

√
1− (hi(X′

ijθθθ))
2Sθθθ(Xij), i = 1, 2,

where the hi : [−1, 1] → [−1, 1] are monotone continuous nondecreasing functions such that hi(1) = 1

and hi(−1) = −1, i = 1, 2. For any pair of (possibly different) transformations (gh1
, gh2

) ∈ Gh, it is easy

to verify that ‖ghi(Xij)‖ = 1; thus, ghi is a monotone transformation from Sk−1 to Sk−1, i = 1, 2. Note

furthermore that ghi does not modify the signs Sθθθ(Xij). It is then quite easy to see that the group of

transformations Gh is a generating group for
⋃

f∈F2 P
(n)
(θθθ,θθθ);f , which this time corresponds exactly to our

null hypothesisH0, and that the null is invariant under the action of Gh. A simple exercise reveals that the

maximal invariant associated with Gh is the vector of signs Sθθθ(X11), . . . ,Sθθθ(X1n1),Sθθθ(X21), . . . ,Sθθθ(X2n2
)

and ranks R11, . . . , R1n1 , R21, . . . , R2n2 where Rij denotes the rank of X′
ijθθθ among X′

i1θθθ, . . . ,X
′
ini

θθθ, i =

1, 2. As a consequence, we choose to base our tests in this section on a rank-based version of the central

sequence ∆∆∆
(n)
(θθθ,θθθ);f , namely on

∆∆∆
˜

(n)
(θθθ,θθθ);Kf

:= ((∆∆∆
˜

(n)
θθθ;Kf1

)′, (∆∆∆
˜

(n)
θθθ;Kf2

)′)′

with

∆∆∆
˜

(n)
θθθ;Kfi

= n
−1/2
i

ni∑

j=1

Kfi

(
Rij

ni + 1

)
Sθθθ(Xij), i = 1, 2,

where Kf := (Kf1 ,Kf2) is a pair of score (generating) functions satisfying

Assumption E. The score functions Kfi , i = 1, 2, are continuous functions from [0, 1] to R.

The following result, which is a direct corollary (using again the inner-sample independence and the

mutual independence between the two samples) of Proposition 3.1 in Ley et al. (2012), characterizes the

asymptotic behavior of ∆∆∆
˜

(n)
(θθθ,θθθ);Kf

under any pair of densities with respective angular functions g1 and g2.

Proposition 4.1 Let Assumptions A, B, C and E hold and consider g = (g1, g2) ∈ F2. Then the

rank-based central sequence ∆∆∆
˜

(n)
(θθθ,θθθ);Kf

(i) is such that ∆∆∆
˜

(n)
(θθθ,θθθ);Kf

−∆∆∆
(n)
(θθθ,θθθ);Kf ;g

= oP(1) under P
(n)
(θθθ,θθθ);g as n → ∞, where (G̃i standing for the

common cdf of the X′
ijθθθ’s under P

(n)
(θθθ,θθθ);g, i = 1, 2)

∆∆∆
(n)
(θθθ,θθθ);Kf ;g

= ((∆∆∆
(n)
θθθ;Kf1

;g1
)′, (∆∆∆

(n)
θθθ;Kf2

;g2
)′)′

with

∆∆∆
(n)
θθθ;Kfi

;gi
:= n

−1/2
i

ni∑

j=1

Kfi

(
G̃i(X

′
ijθθθ)

)
Sθθθ(Xij), i = 1, 2.

In particular, for Kf = (Kf1 ,Kf2) with Kfi(u) := ϕfi(F̃
−1
i (u))(1 − (F̃−1

i (u))2)1/2, ∆∆∆
˜

(n)
(θθθ,θθθ);Kf

is

asymptotically equivalent to the efficient central sequence ∆∆∆
(n)
(θθθ,θθθ);f under P

(n)
(θθθ,θθθ);f .
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(ii) is asymptotically normal under P
(n)
(θθθ,θθθ);g with mean zero and covariance matrix

ΓΓΓθθθ;Kf
:= diag

(Jk(Kf1)

k − 1
(Ik − θθθθθθ′),

Jk(Kf2)

k − 1
(Ik − θθθθθθ′)

)
,

where Jk(Kfi) :=
∫ 1

0
K2

fi
(u)du.

