The Evolution of Lexical Usage Profiles in Social Networks
Gerhard Schaden

To cite this version:
Gerhard Schaden. The Evolution of Lexical Usage Profiles in Social Networks. Conférence annuelle du Cercle belge de linguistique: Computational Construction Grammar and Constructional Change, Jun 2015, Bruxelles, Belgium. 2015. hal-01258828

HAL Id: hal-01258828
https://hal.univ-lille.fr/hal-01258828
Submitted on 19 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Background: The Problem of Lexical Change

• Lexical Change is typically messy (as opposed to grammaticalization):
 – influenced by changes in the world (technology, etc.)
 – influenced by random events (“big” history, behavioral micropatterns, etc.)
• It is not always clear whether changes are about meaning, or about prototypical usage patterns.

Language and Social Networks

• Humans are an unusually social and cooperative species (for primates). As a consequence, all language learning (and most of language use) takes place in social networks.
• Network analysis is flourishing in the Social Sciences (see, e.g., Jackson, 2008), and is emerging in linguistics (see, e.g., Mühlenbernd and Franke, 2012). A convergence is developing between game theory, social network analysis, and fairly old explanations developed by Hermann Paul in his Prinzipen der Sprachgeschichte.

Reinforcement Learning with Polya Urns

Learning in Behaviorism

Learning = shifting the probability of some behavior in an agent

Polya Urns provide a mathematical model of reinforcement learning.
Randomly draw a ball from the urn.
If the ball corresponds to the correct answer, a further ball will be added to the urn.

The probability of drawing “white” mas from 0.5 to 0.6

Learning Internally Differentiated Lexical Items

• I assume internally differentiated lexical representations like Pustejovsky’s “quaila-structure.
 The basic theoretical commitment boils down to independently ponderable submeanings.
• Motivation: meaning shifts generally follow patterns of polysemy
• Scenario:
 – We have two words that are absolute synonyms (see Skyrm, 2010): any draw = success
 – Each submeaning is an independent Polya urn (balls correspond to Words & Wordz)
 – Speaker draws a word, and signals to hearer
 – Hearers updates the weight for the chosen word (and maybe the speaker, too)

Complete Networks: Contact Creates Uniformity

Within a simulation run in a complete network, the lexical usage profiles of the agents are extremely similar, even though they can be very dissimilar across simulation runs.

Complete Networks: Lexical Differentiation and Network Size

Definition: Lexical Differentiation between Words and Wordz at Submeaning

is the absolute difference of submeaning, of Words and submeaning, of Wordz or:
|submeaning, (Words) – submeaning, (Wordz)|

Lexical Distance Reflects Network Structure

Definition: Lexical Distance between Agents and Agents

The lexical distance between two agents is the sum of the absolute differences of their respective pondered submeanings, or: Σ(|submeaning, (Agenti) – submeaning, (Agentj)|)

Acknowledgements & Sample References

I had the opportunity to present a previous version at the University Lille 3, and I would like the audience for their input. I would also like to thank Sylvain Billard and Colin Darnet for their comments and encouragements. All errors and omissions are mine.

All simulations have been performed with libCommonLib, using the graph library by Eric Schaff (https://git.shej.com/eric/schaff/Graph). Networks have been drawn with graphviz (Gansner and North, 2000). Data analysis has been performed with R (R Development Core Team, 2006).