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Less is more in the Fifties.

Encounters between Logical Minimalism and

Computer Design during the 1950s

June 19, 2017

In recent years, there has been a renewed historiographic interest in the
interactions between logic and engineering practices and how they helped to
shape modern computing. The focus of these writings, however, is mostly on the
work of Turing and von Neumann and the question if and how their logical and
mathematical works affected the shaping of the modern computer and its coding
practices. For many still, the early computers are “variations on the protean
design of a limited Turing machine” [26, ], a perspective where the EDVAC-
design, the universal Turing machine and the stored-program computer are often
conflated into one single concept, hiding the complexity of earlier computers,
their many differences and different histories and settings. This conflation is
both historically and conceptually wrong. Rather, the Turing machine was
appropriated a posteriori by computer scientists to serve as the conceptual model
of a general-purpose digital computer [12], and the stored-program computer
is a construction after the facts started off by IBM [19]. This demystification,
however, should not distract us from the fact that logic and some of its concepts
were important in the development of the digital computer, on the contrary, it
should stimulate research into how these concepts were actually integrated in
the practices of the rapidly developing computer field.

The present paper wants to embed some important developments of the
1950s in two older traditions, one within (mathematical) logic and one within
engineering. Both traditions could be termed logical minimalism and were recast
into a diversity of computing practices in the 40s and 50s. The logical tradition
is part of the more general research programme into the foundations of mathe-
matics and logic that was carried out in the beginning of the 20th century. The
engineering tradition then emerged during the 1930s to design relay circuits. In
the 1940s and 1950s, however, these traditions were redefined and appropriated
when computer engineers, logicians and mathematicians started searching for
the small(est) and/or simple(st) machines with an eye on engineering a small
and relatively cheap digiter computer.1 This paper studies the search for small

1Of course, the impact on the formation of theoretical computer science is another story.
See Mahoney’s papers, as collected in [27, Part III], for a starting point to this history.
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machines, both physically and logically, and ties it to these older traditions of
logical minimalism. Focus will be on how the transition of symbolic machines
into real computers integrates minimalist philosophies as parts of more complex
computer design strategies.

1 A tradition of logical minimalism in logic

In the early 20th century, mathematical or symbolic logic flourished as part of
research into the foundations of mathematics. This was the result of the con-
fluence of many different lines and agendas of research, among them research
in algebraic logic (Boole, Schröder, Peirce etc.), the question on how to define
real numbers (Weierstrass, Cantor, Dedekind etc.), set theory and the ensuing
discussions (Cantor, Hilbert, Borel, Poincaré etc.) or the logicist programmes
of Frege, Peano and Russell and Whitehead.2 Landmarks were the publica-
tion of Whitehead and Russell’s Principia Mathematica (3 volumes 1910-1913)
and David Hilbert’s metamathematical research agenda of 1921, both attract-
ing many logicians, mathematicians and philosophers to work on foundational
issues.

The search for simplicity, whether through the development of simple formal
devices or the study of small and simple axiom sets, was part of this develop-
ment. Indeed, quite some of the advances made in mathematical logic during
this period can be characterized by (but surely not reduced to), what we will
here call, logical minimalism. This kind of formal simplicity often served as
a guiding methodology to tackle foundational problems in mathematics. For
some, it was a goal in itself to find the ultimate and simplest ‘building blocks’
of mathematics and, ultimately, human reasoning. Of particular importance for
logical minimalism was Whitehead and Russell’s Principia Mathematica that
tried to formalise the entirety of mathematics in logical symbols and proposi-
tions. Of their own confession, they could not garantuee that their sets of basic
propositions (or premisses) were minimal, nor that their set of primitive ideas
was minimal, but they stated the ambition:

It is to some extent optional what ideas we take as undefined in
mathematics; the motives guiding our choice will be (1) to make the
number of undefined ideas as small as possible, (2) as between two
systems in which the number is equal, to choose the one which seems
the simpler and easier. We know no way of proving that such and
such a system of undefined ideas contains as few as will give such
and such results. [57, p. 95]

These are indeed the two obvious lines of research informed by this minimalist
philosophy. On the one hand, finding the smallest set of logical primitives, on
the other hand reducing and/or simplifying existing axiom systems. A famous

2A quite exhaustive panorama of the many strands coming together in the birth of this
foundationalist movement in mathematics can be found in [18].
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example of the first strand is Sheffer’s 1913 paper that showed that one oper-
ation, the Sheffer stroke, suffices as primitive operation for a Boolean algebra
[47]. An example of the second strand would be Jean Nicod’s small set of basic
propositions for the propositional calculus, or similar work on minimal sets of
premisses in the Polish school of logic.

In the 1920s then, when Hilbert with his own brand of formalism had added
the metamathematical questions to the agenda, people like Post and Schönfinkel
pushed this minimalism one step further. Post’s work from the early 20s can be
characterized by a method of generalization through simplification with a focus
on the “outward forms of symbolic expressions, and possible operations thereon,
rather than [on] logical concepts” which ultimately resulted in an anticipation
of parts of Gödel’s, Church’s and Turing’s work in the 1930s [41, 40]. This
method which ultimately tried to eliminate all meaningful logical concepts such
as variable, quantor etc, resulted in what Post himself called a “more primitive
form of mathematics” known as tag systems and which is one of the simplest
formal devices to be computationally equivalent to Turing machines.

Schönfinkel situated his work on combinators in the tradition of attempts to
reduce and simplify axiom systems as well as to lower the number of undefined
notions. His goal was no less than to eliminate more fundamental and undefined
notions of logic, including the variable. His reason for doing so was not purely
methodological but also philosophical [43, p. 358]:

We are led to the idea [...] of attempting to eliminate by suitable
reduction the remaining fundamental notions, those of proposition,
propositional function, and variable. [T]o examine this possibility
more closely [...] it would be valuable not only from the method-
ological point of view [...] but also from a certain philosophical, or,
if you wish, aesthetic point of view. For a variable in a proposition
of logic is, after all, nothing but a token that characterizes certain
argument places and operators as belonging together; thus it has
the status of a mere auxiliary notion that is really inappropriate to
the constant, “eternal” essence of the propositions of logic. It seems
to me remarkable [that this] can be done by a reduction to three
fundamental signs.

It is exactly this more ‘philosophical’ idea of finding the simplest building blocks
of logic and ultimately human reasoning that drove (part of) the work by Haskell
B. Curry and Alan M. Turing, two logicians/mathematicians who had the op-
portunity to access and think about the new electronic computers of the 40s.

