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Less is more in the Fifties.

Encounters between Logical Minimalism and

Computer Design during the 1950s

Liesbeth De Mol (CNRS – UMR8163 STL, Université de Lille 3, France)
Maarten Bullynck (Université Paris VIII, Vincennes Saint-Denis)

Edgar G. Daylight (Universität Siegen & KU Leuven)

In recent years, there has been a renewed historiographic interest in the
interactions between logic and engineering practices and how they helped to
shape modern computing. The focus of these writings, however, is mostly on
the work of Turing and von Neumann and the question if and how their logical
and mathematical works affected the shaping of the modern computer and its
coding practices. For many still, the early computers are “variations on the
protean design of a limited Turing machine” [31, p. 119], a perspective where
the EDVAC-design, the universal Turing machine and the stored-program com-
puter are often conflated into one single concept, hiding the complexity of earlier
computers, their many differences and different histories and settings. This con-
flation is both historically and conceptually wrong. Rather, the Turing machine
was appropriated a posteriori by computer scientists to serve as the concep-
tual model of a general-purpose digital computer [14], and the stored-program
computer is a construction after the facts started off by IBM [22]. This demys-
tification, however, should not distract us from the fact that logic and some
of its concepts were important in the development of the digital computer, on
the contrary, it should stimulate research into how these concepts were actually
integrated in the practices of the rapidly developing computer field.

The present paper wants to embed some important developments of the
1950s in two older traditions, one within (mathematical) logic and one within
engineering. Both traditions could be termed logical minimalism, meaning the
systematic use of (mathematical) logic in designing minimal systems and de-
vices. These forms of logical minimalism were recast into a diversity of com-
puting practices in the 40s and 50s. The logical tradition is part of the more
general research programme into the foundations of mathematics and logic that
was carried out in the beginning of the 20th century. The engineering tradi-
tion then emerged during the 1930s to design relay circuits and is part of a
more general trend of using mathematical techniques in engineering. In the
1940s and 1950s, however, these traditions were redefined and appropriated
when computer engineers, logicians and mathematicians started searching for
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the small(est) and/or simple(st) machines with an eye on engineering a small
and relatively cheap digital computer. Of course, minimalism on one level does
not imply overall simplicity, and nearly always, these logically small machines
came with tradeoffs, mostly more involved and complex programming and a
need for more memory for efficient operation. This paper studies the search for
small machines, both physically and logically, and ties it to these older traditions
of logical minimalism. Focus will be on how the transition of symbolic machines
into real computers integrates minimalist philosophies as parts of more complex
computer design strategies.

1 A tradition of logical minimalism in logic

In the early 20th century, mathematical or symbolic logic flourished as part of
research into the foundations of mathematics. This was the result of the con-
fluence of many different lines and agendas of research, among them research
in algebraic logic (Boole, Schröder, Peirce etc.), the question on how to define
real numbers (Weierstrass, Cantor, Dedekind etc.), set theory and the ensuing
discussions (Cantor, Hilbert, Borel, Poincaré etc.) or the logicist programmes of
Frege, Peano and Russell and Whitehead. A quite exhaustive panorama of the
many strands coming together in the birth of this foundationalist movement in
mathematics can be found in [21]. Landmarks were the publication of White-
head and Russell’s Principia Mathematica (3 volumes 1910-1913) and David
Hilbert’s metamathematical research agenda of 1921, both attracting many lo-
gicians, mathematicians and philosophers to work on foundational issues.

The search for simplicity, whether through the development of simple formal
devices or the study of small and simple axiom sets, was part of this develop-
ment. Indeed, quite some of the advances made in mathematical logic during
this period can be characterized by (but surely not reduced to), what we will
here call, logical minimalism. This kind of formal simplicity often served as
a guiding methodology to tackle foundational problems in mathematics. For
some, it was a goal in itself to find the ultimate and simplest ‘building blocks’
of mathematics and, ultimately, human reasoning. Of particular importance for
logical minimalism was Whitehead and Russell’s Principia Mathematica that
tried to formalise the entirety of mathematics in logical symbols and proposi-
tions. Of their own confession, they could not garantuee that their sets of basic
propositions (or premisses) were minimal, nor that their set of primitive ideas
was minimal, but they stated the ambition:

