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An earlier version of this paper was written in 2012 during the Turing year
under the condition that we had to stay below 12 pages. The current version is
a slightly rewritten and extended version of that unpublished paper. Most of the
sections will be extended significantly.

“This operation is so simple that it becomes laborious to apply” (Lehmer, 1933)

In recent years, there has been a renewed interest in the interactions between
logic and engineering practices and how they helped to shape modern computing.
The focus of these writings, however, is mostly on the work of Alan M. Turing and
John von Neumann and the question if and how their logical and mathematical
works affected the shaping of the modern computer and its coding practices.
Even though this has resulted in some very interesting work, one runs the danger
of not seeing the wider picture and so, rather than going against celebrations of
said heroes one is actually reaffirming this (though with nuance).

The present paper, by contrast, shows how a broader dispositive which has
a clear tradition within (mathematical) logic and which we will here call logical
minismalism was recast into a diversity of computing practices in the 40s and
50s. In our approach, rather than looking at interactions between logic, mathe-
matics and computing practices from the institutional or social perspective, we
study how techniques from different practices work together at the level of the
computing practices themselves. Hence, rathe then focusing on humans, we focus
on code and machines. Such perspective allows us to render understandable the
shaping of computing from the bottom-up and contributes to a pluralistic history
of computing. For a more detailed motivation of our approach, see [13,14].

Logical minimalism is part of a more general research programme into the
foundations of mathematics and logic that was carried out at the beginning of
the 20th century. In the 1940s and 1950s, however, this tradition was redefined
in the context of ‘computer science’ when computer engineers, logicians and
mathematicians re-considered the problem of small(est) and/or simple(st) ma-
chines in the context of actual engineering practices. This paper looks into this
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early history of research on small symbolic and physical machines and ties it to
this older tradition of logical minimalism. Focus will be on how the transition
of symbolic machines into real computers integrates minimalist philosophies as
parts of more complex computer design strategies.

1 A tradition of logical minimalism in logic

In the early 20th century, mathematical or symbolic logic flourished as part
of research into the foundations of mathematics. Research in algebraic logic
and on the axioms for arithmetic and analysis had led to important work by
people like Boole, Schroder, Dedekind, Cantor, Frege, Hilbert, Peano, Russell
and Whitehead etc. The search for simplicity, whether through the development
of simple formal devices or the study of small and simple axiom sets, was part
of this development. Indeed, a lot of the advances made in mathematical logic
during that time can be characterized by (but surely not reduced to), what we
will here call, logical minimalism. This kind of formal simplicity often served
as a guiding methodology to tackle foundational problems in mathematics. For
some, it was a goal in itself to find the ultimate and simplest ‘building blocks’
of mathematics and, ultimately, human reasoning.

There are two obvious lines of research in mathematical logic that were in-
formed by this minimalist philosophy. On the one hand, there were the several
results aimed at finding the smallest set of logical primitives, with Sheffer’s 1913
paper containing the description of the Sheffer stroke as one of the highlights. On
the other hand, there are the attempts to reduce and/or simplify existing axiom
systems, as was e.g. done by Nicod for the propositional calculus. In the 20s
then, people like Post and Schonfinkel pushed this minimalism one step further.
Post’s work from the early 20s can be characterized by a method of general-
ization through simplification with a focus on the “outward forms of symbolic
expressions, and possible operations thereon, rather than [on] logical concepts”
which ultimately resulted in an anticipation of parts of Goédel’s, Church’s and
Turing’s work in the 1930s [15]. This method which ultimately tries to elimi-
nate all meaningful logical concepts such as variable, quantor etc, resulted in
what Post himself called a “more primitive form of mathematics” known as tag
systems and which is one of the simplest formal devices to be computationally
equivalent to Turing machines.

Schonfinkel situates his work on combinators in the tradition of attempts to
reduce and simplify axiom systems as well as to lower the number of undefined
notions. His goal is no less than to eliminate more fundamental and undefined
notions of logic, including the variable. His reason for doing so is not purely
methodological but also philosophical [17, 358]:

We are led to the idea [...] of attempting to eliminate by suitable reduc-
tion the remaining fundamental notions, those of proposition, proposi-
tional function, and variable. [T]o examine this possibility more closely
[ it would be valuable not only from the methodological point of view
[...] but also from a certain philosophical, or, if you wish, aesthetic point
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of view. For a variable in a proposition of logic is, after all, nothing but
a token that characterizes certain argument places and operators as be-
longing together; thus it has the status of a mere auxiliary notion that
is really inappropriate to the constant, “eternal” essence of the propo-
sitions of logic. It seems to me remarkable [that this] can be done by a
reduction to three fundamental signs.