After having made the classic trip to Europe, spending quite some time at
Göttingen, Curry started working on his PhD, taking up Schönfinkel’s ideas.
This led to what is now known as combinatory logic. In combinatory logic, only
three basic operations are used: the combinators K, W and C, corresponding
respectively to Kxy = x, Wxy = Wxyy and Cxyz = xzy. In an address to
the Association of Symbolic Logic, Curry identified simplification as one of two
major tendencies (the other is formalization) in investigations on the foundations
of mathematics [8, p. 49]:
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On the other hand, [...] there is [the problem of] simplification;
one can seek to find systems based upon processes of greater and
greater primitiveness [...] In fact we are concerned with construct-
ing systems of an extremely rudimentary character, which analyse
processes ordinarily taken for granted.

This analysis down to the most elementary operations would help Curry later, in
1946-1950, to come up with an elaborate theory of combining simple programs
so as to develop complex programs. (see section 3)

Turing’s work is well-known, his famous On computable numbers [51] was
written as a (negative) answer to one of Hilbert’s problems, the Entschei-
dungsproblem of propositional logic. To do this he developed the formalism
now known as Turing machines, which he obtained by observing a man in the
process of computing a number and then try to make abstraction of this and
reduce it to its most elementary and simple ‘operations’ [51, p. 250]:

Let us imagine the operations performed by the computer to be split
up into “simple operations” which are so elementary that it is not
easy to imagine them further divided.

Those basic operations according to Turing are four: go left, go right, erase,
and print a symbol. This primitiveness of the operations of the Turing machine
allowed to define the universal Turing machine which is capable to compute
what any other Turing machine can do. Indeed, the elementarity of these acts
made it possible to translate them into a code understandable by a (Turing)
machine. Much later, in the late 1950s, Turing’s theory would be reclaimed by
those founding computer science (see [12]), but in 1936-37, it was still a result in
mathematical logic. It would also have, through von Neumann’s and Turing’s
own work, some, limited impact on the design of the first digital computers (see
section 3).

2 A tradition of logical minimalism in switching
theory

Independently of this mathematical research tradition, the problem of economy
in developing electromechanical devices led engineers to consider algebraic and
logical methods as aids in the design of their circuits. Claude E. Shannon’s
master’s thesis “A symbolical analysis of relay switching circuits” (1938) [44] is
the most famous example. In his thesis, Shannon showed how the equations for
designing relay circuits could be symbolically rewritten using Boolean algebra,
making the manipulation of the equations amenable to a simple calculus. In
fact, the scope of the thesis was broader and wanted to address the general
problem of network synthesis [44, p. 713]:

Given certain characteristics, it is required to find a circuit incorpo-
rating these characteristics. The solution of this type of problem is
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not unique and methods of finding those particular circuits requiring
the least number of relay contacts and switch blades will be studied.

Boolean algebra was actually but one of a number of mathematical (and graphi-
cal) techniques Shannon proposed in his thesis to attack the problem of designing
specific circuits with a minimum number of elements.3 Also, minimalism in the
engineering sense forbade easy definition, as Shannon later explained:

the economy of elements [...] may be of several types, for example:

1. We may wish to realize our function with the least total num-
ber of switching elements, regardless of which variables they
represent.

2. We may wish to find the circuit using the least total number of
relay springs [...]

3. We may wish to distribute the spring loading on all the relays
or on some subset of the relays as evenly as possible.

[...] Although all equivalent circuits representing a given function f
[...] can be found with the aid of Boolean Algebra, the most econom-
ical circuit in the any of the above senses will often not be of this
type. [...] The difficulty springs from the large number of essentially
different networks available and more particularly from the lack of
a simple mathematical idiom for representing these circuits. [45]

Both the variety of elements used in engineering as the multiple facets of their
design complexified an easy application of Boolean algebra, but also the inte-
gration of larger circuits into such a calculus was far from obvious.

In short, Shannon’s techniques were not so simply amenable to engineering
practice and it took a while before it became useful. They were further explored
and developed at Bell Labs in the 1940s, in particular for some complex relay
circuits needed in the No. 5 Crossbar for telephone switching or the Relay Cal-
culators conceived by George R. Stibitz. Other researchers such as Karnaugh,
McCluskey, Mealy, Moore and others, all came up with further techniques to
find minimal circuits, Edward F. Moore even exhaustively tabulated the most
economical relay circuit for each Boolean function upto four variables in 1952
[28, pp. 56-58]. Together with Shannon, Moore also patented a circuit analyzer
developed in 1952-53 [33]:

This machine (called the relay circuit analyzer) has as inputs both
a relay contact circuit and the specifications the circuit is expected
to satisfy. The analyzer (1) verifies whether the circuit satisfies the
specifications, (2) makes systematic attempts to simplify the circuit
by removing redundant contacts, and also (3) obtains mathemati-
cally rigorous lower bounds for the numbers and types of contacts
needed to satisfy the specifications.

3It should be noted that many other researchers, mostly in Japan, Germany and Russia,
came up with similar ideas and techniques around the same time, see [53, Part 2].
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This kind of research was bottom-up, from the elements to complex circuits.
While it worked well for certain, not too complex, circuits with particular el-
ements such as relays, there were many other aggregate components needed
in complex machines that could not be synthesized using the known methods.
This was because either the elements were not easily translatable into symbols
(e.g. wave filters), or because the purpose and functions of the machines were
too complex to be formulated as easy boundary conditions on the number of
combinations. Therefore, some engaged in the study of the inverse problem,
top-down, starting from a complex machine and trying to analyze it down to its
elements. This made some engineers look at the Turing machine as a possible
way to achieve this top-down strategy in the 1950s (see section 4).

3 Early minimalist computing: Von Neumann,
Turing and Curry

From the very beginning of the digital computer a number of people were in-
volved that were well-versed in mathematical logic. Most notable were John von
Neumann and Alan Turing, and through their work some logical minimalism
perspired into the design of early digital computers, though not in a systematic
way. In the pioneering years, only the logician Haskell B. Curry developed a
systematic framework guided by logical minimalism, though his work would find
no echo in the field.

The famous First Draft of the EDVAC (1945) written up by von Neumann is
characterised by a reduction of the complexity in the early computing machines.4

Walter Pitts and Warren McCullough’s paper on neural networks helped von
Neumann to schematise the relationships between the various units, though he
consistently underestimated the complexity of input-output. Also, his back-
ground in mathematical logic partially guided him in the determination of the
instruction code for the EDVAC. In 1945, von Neumann discerned 7 categories
of instructions, when implemented on the ENIAC the number of instructions
went to 97, but on the first (1-address) machines that were built after the
EDVAC-design, this number was reduced considerably. The IAS machine had
20 instructions (26 during planning), the Whirlwind 31, the ERA 1101 38 and
the EDVAC only 12. The number of instructions was not determined by any
logical principle, rather, instructions were added if the main application of the
machine needed it frequently, or if a new kind of peripheral was added to the
system.

Curry, professor of logic at the university of Pennsylviana, had read Gold-
stine and von Neumann’s papers on the design and programming of the IAS
machine, but found their flowchart approach too elaborate. Therefore, he de-
veloped an independent attack on the problem of coding and planning using
his experience with the ENIAC on the one hand, and his combinatory logic

4Thomas Haigh and Mark Priestley drew our attention to this during a discussion on an
earlier version of this paper.

