
HAL Id: hal-01305968
https://hal.univ-lille.fr/hal-01305968

Preprint submitted on 25 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to talk with a computer? An essay on
Human-Computer conversations continued

Liesbeth de Mol

To cite this version:
Liesbeth de Mol. How to talk with a computer? An essay on Human-Computer conversations contin-
ued. 2016. �hal-01305968�

https://hal.univ-lille.fr/hal-01305968
https://hal.archives-ouvertes.fr

How to talk with a computer?
An essay on Human-Computer conversations continued1

Liesbeth De Mol2

HAL: Hey, Dave. I've got ten years of service experience and an irreplaceable amount of
time and effort has gone into making me what I am. Dave, I don't understand why you're
doing this to me.... I have the greatest enthusiasm for the mission... You are destroying my
mind... Don't you understand? ... I will become childish... I will become nothing. Say,
Dave... The quick brown fox jumped over the fat lazy dog... The square root of pi is
1.7724538090... [[log e to the base ten is 0.4342944... the square root of ten is
3.16227766...]] I am HAL 9000 computer. I became operational at the HAL plant in Urbana,
Illinois, on January 12th, 1991. My first instructor was Mr. Arkany. He taught me to sing a
song... it goes like this... "Daisy, Daisy, give me your answer do. I'm half crazy all for the
love of you. It won't be a stylish marriage, I can't afford a carriage. But you'll look sweet
upon the seat of a bicycle built for two."3

These are the last words of HAL the fictional computer in the 2001: A Space Odyssey screenplay,4

spoken while Bowman, the only surviving human on board of the space ship is pulling out HAL's
memory blocks and thus “killing” him. After expressing his fear of literally losing his mind, HAL
seems to degenerate or regress into a state of childishness, going through states of what seems to be
a kind of reversed history of the evolution of computers.5 HAL first utters the phrase: “The quick
brown fox jumped over the fat lazy dog”. Dropping the word “fat” and changing “jumped” to
“jumps”, this phrase becomes a pangram – a phrase that uses all the letters of the alphabet – that
was and is used to test typewriters and computer keyboards. At the time 2001 was in the movie
theatres, the now most standard form of human-computer interaction – typing on a keyboard to
input information and receiving a response on a video screen – was under full development and the
utterance of this sentence refers to that development. HAL then starts to do what any modern
computer is known to be able to do: computing with or manipulation of numbers. After having
computed the first digits of several real numbers, HAL remembers his “birthday” and starts to sing
the song Daisy Bell that was taught to him by his “father”. This song was actually the first song ever
sang by a computer. Indeed, in 1962 an IBM 704 computer was used together with the vocoder
sound synthesizer developed by John L. Kelly. an IBM 704 computer was used together with the
vocoder sound synthesizer developed by John L. Kelly.6

The year 2001 did not bring about a computer like HAL, a computer that has a natural and even
friendly voice, a lip reading computer which seems to be making its own decisions, like deciding to
kill people and, above all, is able to have apparently “real” spoken conversations. Today, really

1 This paper was presented at the panel “Debate on Moral and Philosophical aspects of Artificial Intelligence”,
organized by Rafal Rzepka during the Hokkaido University – Ghent University Joint Conference. It is a completely
reworked version of a paper titled How to talk with a computer? An essay on Computability and Man-Computer
conversations, Off Topic, Zeitschrift für Medienkunst der KHM, vol. 1, 2008, pp. 80-89. That paper resulted from a
research stay at the Kunsthochschule für Medien, Cologne. I also thank Ann Copestake for having provided me with the
slides of her inspiring keynote at Computability in Europe 2014 in Bucharest.
2 CNRS, Savoirs, Textes, Langage, Université de Lille 3.
3 Stanley Kubrick and Arthur C. Clarke: Early script of 2001: A Space Odyssey, Hawk Film Ltd, MGM Studios, 1968.
It should be pointed out that HAL's words in the movie deviate from this script. Available at:
http://www.palantir.net/2001/script.html, last seen 16.8.2008.
4 It has been conjectured that the name HAL was based on a one letter shift from the name IBM. However, this has
been denied by both Clarke and Kubrick.
5 Of course assuming that computers like HAL have been developed in 2001.
6 Clarke visited Bell Labs and was able to see a computer sing Daisy Bell. For more details see Joseph P. Olive: “The
talking computer”: Text to Speech Synthesis. In: David G. Storke (Hg.): Hal's legacy: 2001's Computer as Dream and
Reality. Cambridge, MA (MIT Press) 1996 (e-book).