It is to some extent optional what ideas we take as undefined in
mathematics; the motives guiding our choice will be (1) to make the
number of undefined ideas as small as possible, (2) as between two
systems in which the number is equal, to choose the one which seems
the simpler and easier. We know no way of proving that such and
such a system of undefined ideas contains as few as will give such
and such results. [64, p. 95]
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These are indeed the two obvious lines of research informed by this minimalist
philosophy. On the one hand, finding the smallest set of logical primitives, on
the other hand reducing and/or simplifying existing axiom systems. A famous
example of the first strand is Sheffer’s 1913 paper that showed that one oper-
ation, the Sheffer stroke, suffices as primitive operation for a Boolean algebra
[53]. An example of the second strand would be Jean Nicod’s small set of basic
propositions for the propositional calculus, or similar work on minimal sets of
premisses in the Polish school of logic.

In the 1920s then, when Hilbert with his own brand of formalism had added
the metamathematical questions to the agenda, people like Post and Schönfinkel
pushed this minimalism one step further. Post’s work from the early 20s can be
characterized by a method of generalization through simplification with a focus
on the “outward forms of symbolic expressions, and possible operations thereon,
rather than [on] logical concepts” which ultimately resulted in an anticipation
of parts of Gödel’s, Church’s and Turing’s work in the 1930s [47, 46]. This
method which ultimately tried to eliminate all meaningful logical concepts such
as variable, quantor etc, resulted in what Post himself called a “more primitive
form of mathematics” known as tag systems and which is one of the simplest
formal devices to be computationally equivalent to Turing machines.

Schönfinkel situated his work on combinators in the tradition of attempts to
reduce and simplify axiom systems as well as to lower the number of undefined
notions. His goal was no less than to eliminate more fundamental and undefined
notions of logic, including the variable. His reason for doing so was not purely
methodological but also philosophical [49, p. 358]:

We are led to the idea [...] of attempting to eliminate by suitable
reduction the remaining fundamental notions, those of proposition,
propositional function, and variable. [T]o examine this possibility
more closely [...] it would be valuable not only from the method-
ological point of view [...] but also from a certain philosophical, or,
if you wish, aesthetic point of view. For a variable in a proposition
of logic is, after all, nothing but a token that characterizes certain
argument places and operators as belonging together; thus it has
the status of a mere auxiliary notion that is really inappropriate to
the constant, “eternal” essence of the propositions of logic. It seems
to me remarkable [that this] can be done by a reduction to three
fundamental signs.

It is exactly this more ‘philosophical’ idea of finding the simplest building blocks
of logic and ultimately human reasoning that drove (part of) the work by Haskell
B. Curry and Alan M. Turing, two logicians/mathematicians who had the op-
portunity to access and think about the new electronic computers of the 40s.

After having made the classic trip to Europe, spending quite some time at
Göttingen, Curry started working on his PhD, taking up Schönfinkel’s ideas.
This led to what is now known as combinatory logic. In combinatory logic, only
three basic operations are used: the combinators K, W and C, corresponding
respectively to Kxy = x, Wxy = Wxyy and Cxyz = xzy. In an address to
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the Association of Symbolic Logic (1942), Curry identified simplification as one
of two major tendencies (the other is formalization) in investigations on the
foundations of mathematics [10, p. 49]:

On the other hand, [...] there is [the problem of] simplification;
one can seek to find systems based upon processes of greater and
greater primitiveness [...] In fact we are concerned with construct-
ing systems of an extremely rudimentary character, which analyse
processes ordinarily taken for granted.

This analysis down to the most elementary operations would help Curry later, in
1946-1950, to come up with an elaborate theory of combining simple programs
so as to develop complex programs. (see section 3)

Turing’s work is well-known, his famous On computable numbers [58] was
written as a (negative) answer to one of Hilbert’s problems, the Entschei-
dungsproblem of propositional logic. To do this he developed the formalism
now known as Turing machines, which he obtained by observing a man in the
process of computing a number and then try to make abstraction of this and
reduce it to its most elementary and simple ‘operations’ [58, p. 250]:

Let us imagine the operations performed by the computer to be split
up into “simple operations” which are so elementary that it is not
easy to imagine them further divided.