6



on the other hand. Indeed, Curry had helped in 1946 to devise computation
schemes for the ENIAC and had tried to find a general way to combine two
or more programs. His concrete experience with the ENIAC coupled with the
combinatorial logic and its minimalist philosophy led Curry to ‘design’ a theory
of programming.

One key aspect of this theory was the analysis of programs into basic pro-
grams and the development of a theory which allowed to compose more com-
plicated programs from these basic programs in an automatable fashion. This
analysis into basic programs and their composition explicitly displayed a mini-
malist philosophy [9]:

[The] analysis can, in principle at least, be carried clear down until
the ultimate constituents are the simplest possible programs. [...] Of
course, it is a platitude that the practical man would not be inter-
ested in composition techniques for programs of such simplicity, but
it is a common experience in mathematics that one can deepen one’s
insight into the most profound and abstract theories by considering
trivially simple examples

Curry went on to give a method which reduced a specific class of 26 basic
programs from the original list of IAS-machine instructions to only 4 basic pro-
grams. This is a good example of what kind of results Curry’s minimalism led to.
This reduction to 4 basic programs was proven by providing a (programmable)
method which resynthesises the original 26 basic programs from these 4. Curry
commented that one might save machine memory when compiling programs.
He therefore made the following hardware recommendation [9, pp. 38-39]:

Now the possibility of making such [arithmetic] programs without
using auxiliary memory is a great advantage to the programmer.
Therefore, it is recommended that, if it is not practical to design the
machine so as to allow these additional orders [the 26 original basic
orders], then a position in the memory should be permanently set
aside for making the reductions contemplated.

Hence, a theoretical result so in line with logical minimalism, becomes an au-
tomatable method which allows to save computer memory (for more details on
Curry’s theory of programming see [31]).

Finally, Turing was evidently also guided by a minimalist logic philosophy
when he helped to develop one of England’s first computers, the ACE (Au-
tomatic Computing Engine). Just after World War II, Turing was recruited
by John Womersley of the NPL to help design the ACE. As has been argued
elsewhere [10, 21], Turing definitely was inspired by and relied on the symbolic
Turing machines developed in his On computable numbers for the design of the
ACE. In fact, in a lecture to the London Mathematical Society, Turing explicitly
stated that computers such as the ACE “are in fact practical versions of the
universal machine” [54]. Even though a good theoretical model, it needed to be
adapted. Thus, for instance, Turing made clear that the one-dimensional tape
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as the memory of the Turing machine is not desirable in a real machine since it
would take too long to look up information [21, p. 319].

The general philosophy behind the design of the ACE is minimalist in nature.
Knowing that but a minimal set of symbols and operations is needed to have
universal computation, Turing designed a machine with a hardware that is kept
very simple and primitive, leaving the ‘hard’ work to the programmer, preferring
to have less machine and more instructions. Indeed, as Hodges explains [21,
p. 320]:

His priorities were a large, fast memory, and then a hardware sys-
tem that would be as simple as possible. His side was always that
anything in the way of refinement or convenience for the user, could
be performed by thought and not by machinery, by instructions and
not by hardware. In his philosophy it was almost an extravagance
to supply addition and multiplication facilities as hardware, since in
principle they could be replaced by instructions applying only the
most primitive logical operations of OR, AND and NOT.

Or, to put it in Turing’s words, “[W]e have often simplified the circuit at the
expense of the code” [54]. This trade-off between a simple computer architecture
and a more complex programming system will also be a recurrent theme in the
small machines realised in the 1950s.

The ACE would later inspire some other computers, viz. the DEUCE and
the Bendix G-15. The Bendix G-15 was actually a computer design that Harry
Huskey had developed, copying lots of the ACE-design. Huskey had worked in
the ENIAC team in the mid-1940s and had thereafter spent some years travelling
back and forth between the U.S. and the U.K. In the U.K. he had been part of the
team that developed the Pilot ACE and he was also one of the first Americans to
have been involved in the ALGOL movement, or, as it was still called back then,
IAL (International Algebraic Language, 1957). Upon returning definitively to
the States, Huskey tried to sell the design of a small general-purpose computer,
copped after the ACE-design [22]. He eventually sold his design to the highest
bidder, Bendix. When Bendix wanted to add multiplication and division to the
small instruction set, Huskey did not manage to include it, and one of Bendix
engineers, Robert Beck finally got it in [34, p. 4].5 The command structure of the
G-15 had the form (T or Lk;N;C;S;D). T in combination with S (for Source) or
D (for Destination) was the operand, Lk was used for I/O that did not need an
operand. N indicated where the next instruction was to be taken. And finally,
C had a value between 0 and 7, referring to the time cycle of the magnetic
drum memory, 4 words being on one short line (cyclic on the drum), but, when
using double-precision, 8 words being available on two short lines. Because
programming with this code was not straightforward, especially if one wanted
a minimum acces code reducing the time lost in waiting on the drum to rotate,

5Later still, in 1961 Beck together with Max Palevsky would design the Packard-Bell 250
computer (1961). This computer was another ACE- or G-15-inspired design, but transis-
torised and using magnetostrictive delay lines instead of a magnetic drum. Stanley Frankel,
incidentally, was a consultant for that same computer.
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Figure 1: The Bendix-G15 machine. Hovering over the machine are the names
of the various programming aids that were provided for the machine.
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quite some programming devices were developed by Huskey and the users of the
Bendix G-15. An interpretive routine6 INTERCOM 500, or in double precision,
INTERCOM 1000 was developed (1959). Also, Huskey ported his European
ALGOL experience to the machine, introducing the ALGO language (1960).

4 Less is more in the Fifties I: ‘Automata stud-
ies’

Through Curry’s and Turing’s more practical work, logical minimalism had a
direct and immediate influence on the development of the early digital and pro-
grammable machines. However, this is not where this influence stops. In the
1950s, several researchers coming from different backgrounds, but with the same
keen interest in the theory and practice of the new computing machines, be-
came familiarized with the results of the computability related work by Church,
Curry, Kleene, Post, Turing etc. They regarded the Turing machine and related
concepts as useful theoretical tools and models to think about actual, physical
machines. But also the ‘rapprochement’ between Boolean logic, circuit design
and mathematical logic contributed considerably to more interaction between
mathematical logicians and computer scientists. In this context, a tradition of
logical minimalism was ‘transmuted’ to the context of machines. Much of this
research was done under the heading ‘automata theory’, a domain that prefig-
ured in some way the establishment of (theoretical) computer science proper.