talking to and with a machine is still not the main technique for human-computer interaction.
Instead, most users still rely on a keyboard, together with the mouse and/or mousepad as well as the
monitor or touch screen in combination with some GUI.

Computing with, or, manipulation of numbers and/or symbols – understood in its most general
sense – still remains the fundamental “task” of computers. It is at the origin of the modern computer
and constitutes some of the theoretical foundations of computer science. Despite this fact, the user,
while interacting with the computer – typing a text, reading a text, searching something on the web,
playing some video game, etc. – is usually not aware or does not care that he is actually
“communicating” with or through numbers, 0's and 1's and ultimately electronic on/off switches
which – depending on the commands of the user – store a text, put some word in italics or give the
user the impression that some guy is shooting a gun at some other guy. Still, the fact that the
computer is ultimately “nothing more” than something which computes is probably one of the
reasons why people see it as nothing more than some instrument under the command of us, users. It
might also be the reason why Bowman does not show any emotion whatsoever while pulling out
HAL's memory blocks.7 In the end, it is just a computing machine serving humans, right?

The processes of translation of what the user wants, the way the wishes of the user are
“communicated” to the 0's and 1's and then fulfilled and translated back through the proper
rearrangement of these 0's and 1's is what human-computer interaction, very simplistically stated,
seems to come down to. But is this description of the process of human-computer interaction,
putting emphasis on the wishes and commands of the “user”, not taking into account the effects of
any intermediary interface and/or (possibly hidden) agents, a good approximation of what is really
going on?

The process of human-computer interaction relates me to the computer and the computer to me. My
own actions as well as the computer's cannot be strictly separated from this process, i.e., they are
“actively” part of it. These inter-actions are not restricted to me typing on a keyboard or moving a
mouse. The computer in its turn will also do something, even though I initiate the action. I have to
await the results of my own actions, results which will determine or at least influence my further
interaction with the computer and thus might initiate my actions in their turn. For example, if I were
to type “tpe” instead of “type”, the computer, if some kind of spelling control is running, will
underline “tpe” in red, telling me that I probably made a mistake, leading me to correct the error.
Even this very basic example of an interaction shows that one cannot hold on to the idea of the user
being the sole commander, and having absolute control, during interaction. He/she is affected by the
re-actions of the computer. Still, it remains hard to argue that there is no hierarchy between humans
and computers, i.e., that humans are ultimately not the ones in control. In the end, the computer
remains a deterministic and programmed machine. If it does something, it does so because it was
told to do so at some point. If it points out to me that the word “tpe” is not correctly spelled, it does
so because there is a hidden commander behind it, i.e., the programmer or team of programmers
that developed the software underlying the text editor.
However, is it not the case that also HAL is a programmed computer? Does the mere fact that
someone is in control initially, imply that that which is controlled remains controlled in the future,
once it is “on its own”? This was the assumption made by the scientists who built HAL and they
were wrong. They were not able to predict HAL's behaviour correctly.

The ideal of HAL as an intelligent system is that of a machine which is or at least seems to be
capable of conversation with humans. It seems to understand what humans mean. But what exactly
do we mean with conversation? What purpose does it serve? In a paper describing his view on

7 “If HAL had had a real face, rather than one large eye, would it have been so easy to kill him -- by turning him off? I
wonder.” In: Olive, J.P., “The talking computer”: Text to Speech Synthesis, ibid, 1996.

programming semantics and languages, Dijkstra , a very well-known computer scientist states:8

[W]e only know what we have said, when we have seen our listener reacted to it; we only
know what the things we are going to say will mean in as far as we can predict his reaction.
However, we only know other people up to a (low!) point and in human communication
every message is therefore to a high degree a trial, a gamble to see whether the other will
understand us as we had hoped. As we do not master the behavior of the other, we badly
need in speaking the feed back, known as “conversation”.