It is exactly this more ‘philosophical’ idea of finding the simplest building blocks
of logic and ultimately human reasoning that drove (part of) the work by Haskell
B. Curry and Alan M. Turing, two logicians/mathematicians who had the op-
portunity to access and think about the new electronic computers of the 40s.

2 Logical minimalism in switching theory

Independently of this mathematical research tradition, the problem of economy
in developing electromechanical devices led engineers to consider algebraic and
logical methods as aids in the design of their circuits. Claude E. Shannon’s
master’s thesis “A symbolical analysis of relay switching circuits” (1938) [?] is
the most famous example. In his thesis, Shannon showed how the equations for
designing relay circuits could be symbolically rewritten using Boolean algebra,
making the manipulation of the equations amenable to a simple calculus. In fact,
the scope of the thesis was broader and wanted to address the general problem
of network synthesis:

Given certain characteristics, it is required to find a circuit incorporating
these characteristics. The solution of this type of problem is not unique
and methods of finding those particular circuits requiring the least num-
ber of relay contacts and switch blades will be studied.

Boolean algebra is actually but one of a number of mathematical (and graphical)
techniques Shannon proposes in his thesis to attack the problem of designing
specific circuits with a minimum number of elements.* Shannon’s techniques were
further explored and developed at Bell Labs in the 1940ies,in particular for some
complex relay circuits needed in the No. 5 Crossbar for telephone switching or
the Relay Calculators conceived by G.R. Stibitz. Karnaugh, McCluskey, Mealy,
Moore and others, all came up with further techniques to find minimal circuits,
E.F. Moore even exhaustively tabulated the most economical relay circuit for
each Boolean function upto four variables in 1952 [?, 56-58]. Together with C.E.
Shannon, Moore also patented a circuit analyzer developed in 1952-53:

This machine (called the relay circuit analyzer) has as inputs both a re-
lay contact circuit and the specifications the circuit is expected to satisfy.
The analyzer (1) verifies whether the circuit satisfies the specifications,
(2) makes systematic attempts to simplify the circuit by removing re-
dundant contacts, and also (3) obtains mathematically rigorous lower

4 Tt should be noted that many other researchers, mostly in Japan, Germany and
Russia, came up with similar ideas and techniques around the same time.
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bounds for the numbers and types of contacts needed to satisfy the
specifications.

This kind of research was bottom-up, from the elements to complex circuits.
While it worked well for certain, not too complex, circuits with particular ele-
ments such as relays, there were many other aggregate components needed in
complex machines that could not be synthesized using the known methods. This
was because either the elements were not easily translatable into symbols (e.g.
wave filters), or because the purpose and functions of the machines were too
complex to be formulated as easy boundary conditions on the number of combi-
nations. Therefore, some engaged in the study of the inverse problem, top-down,
starting from a complex machine and trying to analyze it down to its elements.

In the early fifties, Moore and Shannon embarked on a study of simplifying
universal Turing machines, with an eye on a possible application in the design
of complex calculators. During this time, Shannon obtained his famous result
that two symbols suffice for a universal machine (published in 1956 [18]). In
1952 Moore presented his ‘simplified universal Turing machine’ at the ACM
conference, the paper appeared two years later. Moore described a 15-state two-
symbol three-tape universal Turing machine. The significance of his result was
the fact that it suggests “that very complicated logical processes can be done
using a fairly small number of mechanical or electrical components, provided
large amounts of memory are available.” [?, 54] But at the same time, Moore
remarks that it is “not economically feasible to use [such] a machine to perform
complicated operations because of the extreme slowness and fairly large amount
of memory required”, though it “suggests that it may be possible to reduce the
number of components required for logical control purposes, particularly if any
cheap memory devices are developed.”

3 From combinators and Turing machines to computing
techniques

Both Curry and Turing have done work that features logical minimalism. Indeed,
Curry, who took up the work by Schonfinkel and developed it into what is now
known as combinatory logic, explicitly states simplification as one of two major
tendencies (the other is formalization) in investigations on the foundations of
mathematics [5, p. 49]:

On the other hand, [...] there is [the problem of] simplification; one can
seek to find systems based upon processes of greater and greater primi-
tiveness [...] In fact we are concerned with constructing systems of an ex-
tremely rudimentary character, which analyse processes ordinarily taken
for granted.