With the foundation of the Journal of Symbolic Logic in 1936 and through its
driving force, Alonzo Church, a ‘rapprochement’ between circuit switching and
mathematical logic slowly grew from the late 1940s onwards. Church scrupu-
lously reviewed all publications on the use of logic in switching theory, and,
reciprocally, more advanced logical techniques became known to the engineers.
This began to bear some fruits in the early 1950s onwards. An important ex-
ample of this transmission of knowledge between engineers and logicians was
the logician Willard V. Quine’s method to find the simplest Boolean function
[42] that was promptly picked up by some circuit designers. Another important
stepping stone was Stephen Kleene’s theoretical treatment of McCullough and
Pitts’s nerve nets. This rather informal model had been the model used by von
Neumann for his description of the EDVAC. Now Kleene’s report from 1951
[23]7 written on order for the RAND corporation brought a formal treatment,
thus connecting the logical design of computers with metamathematical theory,
and starting off quite some theoretical research on finite automata and Turing
machines.

During the same early fifties, Moore and Shannon at Bell Labs embarked on
a study of simplifying universal Turing machines, with an eye on a possible appli-

6An interpretive approach to programming means that one line at a time could be trans-
lated in machine code and executed. This approach contrasts with loading and compiling the
entire program first before it can be executed.

7A substantial part of this RAND report was later published in the volume Automata
Studies (1956).
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cation in the design of complex calculators. During this time, Shannon obtained
his famous result that two symbols suffice for a universal machine (published in
1956 [46]). In 1952 Moore presented his ‘simplified universal Turing machine’
at the ACM meeting in Toronto, the paper appeared two years later. Moore
described a 15-state two-symbol three-tape universal Turing machine.8 The sig-
nificance of his result was the fact that it suggests “that very complicated logical
processes can be done using a fairly small number of mechanical or electrical
components, provided large amounts of memory are available.” [32, p. 54] But
at the same time, Moore remarks that is “not economically feasible to use [such]
a machine to perform complicated operations because of the extreme slowness
and fairly large amount of memory required”, though it “suggests that it may
be possible to reduce the number of components required for logical control
purposes, particularly if any cheap memory devices are developed.” Moore also
explains how magnetic tape memory is more suited in this context than punched
tape [32, p. 54]:“ the tapes assumed in Turing machines are very much like the
properties attained by magnetic tapes, which have erasability, reversibility, and
the ability to use the same reading head for either reading or writing.”9

Starting at the other end, trying to adapt Turing machines to resemble actual
computers, Hao Wang, who was trained as a logician and worked for some time
at Bell labs and the Burroughs company, developed a variant of the Turing
machine model [56]. He explicitly placed his approach in the tradition of logical
work on reducing the number of logical operators, mentioning for instance the
Sheffer stroke, but with a different motivation, viz. to bridge the gap between
research in logic and digital computers [56, p. 63]:

The principal purpose of this paper is to offer a theory which is
closely related to Turing’s but is more economical in the basic oper-
ations. [...] Turing’s theory of computable functions antedated but
has not much influenced the extensive actual construction of digi-
tal computers. These two aspects of theory and practice have been
developed almost entirely independently of each other. [...] One
is often inclined whether a rapprochement might not produce some
good effect. This paper will [...] be of use to those who wish to
compare and connect the two approaches.

Wang’s model only has four basic instructions: shift the head one square to the
right; shift the head one square to the left; mark the square of the tape under

8Moore starts out from Davis’s quadruple notation for Turing machines, where the quadru-
ple qiSjIql means: When in state qi the symbol Sj is scanned then do operation I (left, right
or print Sk then go to state ql. Since Moore is using three tapes instead of one, he transforms
this notation to a sextuple notation qiS1S2S3Inql where S1, S2, S3 are the symbols scanned
on tapes 1 to 3 respectively and In is operation I to be performed on tape n. On tape 1 the
description of the Turing machine to be simulated is stored (as a circular loop), tape 2 is an
infinite blank tape that will contain the active determinant of the machine to be imitated,
and finally tape 3 will be a copy of the infinite tape that would be on the machine being
imitated. To put it in more ordinary computer speak: Tape 1 is the program, tape 2 is the
active register and tape 3 the output.

9Perhaps Wang’s non-erasing model described in [56], was inspired by the need for a simple
model for a punched-tape computer.
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Figure 2: The diagram of E.F. Moore’s 15-state three-tape universal Turing
machine
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scan ; and a conditional transfer. He remarks that his universal machine would
be less economical to realise than Moore’s, but that its interest lies in reducing
the instructions to “a bare minimum” [56, p. 88].10

Wang was actually not the first to develop a variant to Turing’s machine,
already the German logician Hans Hermes had provided a proof that a digital
computer, provided with infinite memory, is equivalent to a Turing machine
[20]. In Hermes’s formalisation, there are five ‘Elementarmaschinen’: go right,
go left, mark, zero (erase) and decision (conditional transfer). Using these five
machines, Hermes showed how a digital computer can emulate a sequence of
such elementary machines that make up a universal Turing machine. Hermes’s
contribution, due to its being written in German, would not be widely read, but
Wang’s congenial model would later be developed by others and be the basis for
the register machine model [48]. Indepently, in the late 1950s, Marvin Minsky
at MIT developed a similar theoretical model and using Post’s tag systems
(mentioned Sec. 1), Minsky proved that two registers suffice to have universality.
[29]. Minsky would later write several of the other classic papers on small
universal devices.

5 Less is more in the fifties II: Simple digital
computers

At around the same time that Edward F. Moore was thinking on small universal
Turing machines and their practical feasibility, several engineers started to effec-
tively implement similar ideas by building “small” computers, viz. computers
which are designed around the idea of simplicity and economy of instructions.
Some groups of engineers involved in the development of small computers were
well versed in modern mathematical logic and its possible applications to com-
puter design. However, it turns out that minimalist philosophies have to be
redefined as parts integrating more complex computer design strategies.

Most of these simple, small computers started off as either thought experi-
ments or as experimental machines before a commercial version would be mar-
keted. These commercial versions, quite pragmatically, modified the initial ex-
perimental concept considerably, they appeared in the latter half of the 1950s.
The designs were influenced by Wilkes’s idea of microprogramming [58] and by
the ACE design, also they were mostly equipped with a magnetic drum mem-
ory. The idea was to build a (relatively) cheap machine, hence the economy
of instructions and of hardware elements was combined with a magnetic drum
memory, which was the cheapest kind of memory on the market in the early
1950s. Turing’s ACE-computer (1949) was redeveloped into the commercial
Bendix G-15 by Harry Huskey (1955) (see section 3). Van der Poel’s ZERO ma-
chine, built as an experimental machine in the Netherlands (1952) was the basis
for his ZEBRA (1956) that was commercialized by STANTEC (1957). Stanley
Frankel’s MINAC (1954) was the model for Librascope’s LGP-30 (1957), and,

10Note that Wang’s B-machines are basically non-erasing Post machines [40].
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Machine Year Technology Number produced
ACE 1949 Vacuum tubes and delay lines 1
Bendix G-15 1955 Vacuum tubes and magnetic drum 300
ZERO 1952 Vacuum tubes and magnetic drum (1)
Stantec Zebra 1956 Vacuum tubes and magnetic drum some dozens
MINAC 1954 Vacuum Tubes and magnetic drum 1
LGP-30 1956 Vacuum tubes and magnetic drum 460
TX-0 1956 Transistors 1
PDP-1 1960 Transistors 53

finally, at MIT, the transistorized TX-0 (1955) was an experimental machine to
test transistors and would, eventually, serve as the blueprint for DEC’s PDP-1
computer (1960).