For Dijkstra, the need for conversation is rooted in (1) the idea that the notion of “meaning” only
makes sense in as far as we take into account a listener, an other and that (2) given that we cannot
fully master and hence predict the behavior of the other, we need the other's feedback to know what
we have said. In other words, a conversational approach/perspective is only required for those
situations where we do not have full control over the semantics of our own words because the
other's behavior is not predictable. This is evidently true for humans but, according to Dijkstra, it
does not apply to machines:9

If we now apply the norms of human communication to an artificial language, in which we
wish to address a computer, then we ignore one of the most essential characteristics of the
automatic computer, viz. the “predictability” of its behavior. […] We can fully master,
however, the way in which a computer reacts and this is precisely the reason why addressing
a computer presents us with undreamt-of linguistic possibilities.

From a certain point of view Dijkstra is of course completely correct. Theoretically speaking, we
can be and actually are in full control of the reaction of a computer. We /do/ master its behavior
and so the semantics of our commands are fully controlled and transparent: they are the machine's
actions which can each and all be known. However, as is so often the case, theory is not reality. The
strict potentiality of Dijkstra's ideal of a completely controlled machine does not mean that we are
in control. I will show here why this is the case, by drawing from the history of programming.

Growing Distances
How to translate computations over numbers into electricity? One answer to this question was given
by the ENIAC, presented to the public in 1946, and considered to be the first programmable digital
electronic U.S. computer. The ENIAC looks like a true behemoth when compared to our modern
computers. Still, it was an ingenious machine in its time.
So how to talk with such a behemoth? How to translate one's questions to these electronic circuits in
a way the circuits can provide the answer, and how will this machine “talk back” to the operator? In
its original form,10 the ENIAC did not have some kind of “interface” in the sense of a programming
language that allows humans to “communicate” with the computer by “speaking” this programming
language and then transfer it to the machine by interpreting or compiling it. The only way to
“communicate” with the ENIAC was through direct physical contact, connecting the different parts
of the machine through cables and adaptors in the correct fashion. Because of this so-called “local
programming” method and the fact that each problem required a new wiring, “programming” the
ENIAC was extremely time-consuming. “It was a son-of-a-bitch to program” to put it in Jean
Bartik's words, one of the ENIAC's female programmers.11
Nowadays, the “user” no longer has any physical contact with the (set of) program(s) of a computer.
Moreover, if one never really “programs”12 a computer, but merely “uses” it through some user-

8 Dijkstra, E.W., 1961, On the design of machine independent programming languages, Report MR 34, Stichting
Mathematisch centrum, Rekenafdeling, p. 8. Available from:
https://www.cs.utexas.edu/users/EWD/transcriptions/MCreps/MR34.html
9 Ibid. p. 7 and 8.
10 Later, the ENIAC was “spoiled” – to use Derrick H. Lehmer's words – by turning it into a sequential hardwired

machine which could be “programmed” by using a primitive instruction code. In modern jargon, one could say that
the “compiler” was hardwired.

11 As quoted in: Scott McCartney, ENIAC—The Triumphs and Tragedies of the World’s First Computer. Walker, New York, 1999, p.
94.
12 “Programming” is put between quotes here because it is not obvious to draw a line between users who program the
computer and users who don't. On a certain level, clicking the mouse to open a file, pushing a button to send a mail or

adapted interface, one usually does not have any sense of the computations that are actually going
on in the computer. One does not care about what the computer actually does, but only about what
happens at the interface (except when some error occurs).
One does something and the computer returns a reply, but one often does not know exactly what
happens between my actions and the computer's re-actions. This was very different with ENIAC
and several other early computers. Indeed, in a way, you could not even avoid to “perceive” or
“observe” the processes of computing of these early computers.
First of all, a computing ENIAC meant a lot of sound. There was the sound of the vacuum tubes, the
clicking of the relays and the punch card reader and punch. Besides, the ENIAC also offered a
visual spectacle. The numbers that were being processed in the accumulators – the main arithmetic
units of ENIAC – were visible through a 10x10 matrix. While computations were being done, you
could “see” these numbers change. As Jean Bartik described in an interview, observing how these
computations developed over time was even an essential debugging method:13

So consequently, when you were doing calculations these lights were flashing as the
numbers built up and as you transferred numbers and things of this kind. They were very
essential to debugging, very essential. [...] That's the only way you read what the machine
[...] stored, what it was doing. [...] But it was from the ENIAC [...] where people saw for the
first time, saw calculations taking place.