Those basic operations according to Turing are four: go left, go right, erase,
and print a symbol. This primitiveness of the operations of the Turing machine
allowed to define the universal Turing machine which is capable to compute
what any other Turing machine can do. Indeed, the elementarity of these acts
made it possible to translate them into a code understandable by a (Turing)
machine. Much later, in the late 1950s, Turing’s theory would be reclaimed by
those founding computer science (see [14]), but in 1936-37, it was still a result in
mathematical logic. It would also have, through von Neumann’s and Turing’s
own work, some, limited impact on the design of the first digital computers (see
section 3).

2 A tradition of logical minimalism in switching
theory

Independently of this mathematical research tradition, the problem of economy
in developing electromechanical devices led engineers to consider algebraic and
logical methods as aids in the design of their circuits. Of course, various forms
of minimalism have always guided engineers in designing systems, but they of-
ten remained informal or ad-hoc, marrying the intuition of Ockham’s razor with
pragmatism. In tune with the contemporary import of more advanced mathe-
matical techniques in engineering, engineers of relay switching circuits started
looking for systematic techniques they could borrow from discrete mathematics
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to advance their art in the early 20th century. Claude E. Shannon’s master’s
thesis “A symbolical analysis of relay switching circuits” (1938) [50] is the most
famous example. In his thesis, Shannon showed how the equations for designing
relay circuits could be symbolically rewritten using Boolean algebra, making
the manipulation of the equations amenable to a simple calculus. In fact, the
scope of the thesis was broader and wanted to address the general problem of
network synthesis [50, p. 713]:

Given certain characteristics, it is required to find a circuit incorpo-
rating these characteristics. The solution of this type of problem is
not unique and methods of finding those particular circuits requiring
the least number of relay contacts and switch blades will be studied.

Boolean algebra was actually but one of a number of mathematical (and graphi-
cal) techniques Shannon proposed in his thesis to attack the problem of designing
specific circuits with a minimum number of elements. It should also be noted
that many other researchers, mostly in Japan, Germany and Russia, came up
with similar ideas and techniques around the same time (see [61, Part 2]).

Minimalism in the engineering sense forbade easy definition, as Shannon
later explained:

the economy of elements [...] may be of several types, for example:

1. We may wish to realize our function with the least total num-
ber of switching elements, regardless of which variables they
represent.

2. We may wish to find the circuit using the least total number of
relay springs [...]

3. We may wish to distribute the spring loading on all the relays
or on some subset of the relays as evenly as possible.

[...] Although all equivalent circuits representing a given function f
[...] can be found with the aid of Boolean Algebra, the most econom-
ical circuit in the any of the above senses will often not be of this
type. [...] The difficulty springs from the large number of essentially
different networks available and more particularly from the lack of
a simple mathematical idiom for representing these circuits. [51]

Both the variety of elements used in engineering as the multiple facets of their
design complexified an easy application of Boolean algebra, but also the inte-
gration of larger circuits into such a calculus was far from obvious.

In short, Shannon’s techniques were not so simply amenable to engineering
practice and it took a while before it became useful. They were further explored
and developed at Bell Labs in the 1940s, in particular for some complex relay
circuits needed in the No. 5 Crossbar for telephone switching or the Relay Cal-
culators conceived by George R. Stibitz. Other researchers such as Karnaugh,
McCluskey, Mealy, Moore at Bell Labs and M.I.T., or Aiken and his collabo-
rators at Harvard all came up with further techniques to find minimal circuits.
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Edward F. Moore even exhaustively tabulated the most economical relay circuit
for each Boolean function of four variables in 1952 [33, pp. 56-58]. Together with
Shannon, Moore also patented a circuit analyzer developed in 1952-53 [38]:

This machine (called the relay circuit analyzer) has as inputs both
a relay contact circuit and the specifications the circuit is expected
to satisfy. The analyzer (1) verifies whether the circuit satisfies the
specifications, (2) makes systematic attempts to simplify the circuit
by removing redundant contacts, and also (3) obtains mathemati-
cally rigorous lower bounds for the numbers and types of contacts
needed to satisfy the specifications.