5.1 From ZERO to ZEBRA

In Europe the Dutch engineer W.L. van der Poel pioneered investigations into
the structure of simple digital computers. Van der Poel had been recruited as
a graduate student in 1947 to work on the ARCO, a relay-based “all-round”
calculating machine, a “self-thinking” device. ARCO was a project started
by Nicolaas G. de Bruijn (1918–2012), who had just been appointed professor
in Delft. Leen Kosten, head of the Mathematics Department of the Central
Laboratory of the PTT in The Hague, ensured that de Bruijn’s project in
Delft would receive multiple relays “for loan.” Immediately after graduation in
1950, van der Poel joined Kosten’s team to finalize the ARCO’s construction,
a machine that was later coined “the TESTUDO” (turtle) due to its extremely
slow execution speed.

Van der Poel had characterized the most essential problems for the Delft
project as “programming problems” [35, E.D.’s translation].

Solving a problem by means of programming amounts to choosing an
appropriate set of instructions. Of course, the challenge is to accomplish
as much as possible with as few instructions as is feasible. [35, p. 60,E.D.’s
translation]

At PTT, Kosten and van der Poel decided to build a radically new, digital, cal-
culating machine, the PTERA,11 which differed greatly from the TESTUDO.12

Many years later, van der Poel described the transition from the TESTUDO to
the PTERA as a transformation from “pre-von-Neumann” machines to “post-
von-Neumann” computers.

[The TESTUDO] was still a pre-von-Neumann machine. At that time I
did not yet have the idea to store instructions and numbers in the same

11PTERA: “PTT Elektronische Reken Automaat” (PTT Electronic Calculating Automa-
ton)

12For a more detailed account of Kosten, see Kranakis [24, p. 70-72] who says that Kosten
had already, before van der Poel’s arrival, shifted the attention of his research group to devel-
oping a general-purpose computer.
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memory. I became aware of that idea when I read the famous report ‘Pre-
liminary discussion of the logical design of an electronic computing instru-
ment’ of Burks, Goldstine and von Neumann [. . .] [39, p.8, my translation]

In 1952 then van der Poel’s knowledge of the literature (next to IAS-reports also
Shannon and Turing) became applied in what he later called his “most beautiful
machine ever”: the ZERO machine which had only 7 instructions. The ZERO
was really an experimental machine which “not meant as a practical computer,
but only serves the purpose of gaining experience” [36, p. 368]. The idea was to
build the simplest possible computer taking into account at least some practical
limitations [36, p. 367]:

In this article will be described the logical principles of an electronic
digital computer which has been simplified to the utmost practical
limit at the sacrifice of speed.

The ZERO’s beauty indeed exemplified frugality and logical minimalism as the
following examples show. Van der Poel used the same register to serve both
as accumulator and control register. He avoided expensive multiplication and
division components in hardware by programming them in terms of addition.
He implemented the addition of two numbers in one and the same electronic
component by means of bit-wise addition sequentialized in time. (These last
two design choices led to slow computers.) Finally, van der Poel resorted to
four “functionally independent bits” [36]. One bit b1 expressed whether the
machine’s instruction had to read something from (b1 = 0) or write something
to (b1 = 1) the drum. Another bit b2 independently expressed whether the
accumulator had to be cleared (b2 = 0) or not (b2 = 1). The two bits together
(b1b2) then defined four possible combinations: 00, 01, 10, and 11. Because the
value of the first bit did not depend on that of the second and vice versa, no
control box was required and, hence, less equipment was needed, which resulted
in small and cheap computing machinery. The ZERO only existed for a couple
of months and was quickly dismantled in favor of the PTERA.

However, because usability would suffer, van der Poel did not push the min-
imalist philosophy to its limits on the ZERO: “Of the seven instructions that
are possible only three are strictly necessary [...] Of course, many more instruc-
tions, even for quite simple programs, are then required.” [36] Later, in his
PhD [37] he would go further. First, van der Poel made an analysis of the 7
instructions, remarking that, e.g., shift instructions can be omitted because (on
a binary machine) shift to the left is actually doubling, a number, or, a number
once added to itself. He concluded, “there are left the operations store with
clear (T), add (A), subtract (S), jump (X) and some form of test order.” [37,
p. 95] But one could do with less, van der Poel showed how subtraction could be
done using additions (and vice versa), and also how a test order is not strictly
necessary. “It is a widespread opinion that automatic computers are universal
because they have a facility to discriminate, a test order”, but van der Poel
showed it is superfluous, or rather, that one out of the three orders (test, shift
to the right and conjunction) suffice to build the other two. This leaves only
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the order X, S and T, but “S and T can be combined into a single order” which
is Bn, it substracts n from the value in the accumulator and stores the result
[37, p. 97]. Van der Poel concludes: “Now the machine only knows two types
of instructions X and B. As a last step we shall discuss the cancelling of the
X-operation.” [37, p. 98] This is done by automatic alternating between B and
X orders. Depending on the n of Bn, the machine simply jumps to the next
line, or (if n = 0) jumps to the next line and interprets the next Bn as jump
to location n. This led ultimately to the one-instruction machine, the so-called
“purely one-operation machine”, that is “a purely jumpless machine” without
“disguised jump”. Van der Poel showed the possibility of this one instruction,
going over all three registers (accumulator, memory and control register), first
extracting 0 or 1 (in case of 1 a B instruction will be executed, in case of 0
an X instruction), followed by a quite intricate round of transfers between the
registers [37, pp. 100-102]. At the very end of his PhD van der Poel concluded:

It is more a question of economy to determine the optimum capacity
of the store, and the complication of the operational part, in relation
to the speed and the price. It is very remarkable that the ZERO is
already a practicable machine, though it is hardly more complicated
than the one-operation machine, which is completely impractical.
[37, pp. 105]

In other words, there is a trade-off between the size of the instruction list and the
working memory available, a one-instruction machine would need much memory
all the time to be workable, whereas a machine with a reasonable number of
instructions can do with less memory.