Turing then had quite different motivations when he wrote his On computable
numbers [19] in which he develops the Turing machine. His way of arriving
at these devices was to start out from the process of a man in the process of
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computing a number and to try and reduce this process to its most elementary
and simple ‘operations’ [19, 250]:

Let us imagine the operations performed by the computer to be split up
into “simple operations” which are so elementary that it is not easy to
imagine them further divided.

It is not surprising that the minimalist philosophy also affects Curry’s and Tur-
ing’s work on real machines. Indeed, a formal apparatus which is simple and
powerful enough to ‘translate’ ones problems to a physical machine is exactly
what was required for the successful development of these machines.

Just after World War II Turing was recruited by Womersley of the NPL
to help design the Automatic Computing Engine (ACE). As has been argued
elsewhere [7,10], Turing definitely was inspired by and relied on the symbolic
Turing machines developed in his On computable numbers for the design of the
ACE. In fact, in a lecture to the London Mathematical Society, Turing explicitly
states that computers such as the ACE ‘are in fact practical versions of the
universal machine” [20]. Even though a good theoretical model, the UTM needed
to be adapted. Thus, for instance, he makes clear that the one-dimensional tape
as the memory of the Turing machine is not desirable in a real machine since it
would take too long to look up information [10, 319].

As is argued in [7,10] the general philosophy behind the design of the ACE is
minimalist in nature. Knowing that but a minimal set of symbols and operations
is needed to have universal computation, Turing designed a machine with a
hardware that is kept very simple and primitive, leaving the ‘hard’ work to the
programmer, preferring to have less machine and more instructions. Indeed, as
Hodges explains [10, 320]:

His priorities were a large, fast memory, and then a hardware system
that would be as simple as possible. His side was always that anything
in the way of refinement or convenience for the user, could be performed
by thought and not by machinery, by instructions and not by hardware.
In his philosophy it was almost an extravagance to supply addition and
multiplication facilities as hardware, since in principle they could be
replaced by instructions applying only the most primitive logical opera-
tions of OR, AND and NOT.

Or, to put it in Turing’s words, “/W]e have often simplified the circuit at the
expense of the code” [20]. Martin Davis identifies this attitude as being in line
with the RISC (reduced instruction set computing) architecture [7, 189].

A similar minimalist philosophy was pursued by Curry after his experience
with the ENTAC, the first electronic and programmable US computer. In this
context Curry was confronted with the need to develop a theory of program
composition. Contrary to Turing, Curry did not design a computer like the ACE
but, instead, ‘designed’ a theory of programming inspired by, on the one hand,
his work on combinatorial logic and the minimalist philosophy which guides it,
and, on the other, his concrete experience with the ENIAC.
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Curry’s theory of programming was based on his knowledge of the IAS ma-
chine, the computer built on the basis of von Neumann’s EDVAC report. At
that time, von Neumann and Goldstine had already written two reports on the
planning and coding of the EDVAC [9] which motivated an independent attack
on the problem of coding and planning because he found the von Neumann and
Goldstine approach too elaborate (see [12] for more details) and missing a proper
theory of program composition which is general enough to be applicable for all
kinds of programs. One key aspect of this theory is the analysis of programs
into basic programs and the development of a theory which allows to compose
more complicated programs from these basic programs in an automatable fash-
ion. This analysis into basic programs and their composition explicitly displays
a minimalist philosophy [6]:

[The] analysis can, in principle at least, be carried clear down until the
ultimate constituents are the simplest possible programs. [...] Of course,
it is a platitude that the practical man would not be interested in com-
position techniques for programs of such simplicity, but it is a common
experience in mathematics that one can deepen ones insight into the most
profound and abstract theories by considering trivially simple examples

Curry went on to give a method which reduces a specific class of 26 basic pro-
grams from his original list to only 4 basic programs. This is a good example
of what kind of results Curry’s minimalism led to. This reduction to 4 basic
programs is proven by providing a (programmable) method which resynthesises
the original 26 basic programs from these 4. This leads Curry to comment that
one might save machine memory when compiling programs. He therefore makes
the following hardware recommendation [6, 38-39]:

Now the possibility of making such [arithmetic] programs without using
auxiliary memory is a great advantage to the programmer. Therefore,
it is recommended that, if it is not practical to design the machine so
as to allow these additional orders [the 26 original basic orders], then a
position in the memory should be permanently set aside for making the
reductions contemplated.

Hence, a theoretical result so in line with logical minimalism, becomes an au-
tomatable method which allows to save computer memory (for more details on
Curry’s theory of programming see [12]).