(iii) is asymptotically normal under P
(n)

(θθθ+n
−1/2
1 t

(n)
1 ,θθθ+n

−1/2
2 t

(n)
2 );g

(t
(n)
1 and t

(n)
2 as in (2.2)) with mean

ΓΓΓθθθ;Kf ,g
t (t := (t′1, t

′
2)

′ with t1 := limn→∞ t
(n)
1 and t2 := limn→∞ t

(n)
2 ) and covariance matrix

ΓΓΓθθθ;Kf ,g
:= diag

(Jk(Kf1 , g1)

k − 1
(Ik − θθθθθθ′),

Jk(Kf2 , g2)

k − 1
(Ik − θθθθθθ′)

)
,

where Jk(Kfi , gi) :=
∫ 1

0
Kfi(u)Kgi(u)du for i = 1, 2.

(iv) satisfies, under P
(n)
(θθθ,θθθ);g as n → ∞, the asymptotic linearity property

∆∆∆
˜

(n)

(θθθ+n
−1/2
1 t

(n)
1 ,θθθ+n

−1/2
2 t

(n)
2 );Kf

− ∆∆∆
˜

(n)
(θθθ,θθθ);Kf

= −ΓΓΓθθθ;Kf ,g
t(n) + oP(1),

for t(n) = ((t
(n)
1 )′, (t

(n)
2 )′)′ with t

(n)
1 and t

(n)
2 as in (2.2).

Now, as for the pseudo-FvML test, our rank-based procedures are not complete since we still have

to estimate the common value θθθ of θθθ1 and θθθ2 under H0. Therefore, we will assume the existence of an

estimator θ̂θθ satisfying Assumption D; as explained in Section 3, such an estimator is easy to construct.

In order to deal with these rank-based test statistics, we however need to strengthen Assumption D into

Assumption D’. Besides root-n consistency under P
(n)
(θθθ,θθθ);g for any g ∈ F2, the estimator θ̂θθ ∈ Sk−1

is further locally and asymptotically discrete, meaning that it only takes a bounded number of distinct

values in θθθ-centered balls with O(n−1/2) radius.

This discretization condition is a purely technical requirement (see pages 125 and 188 of Le Cam and

Yang 2000 for a discussion), with little practical implications (in fixed-n practice, such discretizations

are irrelevant as the radius can be taken arbitrarily large). We will therefore tacitly assume that θ̂θθ is

locally discrete throughout this section. Following Lemma 4.4 in Kreiss (1987), the local discreteness

allows to replace in Part (iv) of Proposition 4.1 the non-random perturbations θθθ + n
−1/2
i t

(n)
i , i = 1, 2,

(of θθθ) by θ̂θθ (see also Hallin et al. 2011). Based on the asymptotic result of Proposition 4.1 and letting

HKf ,g
:=

r
(n)
1 J 2

k (Kf1
,g1)

Jk(Kf1
) +

r
(n)
2 J 2

k (Kf2
,g2)

Jk(Kf2
) and

Ψ⊥
θθθ;Kf ,g

:= (k−1)




( 1
Jk(Kf1

) −
r
(n)
1 J 2

k (Kf1
,g1)

J 2
k (Kf1

)HKf ,g
)(Ik − θθθθθθ′) −

√

r
(n)
1 r

(n)
2 Jk(Kf1

,g1)Jk(Kf2
,g2)

Jk(Kf1
)Jk(Kf2

)HKf ,g
(Ik − θθθθθθ′)

−
√

r
(n)
1 r

(n)
2 Jk(Kf1

,g1)Jk(Kf2
,g2)

Jk(Kf1
)Jk(Kf2

)HKf ,g
(Ik − θθθθθθ′) ( 1

Jk(Kf2
) −

r
(n)
2 J 2

k (Kf2
,g2)

J 2
k (Kf2

)HKf ,g
)(Ik − θθθθθθ′)


 ,

the g-valid rank-based test statistic (built in a similar way as the pseudo-FvML statistic, see Section 3)

we propose for the two-sample spherical location problem H0 : θθθ1 = θθθ2 against H1 : θθθ1 6= θθθ2 corresponds
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to the quadratic form

QKf
(g)(n) := (∆∆∆

˜
(n)

(θ̂θθ,θ̂θθ);Kf

)′Ψ⊥
θ̂θθ;Kf ,g

∆∆∆
˜

(n)

(θ̂θθ,θ̂θθ);Kf

.