Given his combined experience with PTERA and ZERO, van der Poel started
on another computer known as the ZEBRA, the “Zeer Eenvoudig Binair Reke-
napparaat” (Very Simple Binary Calculating machine) which he described at
length in his 1956 Ph.D. dissertation [37], supervised by professor van Wijn-
gaarden from the University of Amsterdam. It was inspired by ZERO and built
to resolve some practical problems, mostly related to speed, of the PTERA.
Just as ZERO, it made extensive use of the functional bits, though there were
now 15 rather than 4 bits. Moreover, it strove for “complete duality,” between
the fetching of an instruction (which allowed jumps) and the execution of some
operation13 realizing full well that “this is seldom of practical importance” [37,
p.18-19].

Neither the PTT , nor Philips, showed interest in building the ZEBRA. The
firm ZUSE did but not for long. It was the English company STANTEC
which eventually manufactured the ZEBRA from 1957 onwards, delivering dozens
of ZEBRAs throughout Europe [24, p.74]. The lively correspondence between
the users of those machines led to the formation of the ZEBRA club, with van
der Poel at its center. Van der Poel’s style of computer design and his comple-
mentary approach to computer programming (described below), along with the

13This was achieved in the ZERO by setting the X-bit to 0 or 1; in the ZEBRA this technique
basically remained unchanged.
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Figure 3: The STANTEC Zebra computer. The blackboard displays a typical
example of Van der Poel’s programming style with arrows indicating the timing
relationships between the instructions.

ZEBRA user club, made him an influential computer pioneer in the 1950s and
1960s [2].

The construction of a machine which is considered to be the practical approx-
imation of the ideal of a one-instruction computer however also had one major
drawback: speed. Combined with the very lengthy programs required because
of the limited number of functional bits, it was not practical enough. It is for
that reason that van der Poel developed intricate programming tricks, exploiting
his thorough knowledge while programming. Specifically, he perfectionized two
already existing techniques, optimum coding and underwater programming.14

Optimum coding essentially meant accessing the drum economically; e.g., by in-
terleaving instructions and data on the drum in conformance with the way the
program would behave. The drum was, after all, the slowest part of the com-
puter. The common practice of independently storing instructions and data on
the drum, resulted in several drum rotations (during program execution). To
reduce the number of drum rotations, van der Poel opted for a less orderly solu-
tion by interleaving the instructions and the data on the drum in conformance
with the order in which they would be called by the processor [55, p.26]. Under-

14There is a similarity with Turing’s own machine-specific programming habits, see e.g. [4],
and evidently with programming other small, magnetic drum machines such as the Bendix
G-15 or the LGP-30.
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water programming amounted to minimizing the drum accesses; e.g., by copying
an instruction I from the drum to the registers and subsequently modifying the
contents of the registers in order to transform I into the next instruction I ′,
and I ′ into I ′′, and so forth. Until the drum was accessed a second time, the
program was executing “under water,” using van der Poel’s terminology [11].
The reduced number of accesses to the drum allowed the program to maintain
a high execution speed. It was not easy to circumvent the drum by exclusively
resorting to the registers. To be successful in this regard, the underwater pro-
grammer had to have a thorough understanding of the machine. However, as the
STANTEC manual noted: “a good deal of skill and experience is required in the
programmer”. Therefore a Simple Code was developed that could be used in-
stead of the Normal Code: “a special instruction code known as the ‘simple code’
has been devised, which works in conjunction with interpretive routines stored
in the machine” [52, p. 13]. Using this interpretative programming language
“day to day problems” could be programmed “after brief training”, making the
machine only “one-sixth to one-fifth”, sometimes even “half as fast” as when
operated under Normal Code [52, p. 14]. Without the support for optimum
coding and underwater programming and the development of the Simple Code,
van der Poel’s aesthetically pleasing machines would have remained both slow
and difficult to program, and, as a result, economically unattractive.

5.2 Frankel’s MicrocephalAC and the LGP-30

Stanley Frankel was a physicist who had been part of the Los Alamos team that
had used the ENIAC for their calculations back in 1945-48. After that period,
Frankel became a professor at CalTech, but remained interested in computing,
in particular in developing a small and cheap computer. Through his contacts
at Hughes Aircraft, Frankel got free diodes and thanks to his consultancy at
Northrop he became familiar with the usage of Boolean algebraic equations in
computer design, typical of the Western Coast style of designing computers [49].
Together with a CalTech student, James Cass, Frankel managed to (partially)
build a small computer, the MINAC (1954). Frankel subsequently sold his idea
to Librascope who had been interested earlier in Huskey’s design, but lost the
bid to Bendix. With James Cass as main engineer, they developed the LGP-30,
LGP standing for Librascope General Purpose.

Frankel’s machines had a theoretical background that was laid out in three
journal articles. The first explained how a small computer with a magnetic
drum could be a general-purpose machine, using Turing’s 1936-paper:

One remarkable result of Turing’s investigation is that he was able to
describe a single computer which is able to compute any computable
number. He called this machine a universal computer. It is thus the
‘best possible’ computer mentioned. [...] This surprising result shows
that in examining the question of what problems are, in principle,
solvable by computing machines, we do not need to consider an
infinite series of computers of greater and greater complexity but
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Figure 4: Librascope’s General Purpose computer LGP-30.

may think only of a single machine. Even more surprising than the
theoretical possibility of such a ‘best possible’ computer is the fact
that it need not be very complex. The description given by Turing
of a universal computer is not unique. Many computers, some of
quite modest complexity, satisfy the requirements for a universal
computer. In particular, it will be seen in the following that any
of the modern general purpose computers, such as the relatively
simple LGP-30, is a universal computer, as is the Analytical Engine
mentioned previously. We now have a partial answer to our question
as to the range of problems which can, in principle, be solved by a
general purpose computer (GPC) ; namely : What one GPC can do
so can another. [14, p. 635]

For the LGP-30, using a 4-bit-order-code, 16 instructions were chosen. While
one instruction normally would take 17 microseconds, due to the speed of the
magnetic drum, “by exercising moderate care in coding”, this could be sped up
by a factor of four.

Memory locations are so spaced around a track of the drum that
eight word periods elapse between the presentations of two consecu-
tively numbered words (in particular, two consecutively obeyed in-
structions). Problems may be so planned that the operand word
usually appears in one of the middle six of these word periods. Plan-
ning a problem in this way is called “minimum latency coding.” [14,
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Figure 5: Frankel’s Boolean equations for the LGP-30.

p. 638]

This minimum latency coding is yet another name for the typical magnetic drum
technique appearing on the ZEBRA as “optimum coding” or on the Bendix G-15
as “minimum acces coding”.