This kind of research was bottom-up, from the elements to complex circuits.
While it worked well for certain, not too complex, circuits with particular el-
ements such as relays, there were many other aggregate components needed
in complex machines that could not be synthesized using the known methods.
This was because either the elements were not easily translatable into symbols
(e.g. wave filters), or because the purpose and functions of the machines were
too complex to be formulated as easy boundary conditions on the number of
combinations. Therefore, some engaged in the study of the inverse problem,
top-down, starting from a complex machine and trying to analyze it down to its
elements. This made some engineers look at the Turing machine as a possible
way to achieve this top-down strategy in the 1950s (see section 4).

3 Early minimalist computing: Von Neumann,
Turing and Curry

With the development of the general-purpose digital electronic computer after
World War II, a number of people were involved that were well-versed in math-
ematical logic. Most notable were John von Neumann and Alan Turing, and
through their work some implicit logical minimalism entered into the design
of early digital computers. It must be remarked, however, that neither von
Neumann nor Turing formulated a systematic framework or method to design
logically minimal machines, their minimalism remained ad-hoc and implicit. In
the pioneering years of the 1940s, only the logician Haskell B. Curry developed
a systematic framework guided by logical minimalism, though his work would
find no echo in the field, probably because Curry’s reports did not circulate
widely.

The famous First Draft of the EDVAC (1945) written up by von Neumann is
characterised by a reduction of the complexity in the early computing machines.
Walter Pitts and Warren McCullough’s paper on neural networks helped von
Neumann to schematise the relationships between the various units, reducing
the many units of the ENIAC to the five classic units of what is now known as the
von-Neumann-architecture (though von Neumann consistently underestimated
the complexity of input-output). A similar minimalism was at work in von
Neumann’s desire to keep the number of (machine) instructions to a minimum:
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To keep the number of components at an absolute minimum, the
machine [EDVAC] had only a few built-in instructions. That was
a wise decision. Each “instruction” demanded dozens of tubes and
hundreds of handwired connections. And each increased the com-
puter’s cost and multiplied the probability that it would experience
a failure well before any significant computational task could be
completed. [4, p. 237]

Not only did each machine instruction add quantitatively to the complexity of
the machine (more elements), but also qualitatively, because each new machine
instruction required dedicated design and much manual wiring instead of re-
using standard elements. Evidently, the number of programming instructions
may be much greater, an instruction in a code being a combination of one or
more machine instructions.

The EDVAC built at the Moore School would eventually have 12 machine
instructions. The IAS machine would originally have 26 instructions (according
to the preliminary reports), but would ultimately come down to 20:

Von Neumann also believed that his machine should have very few
commands. The smaller the number of commands, the less internal
circuitry that would be needed. Following his mandates, his en-
gineers were able to reduce the number of components in the IAS
machine. It had only two-thirds the number of tubes of the EDVAC.
[4, p. 240]

Other American machines built after the EDVAC-design also had a moderately
small machine instruction set: the Whirlwind had 31, the ERA 1101 had 38.
The number of instructions was not determined by any logical principle, rather,
instructions were added if the main application of the machine needed it fre-
quently, or if a new kind of peripheral was added to the system.

Haskell B. Curry, professor of logic at the university of Pennsylviana, had
read Goldstine and von Neumann’s papers on the design and programming of the
IAS machine, but found their flowchart approach too elaborate. Therefore, he
developed an independent attack on the problem of coding and planning using
his experience with the ENIAC on the one hand, and his combinatory logic
on the other hand. Indeed, Curry had helped in 1946 to devise computation
schemes for the ENIAC and had tried to find a general way to combine two
or more programs. His concrete experience with the ENIAC coupled with the
combinatorial logic and its minimalist philosophy led Curry to ‘design’ a theory
of programming.