The test statistic Q
(n)
Kf

still depends on the cross-information quantities Jk(Kf1 , g1) and Jk(Kf2 , g2),

hence is only valid under fixed g. Therefore, exactly as for the pseudo-FvML tests, the final step in our

construction consists in estimating these quantities consistently. Define, for any ρ ≥ 0,

θ̃θθi(ρ) := θ̂θθ + n
−1/2
i ρ (k − 1)(Ik − θ̂θθθ̂θθ

′
)∆∆∆
˜

(n)

θ̂θθ;Kfi

, i = 1, 2. (4.3)

Then, letting θ̂θθi(ρ) := θ̃θθi(ρ)/‖θ̃θθi(ρ)‖, we consider the piecewise continuous quadratic form

ρ 7→ h
(n)
i (ρ) :=

k − 1

J (Kfi)
(∆∆∆
˜

(n)

θ̂θθ;Kfi

)′∆∆∆
˜

(n)

θ̂θθi(ρ);Kfi

.

As in Ley et al. (2012), consistent estimators of J−1
k (Kf1 , g1) and J−1

k (Kf2 , g2) (and therefore readily

of Jk(Kf1 , g1) and Jk(Kf2 , g2)) can be obtained by taking respectively ρ̂1 := inf{ρ > 0 : h
(n)
1 (ρ) < 0}

and ρ̂2 := inf{ρ > 0 : h
(n)
2 (ρ) < 0}. Denoting by Ĵk(Kf1 , g1) and Ĵk(Kf2 , g2) the resulting estimators,

ĤKf ,g
:=

r
(n)
1 Ĵ 2

k (Kf1
,g1)

Jk(Kf1
) +

r
(n)
2 Ĵ 2

k (Kf2
,g2)

Jk(Kf2
) and letting Uij := Kfi

(
R̂ij

ni+1

)
Sθ̂θθ(Xij), i = 1, 2, (R̂ij naturally

stands for the rank ofX′
ijθ̂θθ amongX′

i1θ̂θθ, . . . ,X
′
ini

θ̂θθ), the proposed rank test φ
(n)
Kf

rejects the null hypothesis

of homogeneity of the locations when

Q
(n)
Kf

:= (k − 1)





(
1

Jk(Kf1)
− r

(n)
1 Ĵ 2

k (Kf1 , g1)

J 2
k (Kf1)ĤKf ,g

)
 1

n1

n1∑

i,j=1

U′
1i(Ik − θ̂θθθ̂θθ

′
)U1j




+

(
1

Jk(Kf2)
− r

(n)
2 Ĵ 2

k (Kf2 , g2)

J 2
k (Kf2)ĤKf ,g

)
 1

n2

n2∑

i,j=1

U′
2i(Ik − θ̂θθθ̂θθ

′
)U2j




−2
Ĵk(Kf1 , g1)Ĵk(Kf2 , g2)

Jk(Kf1)Jk(Kf2)ĤKf ,g


 1

n

n1∑

i=1

U′
1i(Ik − θ̂θθθ̂θθ

′
)

n2∑

j=1

U2j








exceeds the α-upper quantile of the chi-square distribution with k−1 degrees of freedom. This asymptotic

behavior under the null as well as the asymptotic distribution of Q
(n)
Kf

under a sequence of contiguous

alternatives are summarized in the following proposition.

Proposition 4.2 Let Assumptions A, B, C and E hold and let θ̂θθ be an estimator of the common value

θθθ such that Assumption D’ holds. Then

(i) Q
(n)
Kf

is asymptotically chi-square with k − 1 degrees of freedom under
⋃

θθθ∈Sk−1

⋃
g∈F2{P(n)

(θθθ,θθθ);g};

(ii) Q
(n)
Kf

is asymptotically non-central chi-square, still with k − 1 degrees of freedom, but with non-

centrality parameter

l(θθθ,θθθ),t;Kf ,g
:= t′ΓΓΓθθθ;Kf ,g

Ψ⊥
θθθ;Kf ,g

ΓΓΓθθθ;Kf ,g
t

under P
(n)