In a follow-up article, Frankel dug deeper into the question of small, general-
purpose machines. In “The Logical Design of a Simple General Purpose Com-
puter” [15], Frankel explicitly deduces the more than 40 logical Boolean equa-
tions that describe the logical structure of the LGP-30 (see figure). In 1958,
Frankel went for the “minimum logical complexity” in his description of the
M’AC (MicrocepalAC) [16], whose informal description resembles a Turing ma-
chine:

The computer described here is designated M’AC (from Microcepha-
lAC). Its memory organ is a magnetic tape which presents and re-
ceives information in several channels. Each of two channels is served
by two heads spaced by integral multiples of the distance correspond-
ing to a digit period. One of these channels acts as a circulating
register: the first of its heads records a bit in each digit period, the
second (in the direction of tape motion) presents to the computer
proper the bit which was recorded in a correspondingly earlier digit
period. The other of these channels holds the main memory. [16,
p. 283]

In spite of the stored-program idea, in actual computers, storage and working
memory are neatly separated, as are numerical and programming data. For
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Figure 6: Frankel’s Boolean equations for the M’AC.

his theoretical ‘paper’ machine M’AC, however, Frankel used one and the same
tape both as register and as memory, though they are separable because of their
numerical spacing.

Pursuing his analysis, Frankel noted that three distinguishable operations
suffice for general-purposeness:

The elementary operations of M’A C are intended to provide a mini-
mum set of operations into which the activities of a computation can
be broken. [...] The basic set of operations required for a gpc thus
appears to be 1) subtract, 2) record in memory, and 3) branch. It is
not necessary, however, that these operations have separate orders.
In M’A C each instruction execution accomplishes all three of these
operations – a number read from memory (by head M) is subtracted
from that held in the circulating register, the result is simultaneously
recorded in memory (by head M*), and the next instruction is then
read either from M or from M*, depending on the outcome of the
subtraction. [16, p. 284]

Pushing three instruction into one, Frankel established one kind of minimal
machine, the one-instruction general-purpose machine that can be described by
a mere seven logical equations (see figure). But this machine is hardly practical,
because, as Frankel remarked, “the simplification of reducing the order list to
one item is obtained at the cost of less efficient use of memory capacity and
greater complexity of the programmer’s task.”

5.3 The TX-0 at Lincoln Lab

At MIT’s Lincoln Laboratory, another kind of small computer was developed,
called the TX-0 (1956-1958). The Semi-Automatic Ground Environment (SAGE)
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project had been the start for Lincoln Laboratory and they had developed the
Whirlwind computer as its central data processor. They had also built a copy
of the Whirlwind, the Memory Test Computer (MTC), for testing the newly
developed ferrite-core magnetic memory technology (1953). Now, for testing
yet another new and promising technology, transistors, a team at Lincoln Lab
started out to build a test computer before embarking on the development of
a transistor-based remplacement for the Whirlwind (that would ultimately be-
come the TX-2). This test computer was the TX-0, it pioneered the use of
transistors but also some ideas that would only become current in the era of
personal computing.

As Wesley A. Clark, the main engineer on the project, stated [7]:

“Well, all right, let’s build the smallest thing we can think of,” and
designed the TX-0, which was very primitively structured and quite
small, quite simple - small for the day. Not physically small - it took
lots of space; it still took a room.

The TX-0 was designed as an experimental machine, testing both transistors
and elaborate input/output facilities, as a test-case for the monumental TX-
2. Interestingly, the design of the TX-0 was done by a group of engineers
who had been immersed in mathematical logic and computers. From October
1955 to January 1956 the engineers at Lincoln Laboratory had followed an
intensive course on “the logical structure of digital computers”, organized by
Wes Clark. The course was part of discussions “about the various possible
minimal machines” that could be designed [6, p. 144].

Clark’s course contained six courses, each part building on the previous one:

• The Turing machine: a basic introduction to the Turing machine concept

• The universal Turing machine (2 courses)

• Boolean Algebra

• Synthesis of Boolean machines (2 courses)15

Clark had used Moore’s 1952 article as the main source for the part on Turing
machines and his small universal machine was explained in detail. As Clark re-
marked, this universal machine constitutes a “critical complexity beyond which
no further increase in generality can be guaranteed!” [5, p. 13] During the course,
Clark followed Moore’s encoding and construction, but mashed the three tapes
back into one tape using a specific encoding scheme.

The part on Boolean logic, apart from the obvious reference to Shannon,
relied mostly on work done by Richard C. Jeffrey and Irving S. Reed at Lincoln
Lab. The connection between Turing machines and Boolean logic was quite
essential, the Boolean logic was considered as the lower-level description of the
Turing machine.

15Including a discussion on the Sheffer stroke as candidat for sole building block in designing
circuits.
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The symbol-printing operations in a Turing machine can be de-
scribed in terms of the tape cells themselves. For example, a ma-
chine which performs the sequence “If cell A holds “1” or if cells
B holds “0”, print “1” on cell C is described by the stamement:
A1orB0 : C1”’ The manipulative aspect of this notation can be ex-
ploited in demonstrating that the rules for printing symbols define
a Boolean algebra” [5, p. 26]

The course ends with the development of minimal circuits for encoding and for
cyclic counting.

It is remarkable that this group of engineers familiarised itself with rather
advanced techniques from mathematical logic to develop a transistor-based com-
puter. How much of the logical minimalism taught in Clark’s course found its
way into the TX-0’s design is difficult to evaluate, but it surely was important
in their development of minimal modules (such as flip-flops) that could be stan-
dardised for use in building the TX-0 and TX-2. As Kenneth Olsen, who did
the circuit design, remarked, “circuits which are repeated often were designed
with as few components as possible.” [30, p. 100] And because transistors were
physically better behaved than vacuum tubes, they could be formalised more
easily “transistors also can give improvements in speed and tolerance to param-
eter variations, and that they lend themselves to standardized building blocks”
[30, p. 98]

As was the case with the other small machines, the minimal architecture of
the TX-0 entailed a rich unfolding of programming practices. The TX-0 itself
only had a small instruction set of four instructions:

1. sto x, place the value of the accumulator in the register

2. add x, add the value in the register to accumulator

3. trn x, if the value in the accumulator is negative, take next instruction
from register x, if positive, go to the next instruction

4. opr x, execute an operate class command

The fourth opr command triggered an elaborate vocabulary of ‘class commands’,
viz. the operands of the opr command are actually special bit-encoded instruc-
tions. Through the class commands, a wide rang of specially wired micropro-
grams could be addressed. Because of its processing speed (thanks to the tran-
sistors) and its large and fast memory (thanks to the ferrite core memory), the
TX-0 was much faster than the other small machines discussed here (Bendix G-
15, LGP-30 and Zebra), all using tubes and a much slower magnetic drum. This
made it worthwhile to not only have a potent interpretive routine (as had the
Bendix G-15 and the ZEBRA), but also interactive command-line like features.
A versatile symbolic assembler language and a powerful interpretative routine,
the Direct Input routine, were programmed for the TX-0 along with many util-
ity routines. Moreover, the TX-0 possessed a range of interactive possibilities:
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Figure 7: A block diagram of the general structure of the PDP-1. The triangle
of Accumulator, Memory Buffer and In/Out register echoes the TX-0 design.
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a flexowriter, a cathode ray tube, and later, a light pen. In combination with
the interpretive routines, this made for an interactive system.