4 Less is more in the fifties: ‘Automata studies’

Through Curry’s and Turing’s more practical work, logical minimalism had a
direct and immediate influence on the development of the early digital and pro-
grammable machines. However, this is not where this influence stops. In the
50s, several researchers coming from different backgrounds, but with the same
keen interest in the theory and practice of the new computing machines, be-
come familiarized with the results of the computability related work by Church,
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Curry, Kleene, Post, Turing etc. They regarded the Turing machine and related
concepts as useful theoretical tools and models to think about actual, physical
machines. In this context, a tradition of logical minimalism is ‘transmuted’ to the
context of machines when people like Minsky, Moore, Shannon, Wang, Watan-
abe, etc. start developing and studying small and/or simple theoretical devices
with an eye on real computers. Much of this research was done under the heading
‘automata theory’, a domain that prefigured in some way the establishment of
(theoretical) computer science proper.

Hao Wang, who was trained as a logician and worked for some time at Bell
labs and the Burroughs company, developed a variant of the Turing machine
model which is simpler and smaller and laid the basis for the register machine
model. He explicitly places his approach in the tradition of logical work on
reducing the number of logical operators, mentioning for instance the Sheffer
stroke, but with a different motivation, viz. to bridge the gap between research
in logic and digital computers [29, 63]:

The principal purpose of this paper is to offer a theory which is closely
related to Turing’s but is more economical in the basic operations. [...]
Turing’s theory of computable functions antedated but has not much
influenced the extensive actual construction of digital computers. These
two aspects of theory and practice have been developed almost entirely
independently of each other. [...] One is often inclined whether a rap-
prochement might not produce some good effect. This paper will [...] be
of use to those who wish to compare and connect the two approaches.

The model by Wang laid the basis for the development of an even simpler model
of computability which was created as a device more similar to real computers
and is known as the register machine. Minsky is one of the researchers who
independently developed this model and proved minimal results for it. Indeed, it
was Minsky who proved that two registers suffice to have universality. It was also
Minsky who wrote several of the other classic papers on small universal devices.
He proved for instance, together with Cocke, that there is a universal Turing
machine with four symbols and seven states, using the universality of Post’s tag
systems mentioned in Sec. 1.

Not only logicians like Wang saw the possible practical relevance of research
on small and/or simple models of computability. In the 50s a ‘rapprochement’
from the side of the engineers also took place. The influential volume Automata
Studies (1956), edited by McCarthy and Shannon, is a perfect example of this
‘rapprochement’, featuring contributions from logicians, engineers and mathe-
maticians. The volume contains the paper by Shannon which proves that two-
state Turing machines and two-symbol Turing machines are capable of universal
computation and that there is no one-state UTM. This has become one of the
classic references for research on smallest (universal) devices.

Another contributor to Automata Studies was E.F. Moore. He had embarked
on the systematic study of minimal circuits for given functions at Bell Labs in the
1950s. Most probably during this research, Moore came up with a new, simplified
construction of a UTM described in [16]. In this paper he gives the details of a
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rather small 3-tape UTM with two symbols and 15 states as a simplification of
the original one-tape UTM [16, 51]: “the method of storing all of this information
on one tape is rather complicated, the internal structure of the universal Turing
machine [...] is also rather complicated”.

Moore starts out from Davis’s quadruple notation for Turing machines, where
the quadruple ¢;S;1¢; means: When in state g; the symbol S; is scanned then
do operation I (left, right or print Sy then go to state ¢;. Since Moore is using
three tapes instead of one, he transforms this notation to a sextuple notation
q;5152531,q; where Sy, 59,53 are the symbols scanned on tapes 1 to 3 respec-
tively and I, is operation I to be performed on tape n. On tape 1 the description
of the Turing machine to be simulated is stored (as a circular loop), tape 2 is
an infinite blank tape that will contain the active determinant of the machine
to be imitated, and finally tape 3 will be a copy of the infinite tape that would
be on the machine being imitated. To put it in more ordinary computer speak:
Tape 1 is the program, tape 2 is the active register and tape 3 the output.