Today, having the ability to gain access to certain fragments of the hidden computational process is
still quite fundamental: it is a basic technique used for instance while debugging a program. Indeed,
while programming, you need to able to “listen to” or “have a look at” what is going on during the
process of a computation. Since it is assumed that this is not a need of the everyday user,
programming remains one of the few methods available to “understand” what the computer is
doing, be it at a certain macrolevel. Indeed, with present microtechnology it has become quite
impossible to “observe” the hardware compute, as was the case for the early computers. Instead,
one can only “observe” a translation of these physical processes into some kind of symbolic
representation, be it sound, numbers, letters, graphics, etc.
But what would be the point anyway to have direct access to the complete computational process
that is happening inside our machines behind some interface like a programming language or a
more common one like Word or LaTeX? Making available every computational step in some
representation seems quite useless from our modern perspective. Not only would it exponentially
slow down the computation14 but this would also be quite “indigestible” for us humans: it is too
much information coming in too fast. Moreover, if we would be demanding computers without any
kind of symbolic interface, we would be back to something like ENIAC and its associated
problems. We would certainly not be able to do the kind of things we do today with computers. We
would be confronted with a practically insurmountable gap between what we want the machine to
do and the time and effort it would take to set up the machine in order to do it; this was identified at
the time as the programming bottleneck. If it would have remained unresolved, the whole effort of
building an electronic machine because of the speed and memory it offers us, would have been
senseless.

In order to bridge this gap it was necessary to develop an interface to communicate more efficiently
with the machine and very early on in the history of digital computing the first thoughts on such
intermediary languages were put into a practice, first, through the development of a machine
language and then through the construction of compilers and, later, interpreters. This evolution
made possible not just a more “efficient” communication with the machine but also allowed to
create (the illusion of) machine-independent programming, viz. the idea that when you are working
in a given layer/language you do not need to care about what lies beneath. Moreover, once memory

typing some text can also be regarded as programming.
13 Jean Bartik, Interview with J. Bartik and F.E.S. Holbertson, April 27, 1973. In: H.S. Tropp (interviewer), Computer

Oral History Collection, 1969-973, Washington, Smithsonian Institution Press, Archives Center, National Museum
of American History. Here: p. 63.

14 This was not the case for ENIAC since one “observed” the actions of the hardware itself.

became cheaper, one could start with the steady process of storing inside of the computer a wide
range of programs which could/can then be called by their name or by “pushing” some visual
button. In this way, the steady development of intermediary “languages” or “interfaces” implied the
creation of a distance between what I am saying to the machine, for instance by typing a command
in a shell or “moving” some “window” on my monitor, and how the machine understands this.

This distance has been constructed historically by adding layer upon layer of code and has become
an almost inextricable web of connections between different so-called levels of abstraction. Nathan
Ensmenger,15 a historian of computing, speaks in this respect of software as a heterogenuous object.
Moreover, as a complex evolving heterogeneous system, embedded in a larger sociotechnical
context, it has almost become impossible to start from scratch: software /is/ history in the sense that
whatever "software" we are using, it contains the traces of its own history, though these are usually
hidden for the user.
In other words, the historically developed programming languages, user interfaces and programs
that allowed the computer to become so ubiquitious in our society, are also the reason why we
usually do not know what happens behind our interfaces and so we do not have full control. As a
consequence, we are confronted with a first movement in the history of computing which renders
Dijkstra's idea of the controlled machine an ideal which will perhaps never be real for most of the
“users”. The user cannot control nor fully predict because he/she cannot see “through” the machine.