One key aspect of this theory was the analysis of programs into basic pro-
grams and the development of a theory which allowed to compose more com-
plicated programs from these basic programs in an automatable fashion. This
analysis into basic programs and their composition explicitly displayed a mini-
malist philosophy [11]:

[The] analysis can, in principle at least, be carried clear down until
the ultimate constituents are the simplest possible programs. [...] Of
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course, it is a platitude that the practical man would not be inter-
ested in composition techniques for programs of such simplicity, but
it is a common experience in mathematics that one can deepen one’s
insight into the most profound and abstract theories by considering
trivially simple examples

Curry went on to give a method which reduced a specific class of 26 basic
programs from the original list of IAS-machine instructions to only 4 basic
programs. The proof of this reduction to 4 basic programs was through the
detailing of a (programmable) method which resynthesises the original 26 basic
programs from these 4 initial programs. Curry commented that one might save
machine memory when compiling programs. He therefore made the following
hardware recommendation [11, pp. 38-39]:

Now the possibility of making such [arithmetic] programs without
using auxiliary memory is a great advantage to the programmer.
Therefore, it is recommended that, if it is not practical to design the
machine so as to allow these additional orders [the 26 original basic
orders], then a position in the memory should be permanently set
aside for making the reductions contemplated.

Through his logical analysis, Curry could indeed recommend to hardwire only
4 instructions and resynthesise all other order code instructions through ap-
propriate and automatic programming, if enough machine memory was avail-
able. Hence, a theoretical result so in line with logical minimalism, serves as
a blueprint for automatically compiling complex order instructions as combi-
nations of simple machine instructions (for more details on Curry’s theory of
programming see [36]). It also points down quite exactly an important and re-
curring trade-off: With fewer machine instructions, you will need both memory
and speed to compile instructions that are not wired-down. Or put differently:
A small machine instruction set comes at the price of more complex program-
ming, felt either in hardware (loss of memory and speed) or software (more
elaborate planning and coding).

Finally, Turing was evidently also guided by a minimalist logic philosophy
when he helped to develop one of England’s first computers, the ACE (Au-
tomatic Computing Engine). Just after World War II, Turing was recruited
by John Womersley of the NPL to help design the ACE. As has been argued
elsewhere [12, 24], Turing definitely was inspired by and relied on the symbolic
Turing machines developed in his On computable numbers for the design of the
ACE. In fact, in a lecture to the London Mathematical Society, Turing explicitly
stated that computers such as the ACE “are in fact practical versions of the
universal machine” [59]. Even though a good theoretical model, it needed to be
adapted. Thus, for instance, Turing made clear that the one-dimensional tape
as the memory of the Turing machine is not desirable in a real machine since it
would take too long to look up information [24, p. 319].

The general philosophy behind the design of the ACE is minimalist in na-
ture. Knowing that but a minimal set of symbols and operations is needed to
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have universal computation, Turing designed a machine with a hardware that
is kept very simple and primitive, leaving the ‘hard’ work to the programmer,
preferring to have less machine and more instructions. Or, to put it in Turing’s
words, “[W]e have often simplified the circuit at the expense of the code” [59].
The same philosophy is echoed in Harry D. Huskey’s 1947 report on computer
developments at NPL:

Certain principles have been established of which one is:
USE THE MINIMUM AMOUNT OF EQUIPMENT,
that is, do everything possible by programming unless it has to be
done extremely frequently [25, p. 536]

This trade-off between a simple computer architecture and a more complex pro-
gramming system will also be a recurrent theme in the small machines realised
in the 1950s. One of the main strategies developed at NPL to achieve reason-
able execution speed despite longer instruction code was “optimum coding”,
exploiting the timing of instruction cycles to cram a maximum of (machine) in-
structions in a time slot. As Huskey remarked, “This machine has been planned
on the premise that switching can be accomplished between pulses” [25, p. 537]

Between Turing’s plan and the ACE’s eventual realisation(s) many things
happened (see [9]), and the simplicity of the conception was not always recog-
nisable in the implementation:

There are logical facilities in the ACE not needed in most comput-
ing problems. The numerical operations of addition, subtraction
(with complements), and multiplication, along with a discrimina-
tion process seem sufficient.With these other logical operations can
be programmed. [...] The computing portions of the ACE can be
considerably simplified and certainly should be in any small machine
that is built. [25, p. 539]