(θθθ+n
−1/2
1 t

(n)
1 ,θθθ+n

−1/2
2 t

(n)
2 );g

, where t
(n)
1 and t

(n)
2 are as in (2.2) and t := (t′1, t

′
2)

′ with t1 :=

limn→∞ t
(n)
1 and t2 := limn→∞ t

(n)
2 .
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Thanks to Proposition 4.1, the proof of this result follows along the same lines as that of Proposition 3.3

and is therefore omitted. Exactly as the pseudo-FvML tests φ(n), our rank-based tests φ
(n)
Kf

are valid under

any (non-necessarily equal) pair of rotationally symmetric densities. Furthermore, as shown in Part (i) of

Proposition 4.1, for Kf = (Kf1 ,Kf2) with Kfi(u) = ϕfi(F̃
−1
i (u))(1 − (F̃−1

i (u))2)1/2, i = 1, 2, the rank-

based central sequence ∆∆∆
˜

(n)
(θθθ,θθθ);Kf

is asymptotically equivalent to the parametric central sequence ∆∆∆
(n)
(θθθ,θθθ);f

under P
(n)
(θθθ,θθθ);f . Therefore, the test φ

(n)
Kf

based on the central sequence ∆∆∆
˜

(n)
(θθθ,θθθ);Kf

keeps the optimality

properties of the f -parametric test for any f ∈ F2. Thus, while the pseudo-FvML tests are logically

FvML-based and only enjoy optimality under FvML densities, one can construct f -optimal rank-based

tests on basis of any pair f ∈ F2. This, in particular, provides practitioners with much more flexibility

than was previously available.

We conclude this section by comparing the optimal pseudo-FvML test φ(n) with optimal rank-based

tests φ
(n)
Kf

for several choices of f ∈ F2 by means of Pitman’s asymptotic relative efficiency (ARE). Letting

ARE(θθθ,θθθ);g(φ
(n)
1 , φ

(n)
2 ) denote the ARE of a test φ

(n)
1 with respect to another test φ

(n)
2 under P

(n)
(θθθ,θθθ);g, we

have that

ARE(θθθ,θθθ);g(φ
(n)
Kf

, φ(n)) = l(θθθ,θθθ),t;Kf ,g
/l(θθθ,θθθ),t;φ,g.

In the homogeneous case g = (g1, g1) (the angular density is the same for both samples) and if the same

score function—namely, Kf1—is used for the two rankings (the test is therefore denoted by φ
(n)
Kf1

), the

ratio in (4) simplifies into

ARE(θθθ,θθθ);g(φ
(n)
Kf1

/φ(n)) =
J 2
k (Kf1 , g1)

Jk(Kf1)D
2
k,g1

Bk,g1

. (4.4)

Numerical values of the AREs in (4.4) are reported in Table 1 in the three-dimensional case under various

angular densities and various choices of the score function Kf1 . More precisely, we consider the spherical

linear, logarithmic and logistic distributions with respective angular functions

flin(a)(t) := t+ a, flog(a)(t) := log(t+ a) and

flogis(a,b)(t) :=
a exp(−b arccos(t))

(1 + a exp(−b arccos(t)))2
.

The constants a and b are chosen so that all the above functions are true angular functions satisfying

Assumption A. The score functions associated with these angular functions are denoted by Klin(a) for

flin(a), Klog(a) for flog(a) and Klogis(a,b) for flogis(a,b). For the FvML distribution with concentration κ,

the score function will be denoted by Kφκ .

Inspection of Table 1 confirms the theoretical results. As expected, the pseudo-FvML test φ(n)

dominates the rank-based tests under FvML densities, whereas rank-based tests mostly outperform the

pseudo-FvML test under other densities, especially so when they are based on the score function associated

with the underlying density (in which case the rank-based tests are optimal).
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ARE(φ
(n)
Kf1

/φ(n))

Underlying density φ
(n)
Kφ2

φ
(n)
Kφ6

φ
(n)
Klin(2)

φ
(n)
Klin(4)

φ
(n)
Klog(2.5)

φ
(n)
Klogis(1,1)

φ
(n)
Klogis(2,1)