Moore devotes a complete section to the physical realizability of his model
and explains how magnetic tape memory is more suited in this context than
punched tape [16, 54]:°

since holes in punched tape cannot be erased once they are punched, in
order to make a machine using punched tape capable of imitating the
behavior of an ordinary Turing machine which has this erasing property
the coding of the description of the machine would have to be in a more
complicated fashion [...] It should be mentioned [...] that the properties of
the tapes assumed in Turing machines are very much like the properties
attained by magnetic tapes, which have erasability, reversibility, and the
ability to use the same reading head for either reading or writing. If a
tape mechanism were available which had the properties assumed and
which could be connected directly to relay circuits, it would be possible to
build a working model of this machine using perhaps twenty or twenty-
five relays. These figures are mentioned since the number of relays is
frequently used as a measure of the complexity of a logical machine

For Moore the significance of his result lies in the fact that it suggests “that very
complicated logical processes can be done using a fairly small number of mechan-
ical or electrical components, provided large amounts of memory are available. ”
[16, p. 54] One of the biggest obstacles for the physical realization of the model is
an economical and technological one, viz. the cost of memory and speed. Moore
concludes that at that time it was not “economically feasible to use a machine to
perform complicated operations because of the extreme slowness and fairly large
amount of memory required.” [16, p. 54] but nonetheless sees the value of his
result in the fact that it “suggests that it may be possible to reduce the num-
ber of components required for logical control purposes, particularly if any cheap
memory devices are developed.”

5 Perhaps Wang’s non-erasing model described in [29], was inspired by the need for a
simple model for a punched-tape computer.
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5 Less is more in the fifties: Simple digital computers

At around the same time Moore was thinking on small UTM’s and their practical
feasibility, several engineers started to effectively implement similar ideas by
building “small” computers, viz. computers which are designed based on an idea
of simplicity and economy of instructions. Wilkes’s idea of microprogramming
and the ACE design seem to have played a more important role. Some groups
of engineers involved in the development of small computers were well versed
in modern mathematical logic and its possible applications to computer design.
However, it turns out that minimalist philosophies have to be redefined as parts
integrating more complex computer design strategies.

Our main focus will be on two so-called experimental machines, viz. machines
that are not really intended to be commercialized but rather as a test battery of
ideas. As we will see, it is exactly in such contexts that ideas of logical minimalism
are put to the test. We will consider two such machines: van der Poel’s ZERO
machine, built as an experimental machine in the Netherlands and the TX-0, also
an experimental machine developed at MIT’s Lincoln lab, that would eventually
influence the design of the PDP-1 in the beginning of the 1960s.

5.1 From ZERO to ZEBRA

In Europe the Dutch engineer Willem L. van der Poel pioneered investigations
into the structure of simple digital computers. Around 1947 Nicolaas G. de
Bruijn (1918-2012), just appointed professor, submitted a project proposal to
the Hogeschoolfonds of Delft. His objective was to obtain funding for the con-
struction of an “all-round” calculating machine, a “self-thinking” device.

The goal of de Bruijn’s project was to build a calculating machine that would
specifically carry out computations in optics. An important part of the research
was the selection of adequate materials for the machine which could be mechan-
ical, pneumatic, electrical, or electronic.

Leen Kosten, head of the Mathematics Department of the Central Labora-
tory of the PTT in The Hague, ensured that de Bruijn’s project in Delft would
receive multiple relays “for loan.” This event naturally led to the construction
of an electrical machine: the ARCO. Based on a selector switch, the ARCO could
be configured to use one of several “recipes” (i.e., one of several hard-wired
programs).

The actual project work, details of which lie outside the scope of the present
article, was assigned to the technical physics student van der Poel whom had a
clear and realistic picture of the limitations of calculating machinery. In 1947,
he wrote that:

Tasks such as indefinite integration and reduction of an equation to its
most simple form can, of course, not be carried out by the [ARCO] machine
for they rely on subjective criteria. We have yet to reach the stage in
which machines will think for us. [22, p.1, my paraphrased translation]
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Immediately after graduation in 1950, van der Poel joined Kosten’s team, leaving
other physics students to finalize the ARCO’s construction, a machine that was
later coined “the TESTUDO” (turtle) due to its extremely slow execution speed.
Van der Poel’s cautious attitude in 1947 with regard to computing machinery
was more than an example of Dutch austerity, it was also a result of his thorough
knowledge of the computing literature. Besides referring to published writings
in connection with electronic circuits and the construction of calculating ma-
chines, van der Poel pointed to the recent reports of Burks, Goldstine, and von
Neumann. Even the mathematical logic of Hilbert and Ackermann, and Tur-
ing’s 1936 article ‘On computable numbers,” belonged to his knowledge base.
Van der Poel had characterized the most essential problems for the Delft project
as “programming problems” [22, my translation].