However, there were other computers derived from the ACE-design, e.g. the
DEUCE (see [9]], and especially the Bendix G-15. This machine was developed
by Huskey, who was the main engineer on the (Test Assembly) ACE in 1947.
He took up the basic conception of the ACE and pursued the development of a
small machine as such. Huskey had worked in the ENIAC team in the mid-1940s
and had thereafter spent some years travelling back and forth between the U.S.
and the U.K. Upon returning definitively to the States, Huskey developed the
design of a small general-purpose computer, inspired by the ACE-design, and
tried to sell his idea to manufacturers [27].

high speed electronic computers [...] prior to the present invention
tend to be extremely complex and extremely costly. [...] The present
invention is [...] a small high speed general purpose computer which
will perform a great variety of computations thus giving it a wide
range of utility as a machine aid to computation [bringing it] within
the economic reach of potential users [...] who cannot afford the
more costly equipment heretofore needed for general computation
purposes. [26]
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Figure 1: The Bendix-G15 machine. Hovering over the machine are the names
of the various programming aids that were provided for the machine.

Huskey’s redesigned computer design was eventually sold to the highest bidder,
Bendix.

Upon engineering the machine itself, which would be marketed as the Bendix
G-15, Bendix demanded Huskey to add multiplication and division to the small
instruction set, but Huskey did not manage to include it, and finally, one of
Bendix’s engineers, Robert Beck finally got it in [39, p. 4]. Later still, in 1961,
Beck together with Max Palevsky would design the Packard-Bell 250 computer
(1961). This computer was another ACE- or G-15-inspired design, but tran-
sistorised and using magnetostrictive delay lines instead of a magnetic drum.
Stanley Frankel, incidentally, was a consultant for that same computer.

The command structure of the G-15 had the following form:

(T or Lk;N;C;S;D)

T in combination with S (for Source) or D (for Destination) was the operand,
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Lk was used for I/O that did not need an operand. N indicated where the
next instruction was to be taken. And finally, C had a value between 0 and
7, referring to the time cycle of the magnetic drum memory, 4 words being on
one short line (cyclic on the drum), but, when using double-precision, 8 words
being available on two short lines. Because programming with this code was
not straightforward, especially if one wanted a minimum acces code reducing
the time lost in waiting on the drum to rotate (details on minimum access
coding and magnetic drums in Section 5), quite some programming devices were
developed by Huskey and the users of the Bendix G-15. Bendix offered POGO
as an automatic coding aid that helped avoid the intricacies of machine coding,
but it was not very popular with the users. Huskey himself developed another
approach, an interpretive routine, which means that one line at a time could be
translated in machine code and executed. This approach contrasts with loading
and compiling the entire program first before it can be executed. INTERCOM
500, or in double precision, INTERCOM 1000 in 1959 that proved more suited
to the users’ needs. Later still, Huskey would also port his European ALGOL
experience to the machine, introducing the ALGO language (1960).

4 Less is more in the Fifties I: ‘Automata stud-
ies’

Quite independently of Curry’s, von Neumann’s and Turing’s more practical
work of the 1940s, a renewed interest into the benefits of systematic applications
of logical minimalism emerged in the 1950s. Several researchers coming from
different backgrounds, but with the same keen interest in the theory and prac-
tice of the new computing machines, became familiarized with the results of the
computability related work by Church, Curry, Kleene, Post, Turing etc. They
regarded the Turing machine and related concepts as useful theoretical tools
and models to think about actual, physical machines. But also the ‘rapproche-
ment’ between Boolean logic, circuit design and mathematical logic contributed
considerably to more interaction between mathematical logicians and computer
scientists. In this context, a tradition of logical minimalism was ‘transmuted’
to the context of machines. Much of this research was done under the heading
‘automata theory’, a domain that prefigured in some way the establishment of
(theoretical) computer science proper (cf. also [32, Part III]).