FvML(1) 0.9744 0.8787 0.9813 0.9979 0.9027 0.9321 0.7364

FvML(2) 1 0.9556 0.9978 0.9586 0.9749 0.9823 0.8480

FvML(6) 0.9555 1 0.9381 0.8517 0.9768 0.9911 0.9280

Lin(2) 1.0539 0.9909 1.0562 1.0215 1.0212 1.0247 0.8796

Lin(4) 0.9709 0.8627 0.9795 1.0128 0.8856 0.9231 0.7097

Log(2.5) 1.1610 1.1633 1.1514 1.0413 1.1908 1.1625 1.0951

Log(4) 1.0182 0.9216 1.0261 1.0347 0.9503 0.9741 0.7851

Logis(1,1) 1.0768 1.0865 1.0635 0.9991 1.0701 1.0962 0.9778

Logis(2,1) 1.3182 1.4426 1.2946 1.0893 1.4294 1.3865 1.5544

Table 1: Asymptotic relative efficiencies of (homogeneous) rank-based tests φ
(n)
Kf1

with respect to the pseudo-FvML

test φ(n) under various three-dimensional rotationally symmetric densities.

5. Simulation results

In this section, we perform a Monte Carlo study to compare the small-sample behavior of the pseudo-

FvML test φ(n) and various rank-based tests φ
(n)
Kf

. For this purpose, we generated M = 2, 500 replications

of four pairs of mutually independent samples (with respective sizes n1 = 100 and n2 = 150) of three-

dimensional rotationally symmetric random vectors

εεεℓ;iji , ℓ = 1, 2, 3, 4, ji = 1, . . . , ni, i = 1, 2,

with FvML densities and linear densities: the εεε1;1j1 ’s have a FvML(15) distribution and the εεε1;2j2 ’s have a

FvML(2) distribution; the εεε2;1j1 ’s have a Lin(2) distribution and the εεε2;2j2 ’s have a Lin(1.1) distribution;

the εεε3;1j1 ’s have a FvML(15) distribution and the εεε3;2j2 ’s have a Lin(1.1) distribution and finally the

εεε4;1j1 ’s have a Lin(2) distribution and the εεε4;2j2 ’s have a FvML(2) distribution.

The rotationally symmetric vectors εεεℓ;iji ’s have all been generated with a common spherical location

θθθ0 = (
√
3/2, 1/2, 0)′. Then, each replication of the εεεℓ;iji ’s was transformed into





Xℓ;1j1 = εεεℓ;1j1 , ℓ = 1, 2, 3, 4, j1 = 1, . . . , n1

Xℓ;2j2;ξ = Oξεεεℓ;2j2 , ℓ = 1, 2, 3, 4, j2 = 1, . . . , n2, ξ = 0, 1, 2, 3,

where

Oξ =




cos(πξ/16) − sin(πξ/16) 0

sin(πξ/16) cos(πξ/16) 0

0 0 1


 .

Clearly, the spherical locations of the Xℓ;1j1 ’s and the Xℓ;2j2;0’s coincide while the spherical location of

the Xℓ;2j2;ξ’s, ξ = 1, 2, 3, is different from the spherical location of the Xℓ;1j1 ’s characterizing alternatives
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to the null hypothesis of common spherical locations. Rejection frequencies based on the asymptotic

chi-square critical values at nominal level 5% are reported in Table 2 below. The inspection of the latter

reveals expected results:

(i) The pseudo-FvML test and all the rank-based tests are valid under heterogeneous densities. They

reach the 5% nominal level constraint under any considered pair of densities.

(ii) The comparison of the empirical powers reveals that when based on scores associated with the

underlying distributions, the rank-based test performs nicely. The pseudo-FvML test is clearly

optimal in the FvML case.

Appendix A.