When DEC would later develop its PDP-1, the first minicomputer, it would
take its cue from the TX-0 design [1, pp. 124-128]. Ben Gurley, the head engi-
neer, had worked on the Whirlwind and its successors, and now transported his
know-how to the PDP-1. The idea of standardized building blocks was pursued,
but also parts of the general design. While the number of registers was reduced,
they kept the core of three registers that pulse the flow of information: an ac-
cumulator, a memory buffer and and an I/O register (called live register on the
TX-0). The instruction set was, as with the other commercial versions of small
computers, expanded. Instead of just four, 28 instructions would be included,
plus a great number of microprograms known as the “Operate Group”.

6 Discussion

Computer science as a practice was, from the beginning, characterized by the
coming together of different practices, most notably, mathematics and logic
on the one hand and engineering on the other. By studying how, throughout
the history of computing, these different practices came to be intertwined to
build computers or to develop programming techniques, it becomes possible to
make transparent how formal and engineering practices really constitute a new
discipline that can perhaps not be classified using old schemes and fences.16 The
challenge then is to pick up the relevant theoretical ideas and unravel how pure
theory is transmuted into technology (and conversely) to constitute a practice
that can be reduced to neither.

Seen from this angle, the Turing machine has often been hailed as a most
practical outcome of the foundational debates of the early 20th century, the
positive face of the negative Entscheidungs-result. But as we have shown here,
it also fits in a tradition of logical minimalism: the search for a minimum of op-
erations, of axioms, of length of propositions etc. This facet of logical research
proved to be quite useful in the early days of computing when the results from
mathematical logic were ported to computer design and programming. Such
a transformation was pioneered by people like Curry and Turing, but was fur-
ther exploited in the 1950s leading to commercial computer designs such as the
STANTEC ZEBRA, Bendix G-15 or LGP-30. There also was a reverse influ-
ence: the (informal) fact that four elementary instructions suffice to compute
anything computable, that nowadays belongs to the lore of theoretical computer
science, is constituted during this encounter between logic and engineering in
the 1950s.

After 1960, the search for an optimum in combining a minimum of elements
to have a general-purpose computer became less pressing, due to the arrival

16Within computing itself, people like Peter Denning have pointed at the multidisciplinary
nature of computing and have invested a lot of work into bringing together different ap-
proaches, see, e.g., the final ACM/IEEE committee report on the core of computer science
[13]. For a sociological study, see [50].
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of new, very scalable technologies (especially transistors) and cheaper and/or
faster memories. However, the topic would remain quite important in theoret-
ical computer science, mostly because it provided a simple model (such as the
register machines) for theoretical research on computers. More even, triggered
by Minsky results on constructing small universal Turing machines, a kind of
competition on the smallest machine developed during the 1960s.17 Of course,
the question of simplicity would remain relevant for computer engineers. For
instance, in the 1980s there was a debate the RISC (Reduced Instruction Set)
and CISC (Complex Instruction Set) philosophies for developing microchips,
where the RISC proponents sought to minimize the instruction set to achieve
higher effiency.

Though hardly any detail of Turing’s original construction of a universal ma-
chine made its way into an actual computer, the very idea that 1) such a thing
as a universal machine exists, and 2) it does not need more than 4 or 5 instruc-
tions, was very important to this select group of engineers. It helped them to
articulate the essence of the ‘general-purpose’ character of the digital computer.
They all remarked that there was no need to complexify computer architecture
beyond a certain point to make it more general-purpose, actually, quite a sim-
ple machine already sufficed. Although both van der Poel and Frankel deduced
a one-instruction machine (be it in quite different ways!), this was merely a
theoretical game, proving a lower bound on the set of instructions. More im-
portant was the question of van der Poel of finding an optimum, since every
simplification of hardware brought on a complexification of software. There was
more or less an implicit consensus around Turing’s number of four instructions,
certainly including store, add (or subtract) and a conditional transfer. In prac-
tice, most computers actually built rather had 16 instructions (Bendix G-15,
LGP-30, ZEBRA) or a special order addressing tens of microprograms (TX-0).

In the process of porting a rather theoretical paper machine to actual com-
puters, the tradition of using Boolean logic in developing switching circuits
proved to be important. Although Shannon’s methods did not immediately
and easily extend to design complex machines such as computers, progress was
made. The Boolean equations used at Northrop (used by Frankel) or Jeffrey and
Reed’s algebra (used in the TX-0) helped to translate a theoretical model into
actual, minimal circuits.18 Further, the microprogramming idea was important,
both on the Bendix G-15 and on the TX-0. On a still more concrete level,
all machines needed a capable engineer to make them work. Huskey, though
himself a capable engineer, had the help of Robert Beck; Frankel was helped by
James Cass; and at Lincoln Lab a number of engineers, such as Wes Clark, Ken
Olsen or Ben Gurley were working on the TX-0.

The minimalist philosophy in computer architecture necessarily had to adapt
itself to the realities of the time, money and hardware available. Instead of
infinite tape, lots of time etc. that abound in theoretical research, the computer
engineers have to find a compromise between different trade-offs. A simple

17See the survey in [59].
18Also van der Poel, working at the Dutch telephone company PTT, was no stranger to

Shannon’s work.
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logical structure of the computer asks for extensive programming possibilities
and, if possible, more (and faster) memory. In the practice of the 1950s, this
meant magnetic drum memories, a bit slow, but reliable and cheap. Because,
together with the small instruction set, this might cripple the processing speed
of the machines, special programming techniques such as optimum or minimum
latency coding were developed. But for finding a commercial market for these
machines, this was not enough. Van der Poel developed his Simple Code, user
groups developed libraries of subroutines for the Bendix G-15 and the LGP-30.
Especially Harry Huskey was very active in developing interpretative schemes
such as the Intercom system to make the G-15 computer more accessible for a
variety of users that did not necessarily wanted to wade through the intricacies of
machine coding. The TX-0, as the expensive experimental machine it was, had
the luxury of lots of fast memory. Therefore, a new kind of programming style
altogether could be developed, an interpreted command line with many utility
routines and some interactive possibilities at the fingers of the programmer.

Nowadays one can find claims on the internet that the Bendix G-15, the
LGP-30 or the TX-0 were the first personal computers, but this is, of course,
anachronistic. These computers did provide blueprints for the architecture of
minicomputers in the 1960s. The TX-0 inspired the PDP-1 design, and the
Bendix G-15, through its family member, the Packard Bell 250, had an influence
on the first SDS minicomputer. But none of these small computers from the
1950s are based on a microprocessor and none was developed for a mass market
of personal users. On the contrary, the market these small computers addressed
were the smaller businesses and universities that could not afford the bigger
computers. They were also often used, even by bigger institutes and companies,
as a cheap and flexible data-processing solution for handling communication
with special-purpose machines. And these computers were rather successful at
that too if one looks at the sales numbers they achieved.
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