With the foundation of the Journal of Symbolic Logic in 1936 and through
its driving force, Alonzo Church, a ‘rapprochement’ between circuit switching
and mathematical logic slowly grew from the late 1940s onwards. The tenth
meeting of the Association for Symbolic Logic in December 1947 featured talks
by E.C. Berkeley and T.A. Kalin both addressing how symbolic logic and the
new digital computing machines could interact. From then onwards, Church and
others scrupulously reviewed all publications on the use of logic in switching
theory, and, reciprocally, more advanced logical techniques became known to
the engineers. This began to bear some fruits in the early 1950s onwards. An
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important example of this transmission of knowledge between engineers and
logicians was the logician Willard V. Quine’s method from 1952 to find the
simplest Boolean function [48] that was promptly picked up by some circuit
designers such as David A. Huffman. Another important stepping stone was
Stephen C. Kleene’s theoretical treatment of McCullough and Pitts’s nerve nets.
This rather informal model had been the model used by von Neumann for his
description of the EDVAC. Now Kleene’s report from 1951 [28] written on order
for the RAND corporation brought a formal treatment, thus connecting the
logical design of computers with metamathematical theory, and starting off quite
some theoretical research on finite automata and Turing machines. A substantial
part of this RAND report was later published in the volume Automata Studies
(1956).

During the same early fifties, Edward F. Moore and Claude E. Shannon
at Bell Labs embarked on a study of simplifying universal Turing machines,
with an eye on a possible application in the design of complex calculators.
During this time, Shannon obtained his famous result that two symbols suffice
for a universal machine (published in 1956 [52]). In 1952 Moore presented his
‘simplified universal Turing machine’ at the ACM meeting in Toronto, the paper
appeared two years later. Moore described a 15-state two-symbol three-tape
universal Turing machine.

Moore starts out from Martin Davis’s quadruple notation for Turing ma-
chines, where the quadruple qiSjIql means: When in state qi the symbol Sj is
scanned then do operation I (left, right or print Sk then go to state ql. Since
Moore is using three tapes instead of one, he transforms this notation to a sex-
tuple notation qiS1S2S3Inql where S1, S2, S3 are the symbols scanned on tapes
1 to 3 respectively and In is operation I to be performed on tape n. On tape
1 the description of the Turing machine to be simulated is stored (as a circular
loop), tape 2 is an infinite blank tape that will contain the active determinant
of the machine to be imitated, and finally tape 3 will be a copy of the infinite
tape that would be on the machine being imitated. To put it in more ordinary
computer speak: Tape 1 is the program, tape 2 is the active register and tape
3 the output.

The significance of his result was the fact that it suggests “that very compli-
cated logical processes can be done using a fairly small number of mechanical or
electrical components, provided large amounts of memory are available.” [37,
p. 54] But at the same time, Moore remarks that is “not economically feasible to
use [such] a machine to perform complicated operations because of the extreme
slowness and fairly large amount of memory required”, though it “suggests that
it may be possible to reduce the number of components required for logical con-
trol purposes, particularly if any cheap memory devices are developed.” Moore
also explains how magnetic tape memory is more suited in this context than
punched tape [37, p. 54]:“ the tapes assumed in Turing machines are very much
like the properties attained by magnetic tapes, which have erasability, reversibil-
ity, and the ability to use the same reading head for either reading or writing.”
Perhaps Wang’s non-erasing model described in [63], was inspired by the need
for a simple model for a punched-tape computer.
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Figure 2: The diagram of E.F. Moore’s 15-state three-tape universal Turing
machine
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Starting at the other end, trying to adapt Turing machines to resemble actual
computers, Hao Wang, who was trained as a logician and worked for some time
at Bell labs and the Burroughs company, developed a variant of the Turing
machine model [63]. He explicitly placed his approach in the tradition of logical
work on reducing the number of logical operators, mentioning for instance the
Sheffer stroke, but with a different motivation, viz. to bridge the gap between
research in logic and digital computers [63, p. 63]:

The principal purpose of this paper is to offer a theory which is
closely related to Turing’s but is more economical in the basic oper-
ations. [...] Turing’s theory of computable functions antedated but
has not much influenced the extensive actual construction of digi-
tal computers. These two aspects of theory and practice have been
developed almost entirely independently of each other. [...] One
is often inclined whether a rapprochement might not produce some
good effect. This paper will [...] be of use to those who wish to
compare and connect the two approaches.

Wang’s model only has four basic instructions: shift the head one square to the
right; shift the head one square to the left; mark the square of the tape under
scan; and a conditional transfer. He remarks that his universal machine would
be less economical to realise than Moore’s, but that its interest lies in reducing
the instructions to “a bare minimum” [63, p. 88]. Note that Wang’s B-machines
are basically non-erasing Post machines [46].