Proof of Proposition 3.1. From Watson (1983) (and the beginning of Section 2) we know that, under

P
(n)
(θθθ,θθθ);g, the sign vectors Sθθθ(Xij) are independent of the scalar products X

′
ijθθθ, Egi [Sθθθ(Xij)] = 0 and that

Egi [Sθθθ(Xij)S
′
θθθ(Xij)] =

1

k − 1
(Ik − θθθθθθ′)

for i = 1, 2 and for all j = 1, . . . , ni. These results readily allow to obtain Part (i) by applying the

multivariate central limit theorem, while Part (ii) follows from the ULAN structure of the model in

Proposition 2.1 and Le Cam’s third Lemma. �

Proof of Proposition 3.2. We start by proving Part (i). First note that easy computations yield (for

i = 1, 2)

∆∆∆
(n)

θ̂θθ;φκi

= κin
−1/2
i

ni∑

j=1

[
Xij − (X′

ijθ̂θθ)θ̂θθ
]

= ∆∆∆
(n)
θθθ;φκi

− κin
−1/2
i

ni∑

j=1

[
(X′

ijθ̂θθ)θ̂θθ − (X′
ijθθθ)θθθ

]

= ∆∆∆
(n)
θθθ;φκi

−V
(n)
i −W

(n)
i ,

where V
(n)
i := κin

−1
i

∑ni

j=1

[
X′

ijθθθ
]
n
1/2
i (θ̂θθ−θθθ) and W

(n)
i := θ̂θθ κin

−1
i (
∑ni

j=1 X
′
ij)n

1/2
i (θ̂θθ−θθθ). Now, combin-

ing the delta method (recall that Ik−θθθθθθ′ is the Jacobian matrix of the mapping h : Rk → Sk−1 : x 7→ x

‖x‖

evaluated at θθθ), the Law of Large Numbers and Slutsky’s Lemma, we obtain that

V
(n)
i =


κin

−1
i

ni∑

j=1

X′
ijθθθ


n

1/2
i (θ̂θθ − θθθ)

= κiEgi [X
′
ijθθθ] (Ik − θθθθθθ′)n

1/2
i (θ̂θθ − θθθ) + oP(1)

= ΓΓΓ
φκi

θθθ;gi
n
1/2
i (θ̂θθ − θθθ) + oP(1)

16



ξ

Test True densities 0 1 2 3

φ(n) .0592 .2684 .8052 .9888

φ
(n)

(Kφ15
,Kφ2

) .0696 .2952 .8276 .9900

φ
(n)

(KLin(2),KLin(1.1))
(φ15, φ2) .0536 .2316 .7660 .9756

φ
(n)

(KLin(2),Kφ2
) .0656 .2952 .8160 .9894

φ
(n)

(Kφ15
,KLin(1.1))

.0544 .2308 .7716 .9772

φ(n) .0480 .0596 .0792 .1312

φ
(n)

(Kφ15
,Kφ2

) .0472 .0568 .0948 .1340

φ
(n)

(KLin(2),KLin(1.1))
(Lin(2),Lin(1.1)) .0464 .0604 .0892 .1424

φ
(n)

(KLin(2),Kφ2
) .0520 .0588 .0920 .1440

φ
(n)

(Kφ15
,KLin(1.1))

.0480 .0580 .0856 .1340

φ(n) .0508 .0684 .1044 .1512

φ
(n)

(Kφ15
,Kφ2

) .0540 .0648 .1012 .1532

φ
(n)

(KLin(2),KLin(1.1))
(Lin(2), φ2) .0512 .0664 .1084 .1608

φ
(n)

(KLin(2),Kφ2
) .0508 .0656 .1072 .1620

φ
(n)

(Kφ15
,KLin(1.1))

.0496 .0628 .1004 .1516

φ(n) .0468 .1008 .2908 .5760

φ
(n)

(Kφ15
,Kφ2

) .0628 .1288 .3612 .6788

φ
(n)

(KLin(2),KLin(1.1))
(φ15,Lin(1.1)) .0512 .1156 .3636 .6892

φ
(n)

(KLin(2),Kφ2
) .0616 .1220 .3620 .6768

φ
(n)

(Kφ15
,KLin(1.1))

.0504 .1180 .3660 .6916

Table 2: Rejection frequencies (out of M = 2, 500 replications), under the null and under increasingly distant

alternatives, of the pseudo-FvML test φ(n) and various rank-based tests φ
(n)

(Kφ15
,Kφ2

) (based on FvML(15) and

FvML(2) scores), φ
(n)

(KLin(2),KLin(1.1))
(based on Lin(2) and Lin(1.1) scores), φ

(n)

(KLin(2),Kφ2
) (based on Lin(2) and

FvML(2) scores) and φ
(n)