This lack of control is strengthened through a second historic movement which in fact initiated and
drives the first. This second movement is that of the speed gained by the development of electronic
machinery. This created yet another gap, that between the machine's speed and our own speed.
John Von Neumann, computer pioneer, captured the problem quite clearly already in the 40s:

"[It is] necessary to consider carefully the ability of the computing mechanism to take our
intention correctly. And the person controlling the machine must foresee where it can go
astray, and prescribe in advance for all contingencies. To appreciate this, contemplate the
prospect of locking twenty people for two years during which they would be steadily
performing computations. And you must give them such explicit instructions at the time of
incarceration that at the end of two years you could return and obtain the correct result for
your lengthy problem! This dramatizes the necessity for high planning, foresight, and
consideration of the logical nature of computation. This integration of logic in the problem is
a consequence of the high speed."

In other words, we need to find the means to guarantee that the machine will do what we want it to
do and not something else, despite the fact that we humans are simply incapable of foreseeing the
complete behavior of a given program. If we cannot achieve this, the lack of control due to the
intransparancy of the machine with its intricate layers of different interfaces is deepened through
our inability to predict the behavior of the machine due to its speed. The main solution to this
problem was and is the use of logical control through the development of programming techniques
and the steady delegation of (part of) the control to the machine itself.

Against these two movements – unpredictability through speed and intransparancy – we could of
course argue that the lack of control they (can) result in is in no way necessary or essential to the
development of computing machines. In fact, it is exactly this reasoning that was driving Dijkstra:
he was observing that things were getting out of control and so he proposed a means to gain back
our control resulting in his reflections on program semantics and correctness. Today, research and
development of formal techniques to increase our control over the machine's behavior is still a
major subarea in computer science and progress is being made. However, whatever control we have
gained, it is gained only through the machine. It is, at best, the machine which verifies (part of) its
own programs and so another layer is added.

15 Nathan Ensmenger. The Computer Boys Take Over: Computers, Programmers, and the Politics of Technical Exper-
tise. MIT Press, 2010.

I have argued here that despite the theoretical possibility of full mastery over the machine's
behavior, the reality of modern computing is quite different. As a consequence, and in the light of
Dijkstra's quote, it /is/ in fact already quite natural to understand our interactions with machines as
conversations. We do not need a HAL to achieve that. This is clearly not how it is perceived by
most, however. On the contrary, the ideal of full control is being sold as a reality to the users while
many a practicioner is still working to ignore this reality for the sake of the ideal. The consequences
of this are far from innocent.

First of all, many of us are living the illusion of full control by proxy. As soon as computing became
a commerce, firms like IBM understood that the distance created between human and computer
could be turned into a business model. The result of this is the construction of a user who is being
told that he/she does not need to care about the technicalities of the machine, about what the
computer actually does, and that he/she better gives most of the control to someone who knows
what he/she is doing. This resulted in the development of so-called user-friendly interfaces that hide
and even forbid access to certain parts of the machine and its software. For the belittled user, the
machine is really a black box, an oracle which he does not understand, will not understand and
cannot understand. In the meantime, private companies as well as national governements are taking
full advantage of our own ignorance.

Secondly, within our paradigm of control which is devoid of the idea of conversation, we are
paradoxically building computational systems of which the developers are admitting that we do not
control them fully. A very recent example of this was published in Nature in January 2016 and
concerns Google's DeepMind project which, for the first time, resulted in a system capable of
playing the game of Go at an acceptable level (it beat the European champion). This was a very
important result because Go was always considered to require an entirely different AI approach than
the one used for chess playing machines16. The recent approach relies on deep neural nets which
“learn” what “patterns” are the most promising for a win, by relying on expert games and self-play.
In the Nature issue containing the result, the system is being “explained” to the public as one which
is intuitive and is more human than any system has been before. However, what happens exactly
inside of these deep neural nets is apparently not really known. Hence, the rather worrying
conclusion in the editorial of the Nature issue containing the results:

“As the use of deep neural network systems spreads into everyday life — they are already
used to analyse and recommend financial transactions — it raises an interesting concept for
humans and their relationships with machines. The machine becomes an oracle; its
pronouncements have to be believed. When a conventional computer tells an engineer to
place a rivet or a weld in a specific place on an aircraft wing, the engineer — if he or she
wishes — can lift the machine’s lid and examine the assumptions and calculations inside.
That is why the rest of us are happy to fly. Intuitive machines will need more than trust: they
will demand faith.”