Solving a problem by means of programming amounts to choosing an appro-
priate set of instructions. Of course, the challenge is to accomplish as much as
possible with as few instructions as is feasible. [22, p.60, my translation]

The electrotechnical engineer Kosten, in turn, had obtained his Ph.D. during
World War II on the design of analog machines with the purpose of simulating
congestion problems in connection with telephone traffic. With van der Poel
now on his side, the choice was quickly made to build a radically new, digital,
calculating machine, the PTERA,® which differed greatly from the TESTUDO.” Many
years later, van der Poel described the transition from the TESTUDO to the PTERA
as a transformation from “pre-von-Neumann” machines to “post-von-Neumann”
computers [27, p.8, my translation]. According to van der Poel’s recollections,
it was the writings of von Neumann et al. which had made him realize that a
program could be stored inside the machine. During his 1988 retirement speech,
van der Poel recalled how he had obtained von Neumann’s report from the
Mathematical Centre of Amsterdam [27, p.8].

In 1952 then van der Poel’s knowledge of this literature became applied in
what he later called his “most beautiful machine ever”: the ZERO machine which
had only 7 instructions. The ZERQO was really an experimental machine which “not
meant as a practical computer, but only serves the purpose of gaining experience”
[23, 368]. The idea was to build the simplest possible computer taking into
account at least some practical limitations [23, 367]:

In this article will be described the logical principles of an electronic
digital computer which has been simplified to the utmost practical limit
at the sacrifice of speed.

The ZERO’s beauty indeed exemplified frugality and logical minimalism as the
following examples show. Van der Poel used the same register to serve both

5 PTERA: “PTT Elektronische Reken Automaat” (PTT Electronic Calculating Au-
tomaton)

" For a more detailed account of Kosten, see Kranakis [11, p.70-72] who says that
Kosten had already, before van der Poel’s arrival, shifted the attention of his research
group to developing a general-purpose computer.
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as accumulator and control register. He avoided expensive multiplication and
division components in hardware by programming them in terms of addition.
He implemented the addition of two numbers in one and the same electronic
component by means of bit-wise addition sequentialized in time. (These last
two design choices led to slow computers.) Finally, van der Poel resorted to four
“functionally independent bits” [24]. One bit by expressed whether the machine’s
instruction had to read something from (b; = 0) or write something to (b = 1)
the drum. Another bit by independently expressed whether the accumulator had
to be cleared (by = 0) or not (b2 = 1). The two bits together (b;bs) then defined
four possible combinations: 00, 01, 10, and 11. Because the value of the first bit
did not depend on that of the second and vice versa, no control box was required
and, hence, less equipment was needed, which resulted in small and cheap com-
puting machinery. Van der Poel, led by esthetics, was more than willing to pay
the price that “not all combinations were practically useful”; indeed, only four
of the seven instructions in the ZERO made practical sense [24][28, p.31]. The
ZERO only existed for a couple of months and was quickly dismantled in favor of
the PTERA.

However, because usability would suffer, van der Poel does not push the min-
imalist philosophy to its limits: “Of the seven instructions that are possible only
three are strictly necessary [...] Of course, many more instructions, even for quite
simple programs, are then required.” Later, in his PhD [25] he would push the
idea to its limits by describing a one-instruction machine, the so-called “purely
one-operation machine”.® His inspiration for this theoretical machine came from
the Sheffer stroke which is indeed the one-instruction version of propositional
logic.

Given his combined experience with PTERA and ZERO, van der Poel started
on another computer known as the ZEBRA, the “Zeer Eenvoudig Binair Rekenap-
paraat” (Very Simple Binary Calculating machine) which he described at length
in his 1956 Ph.D. dissertation [25], It was inspired by ZERO and built to resolve
some practical problems, mostly related to speed, of the PTERA. Just as ZERD, it
made extensive use of the functional bits, though there were now 15 rather than
4 bits. Moreover, it strove for “complete duality,” between the fetching of an in-
struction (which allowed jumps) and the execution of some operation® realizing
full well that “this is seldom of practical importance” [25, p.18-19].

Neither the PTT, nor Philips, showed interest in building the ZEBRA. The
firm ZUSE did but not for long. It was the English company STANTEC which
eventually manufactured the ZEBRA from 1957 onwards, delivering dozens of
ZEBRAs throughout Europe [11, p.74]. The lively correspondence between the
users of those machines led to the formation of the ZEBRA club, with van der Poel
at its center. Van der Poel’s style of computer design and his complementary
approach to computer programming (described below), along with the ZEBRA
user club, made him an influential computer pioneer in the 1950s and 1960s [21].