(Kφ15
,KLin(1.1))

(based on FvML(15) and Lin(1.1) scores). Sample sizes are n1 = 100 and

n2 = 150.
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under P
(n)
(θθθ,θθθ);g as n → ∞. Thus, the announced result follows as soon as we have shown that W

(n)
i is

oP(1) under P
(n)
(θθθ,θθθ);g as n → ∞. Using the same arguments as for V

(n)
i , we have under P

(n)
(θθθ,θθθ);g and for

n → ∞ that

W
(n)
i = θ̂θθ


κin

−1
i

ni∑

j=1

X′
ij


n

1/2
i (θ̂θθ − θθθ)

= θ̂θθ


κin

−1
i

ni∑

j=1

(X′
ij) (Ik − θθθθθθ′)


n

1/2
i (θ̂θθ − θθθ) + oP(1)

= θ̂θθ κiEgi

[√
1− (X′

ijθθθ)
2(Sθθθ(Xij))

′
]
n
1/2
i (θ̂θθ − θθθ) + oP(1),

which is oP(1) from the boundedness of θ̂θθ and since from Watson (1983) (see the proof of Proposition 3.1

for more details) we know that

Egi

[√
1− (X′

ijθθθ)
2(Sθθθ(Xij))

′
]
= Egi

[√
1− (X′

ijθθθ)
2
]
Egi [(Sθθθ(Xij))

′] = 000′.

This concludes Part (i) of the proposition. Regarding Part (ii), let X be a random vector distributed

according to an FvML distribution with concentration κ. Then, writing c for the normalization constant,

a simple integration by parts yields

Ck,φκ
= κEφκ

[1− (X′θθθ)2] = κ c

∫ 1

−1

(1− u2) exp(κu)(1− u2)(k−3)/2 du

= κ c

∫ 1

−1

exp(κu)(1− u2)(k−1)/2 du

= c(k − 1)

∫ 1

−1

u exp(κu)(1− u2)(k−3)/2 du

= (k − 1) Eφκ
[X′θθθ].

The claim thus holds. �

Proof of Proposition 3.3. We start the proof by showing that the replacement of θθθ with θ̂θθ as well as

the distinct estimators have no asymptotic cost on Q(n). The consistency of D̂k,gi , Êk,gi , i = 1, 2, and

Ĥφ,g together with the
√
n-consistency of θ̂θθ entail that, using Part (i) of Proposition 3.2,

Q(n) =
(
∆∆∆

(n)
(θθθ,θθθ);φ −ΓΓΓ

φ

θθθ;gΥΥΥ
(n)√n

(
θ̂θθ − θθθ

))′
Ψ⊥

θθθ;φ,g

(
∆∆∆

(n)
(θθθ,θθθ);φ −ΓΓΓ

φ

θθθ;gΥΥΥ
(n)√n

(
θ̂θθ − θθθ

))
+ oP(1)

under P
(n)
(θθθ,θθθ);g as n → ∞. Now, standard algebra yields that Ψ⊥

θθθ;φ,gΓΓΓ
φ

θθθ;gΥΥΥ
(n) = (ΓΓΓ

φ

θθθ;gΥΥΥ
(n))′Ψ⊥

θθθ;φ,g = 0, so

that

Q(n) =
(
∆∆∆

(n)
(θθθ,θθθ);φ

)′
Ψ⊥

θθθ;φ,g∆∆∆
(n)
(θθθ,θθθ);φ + oP(1)

=: Q(n)(θθθ) + oP(1).

Both results from Proposition 3.1 entail that since ΓΓΓθθθ;gΨ
⊥
θθθ;φ,g is idempotent with trace (k − 1), Q(n)(θθθ)

(and therefore Q(n)) is asymptotically chi-square with (k − 1) degrees of freedom under P
(n)
(θθθ,θθθ);g, and
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asymptotically non-central chi-square, still with (k − 1) degrees of freedom, and with non-centrality

parameter t′ΓΓΓθθθ;φ,gΨ
⊥
θθθ;φ,gΓΓΓθθθ;φ,gt under P

(n)

(θθθ+n
−1/2
1 t

(n)
1 ,θθθ+n

−1/2
2 t

(n)
2 );g

. �
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