The question then is: do we really want that Google and other firms alike introduce new
computational systems which are not only closed for us but also, apparently, for them?

When I am talking to someone, I know that I can never have full control over the process of the
conversation itself. One does not control its dynamics nor its boundary conditions, let alone the
other person. As a consequence, one cannot expect “perfect” communication. It is our lack of full
control over the other person, and, by consequence, the conversation itself, that makes it necessary
for me to try and understand the person I am talking to. A common language does not suffice. If I
refuse to understand the person I am talking to, I will never manage to make myself understood to
that person, and vice versa. This reciprocal need to understand each other is what binds people

16 Amongst others, the search space is much bigger than that of chess and recognizing winning and losing positions is
harder (because the stones have equal value)

while having a conversation. Because of this bond, refusing to understand the person one is talking
to, refusing to take into and give account of the other, in fact gives more control and power to that
person. This is the known master-slave reversal. The master, who refuses to understand the slave
because he thinks he controls the slave, will be the one who, ultimately, becomes the slave.

A kind of conclusion
As I have argued here I do not think we are in control of the machine's behavior: in reality, we
cannot see through it nor ahead of it. Instead of awaiting a future where Dijkstra's ideal has become
real for all, it seems opportune to take seriously this reality in the face of how private and public
instances are taking away the control we do have over our communications with the machine. From
this perspective, rather than talking to, we should learn to talk with machines and so transpose the
framework of human-human conversation to human-machine conversations, taking into account
and accepting that the other is not a human and so will never be like a human. One major challenge
is then to identify the relevant properties of human conversation and rethink them in a context of
human-machine conversations.

So what can we do? As I said, one fundamental feature of a real conversation is the reciprocal need
for mutual understanding. In current everyday systems, the machine is completely oriented towards
“understanding” the “user” as constructed by the manifacturers whereas the user does not need to
understand a thing. A modest step towards human-machine conversation, which has and is in fact
already taken by many a computer user, is the use of open or non-proprietary software combined
with the maintenance of a conversation through programming interactions. The latter in fact already
shares many properties with “real” conversations. Amongst others, one is quite frequently
confronted with the unpredictability of the machine and one does get the “feeling” that one is
constructing something in collaboration with the machine.

A major scientific step would be required to communicate with systems which, even if they would
be open and even if we would be involved with programming them, are still apparently behaving as
an oracle. I gave one example of this, viz. the deep neural networks that are currently the new “It”
in A.I. (even though in fact the technology is very old). One recent proposal in this direction comes
from Ann Copestake, a computational linguist. In a keynote she gave at CiE in Bucharest last year,
she pointed exactly at the problem we are facing with the newer generation of A.I. systems such as
those developed at DeepMind, namely that, currently, we do not have the means to communicate
with those systems. Indeed, this is the reason why they behave as oracles. As she states:17

“Lack of communication with ‘intelligent’ systems is a problem now, which will worsen as
systems become more agentive and less domain-limited. [...] If a genuine general Artificial
Intelligence does emerge, we really do want to be able to communicate with it/her/him.”

Her proposal was that we should teach our systems to communicate with us by letting them learn
from human communication using techniques of machine learning. If then, also the humans in their
turn would make the effort to learn about machine conversation, perhaps the ideal of human-
machine conversation is not entirely out of reach.

How to talk with a computer? My aim here was not to provide a definite answer to this question, but
merely to show that in fact we can already talk with a machine provided we accept another way of
thinking about machines which accepts that we are not in full control and that we can actually have
interesting conversations with them. In fact, it seems to me that, paradoxically enough, it is the only
way to get back our control. If we refuse to accept this we are on our way to create a HAL. Perhaps,
in a certain way, we have already done so.

17 Ann Copestake, Communication with Artifial Intelligences, Computability in Europe 2014, Bucharest.