8 Needs to be studied still in much more detail....
9 This was achived in the ZERO by setting the X-bit to 0 or 1; in the ZEBRA this
technique basically remained unchanged.
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Van der Poel’s designs of “simple” and “very simple” machines, as reflected
in the names of his machines, were surely motivated by some practical consid-
erations including price, flexibility and reliability:

[The ZERO has a flexible system of programming that can easily be
learnt.[...] There are only a few parts [...] This makes fault location very
easy. [...] As the memory constitutes the bulk of the machine, the price
is mainly determined by its parts

However, despite these advantages it is clear that he is also led by a strong
theoretical sense of beauty which one often would not expect from the “ typical”
engineer: simple instructions, independent bits, “Of course, the challenge is to
accomplish as much as possible with as few instructions as is feasible” [22, p.60,
my translation| and ideas of duality between usually differentiated parts of the
machine and of the instruction.

The construction of a machine which is considered to be the practical approx-
imation of the ideal of a one-instruction computer however also had one major
drawback: speed. Combined with the very lengthy programs required because
of the limited number of functional bits, it was not practical enough. It is for
that reason that van der Poel developed intricate programming tricks, exploiting
his thorough knowledge while programming. Specifically, he perfectionized two
already existing techniques, optimum coding and underwater programming, and
thereby demonstrated a strong similarity with Turing’s own machine-specific
programming habits (see e.g. [1]).

Optimum coding essentially meant accessing the drum economically;e.g., by
interleaving instructions and data on the drum in conformance with the way the
program would behave. The drum was, after all, the slowest part of the computer.
The common practice of independently storing instructions and data on the
drum, resulted in several drum rotations (during program execution). To reduce
the number of drum rotations, van der Poel opted for a less orderly solution
by interleaving the instructions and the data on the drum in conformance with
the order in which they would be called by the processor [28, p.26]. Underwater
programming amounted to minimizing the drum accesses; e.g., by copying an
instruction I from the drum to the registers and subsequently modifying the
contents of the registers in order to transform I into the next instruction I’,
and I’ into I”, and so forth. Until the drum was accessed a second time, the
program was executing “under water,” using van der Poel’s terminology [8]. The
reduced number of accesses to the drum allowed the program to maintain a high
execution speed. It was not easy to circumvent the drum by exclusively resorting
to the registers. To be successful in this regard, the underwater programmer had
to have a thorough understanding of the machine.

Support for optimum coding and underwater programming made the ZEBRA
an economically competitive machine, as the firm STANTEC conveyed in 1958:

Due mainly to the entirely new programming concept and the simple logical
design upon which it is based, the cost of the STANTEC-ZEBRA is far less
than might be expected for a machine of its capabilities.
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Without this machine-specific programming technology, van der Poel’s aesthet-
ically pleasing machines would have remained extremely slow and, as a result,
economically unattractive. The price van der Poel paid for his notion of beauty
was programs that, presumably, were incomprehensive to almost everyone except
the programmer himself.!?

5.2 The TX-0 at Lincoln Lab

In the United States as well, at the Lincoln Laboratory, a small computer was
developed, called the TX-0 (1956-1958). The TX-0 pioneered the use of tran-
sistors and the idea of personal computing, and would eventually influence the
development of DEC’s PDP-line of minicomputers. As Wesley A. Clark, the
main engineer on the project, states [2]:

“Well, all right, let’s build the smallest thing we can think of,” and de-
signed the TX-0, which was very primitively structured and quite small,
quite simple - small for the day. Not physically small - it took lots of
space; it still took a room.

The TX-0 was designed as an experimental machine, testing both transistors
and elaborate input/output facilities, as a test-case for the monumental TX-2.
Interestingly, the design of the TX-0 was done by a group of engineers who had
been immersed in mathematical logic and computers. From October 1955 to Jan-
uary 1956 the engineers at Lincoln Laboratory had followed an intensive course
on “the logical structure of digital computers”, organized by Wes Clark. The
course was part of discussions “about the various possible minimal machines”
that could be designed [4, 144]. Clark’s course contained six parts, each part
building on the previous one:

— The Turing machine: a basic introduction to the Turing machine concept

— The universal Turing machine

— Boolean Algebra: Interestingly, this is in fact considered as the lower-level de-
scription of the Turing machine “The symbol-printing operations in a Turing
machine can be described in terms of the tape cells themselves. For example,
a machine which performs the sequence “If cell A holds “1” or if cells B holds
“0”, print “1” on cell C is described by the stamement: AjorBy : C1”’ The
manipulative aspect of this notation can be exploited in demonstrating that
therules for printing symbols define a Boolean algebra”

10'1n 1961, van der Poel gave his approach to programming a name: “trickology” [21,
p.137]. In his words:

The concept of micro-programming and the practice of devising tricks to do
the more complicated composite action is so interwoven in ZEBRA that the
volume of knowledge of these tricks has been given a special name: trickology.
Without this knowledge of trickology and the standard programs based on it,
ZEBRA would be a useless machine. [26, p.274, original emphasis]
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— Boolean algebra (continued)
— Synthesis of Boolean machines
— Synthesis of Boolean machines continued

While the Sheffer stroke us mentioned in the discussion of Boolean algebra that it
could be used as the sole building block for designing circuits, the part on Turing
machines details the construction of Moore’s 1952 small universal machine. As
Clark remarks, this universal machine constitutes a “critical complexity beyond
which no further increase in generality can be guaranteed!” [3, p. 13] Clark follows
Moore’s encoding and construction, but mashes the three tapes back into one
tape using a specific encoding scheme. This scheme later returns as the read-in
procedure for the lines on the program tape on the TX-0.

How much of the logical minimalism taught in Clark’s course found its way
into the TX-0’s design still needs to be evaluated but we do believe there are some
indications that it did play an important role. In the description of the TX-0
circuitry, Shannon’s work is explicitly referenced, but also the logical organisa-
tion of the machine seems to have inherited from the course. A small instruction
set (only four) was used in combination with an elaborate vocabulary of ‘class
commands’ (special bit-encoded instructions triggered by the fourth opr com-
mand) and with a versatile symbolic assembler language. Again, as was the case
with the Zero and the Zebra, the logical simplicity of the computer itself entails
a necessary, richly developed programming,.

6 Discussion

Nowadays the result that a few basic operations suffice to compute anything com-
putable (provided one accepts the Church-Turing thesis which basically states
that all computable problems can be computed by a series of formalisms which
are all logically equivalent to the A-calculus) has become near trivial in computer
science. One would almost forget that a complex history underlies such results.

The Turing machine has often been interpreted as a most practical outcome
of the foundational debates of the early 20th century, the positive face of the
negative Entscheidungs-result. It fits in a tradition of logical minimalism: the
search for a minimum of operations, of axioms, of length of propositions etc.
This research proved to be most useful in the early days of computing where the
results from mathematical logic were transmuted into ideas on computer design
and programming, a transformation pioneered by people like Curry and Turing.

The 1950s pursued the development of ideas from logical minimalism to a
more practical, engineering context. Moore’s and Wang’s work develop theoret-
ical models that fit more closely a real computer. Actual small machines, such
as the Zero or the TX-0, were all conceived as experimental machines to test
ideas and design philosophies. Direct translations of logical minimalism such as
a small UTM cannot be traced down in these experimental small computers, but
the general spirit of logical minimalism certainly functions for their engineers as
a warrant that small computers are possible and that they can execute whatever
program.
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The minimalist philosophy in computer architecture necessarily has to adapt
itself to the realities of the time, money and hardware available. Instead of in-
finite tape, lots of time etc. that abound in theoretical research, the computer
engineers have to find a compromise between different trade-offs. A simple log-
ical structure of the computer asks for extensive programming possibilities and
hence more (and faster) memory. Since in general more instructions were needed
for a program, a loss in speed could be expected, though, as witnessed by van
der Poel’s coding for the Zebra or the TX-0’s class commands, devices were de-
veloped to remedy this situation. In general, the experimental small machines
led to the development of new programming techniques. Just as Turing’s work
on the ACE preempts aspects of RISC architecture, the small experimental ma-
chines gave rise to elaborate schemes of microprogramming and of programming
proper.

Computer science as a practice was, from the beginning, characterized by
the coming together of different practices, most notably, mathematics and logic
on the one hand and engineering on the other. Today, this multi-faceted face of
computer science is exactly what makes it so hard for practitioners to define their
own field. By studying how, throughout the history of computing, these different
practices came to be intertwined to build computers or to develop programming
techniques, it becomes possible to make transparent how formal and engineering
practices really constitute a new discipline that can perhaps not be classified
using old schemes and fences. The challenge then is to pick up the relevant
theoretical ideas and unravel how pure theory is transmuted into technology
(and conversely) to constitute a practice that can be reduced to neither.
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