Wang was actually not the first to develop a variant to Turing’s machine,
already the German logician Hans Hermes had provided a proof that a digital
computer, provided with infinite memory, is equivalent to a Turing machine
[23]. In Hermes’s formalisation, there are five ‘Elementarmaschinen’: go right,
go left, mark, zero (erase) and decision (conditional transfer). Using these five
machines, Hermes showed how a digital computer can emulate a sequence of
such elementary machines that make up a universal Turing machine. Hermes’s
contribution, due to its being written in German, would not be widely read,
but Wang’s congenial model would later be developed by others and be the
basis for the register machine model [54]. Indepently, in the late 1950s, Marvin
Minsky at MIT developed a similar theoretical model and using Post’s tag sys-
tems (mentioned in section 1), Minsky proved that two registers suffice to have
universality. [34]. Minsky would later write several of the other classic papers
on small universal (paper) devices.

5 Less is more in the fifties II: Simple digital
computers

At around the same time that Edward F. Moore was thinking on small universal
Turing machines and their practical feasibility, several engineers started to effec-
tively implement similar ideas by building “small” computers, viz. computers
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Machine Year Technology Number produced
ACE 1949 Vacuum tubes and delay lines 1
Bendix G-15 1955 Vacuum tubes and magnetic drum 300
ZERO 1952 Vacuum tubes and magnetic drum (1)
Stantec Zebra 1956 Vacuum tubes and magnetic drum 44
MINAC 1954 Vacuum Tubes and magnetic drum 1
LGP-30 1956 Vacuum tubes and magnetic drum 460
TX-0 1956 Transistors and magnetic core 1
PDP-1 1960 Transistors and magnetic core 53

which are designed around the idea of simplicity of architecture and economy
of (machine) instructions. Their goal was to find a design for a digital com-
puter that was small and relatively cheap, while at the same time maintaining
the general purpose character of the computer. Some engineers involved in the
development of small computers were well versed in modern mathematical logic
and its possible applications to computer design. However, it turned out that
minimalist philosophies had to be redefined as parts integrating more complex
computer design strategies.

Most of these simple, small computers started off as either thought experi-
ments or as experimental machines before a commercial version would be mar-
keted. These commercial versions, quite pragmatically, modified the initial ex-
perimental concept considerably, they appeared in the latter half of the 1950s.
The idea was to build a (relatively) cheap machine, hence the economy of (ma-
chine) instructions and of hardware elements and the combination with a mag-
netic drum memory, which was the cheapest kind of memory on the market in
the early 1950s. The ACE-computer (1949) was redeveloped into the commercial
Bendix G-15 by Harry Huskey (1955) (see section 3). Van der Poel’s ZERO ma-
chine, built as an experimental machine in the Netherlands (1952) was the basis
for his ZEBRA (1956) that was commercialized by STANTEC (1957). Stanley
Frankel’s MINAC (1954) was the model for Librascope’s LGP-30 (1957), and,
finally, at MIT, the transistorized TX-0 (1955) was an experimental machine to
test transistors and would, eventually, serve as the blueprint for DEC’s PDP-1
computer (1960).

Except for the TX-0 at Lincoln Lab, which had an advanced ferro-magnetic
core memory, all these computers used a magnetic drum memory, being the
cheapest and quite reliable memory on the market back then. Because the
drum revolved rather slowly, in comparison to the addition time, techniques were
developed to exploit the time in between drum cycles. There is “a minimum
interval between the location of the command and its operands or operands [...]
attention to these minimum (coding intervals in construction of a program is
called minimum access programming” [40, p. 173] Using minimum access coding
(or optimum coding or minimal latency coding as others would call it), viz.
letting multiple instructions execute within a drum cycle, ERA’s engineers, who
were the experts for magnetic drums, achieved speedups, making, e.g., matrix
inversion 50 times faster. (Turing’s ‘optimum coding’ mentioned in Section 3
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is close in spirit to this minimum access programming, though it exploits the
cycles of the delay lines rather than the magnetic drum.)

Another hardware innovation of the 1950s was also used by a number of
these small machines: microprogramming. Maurice Wilkes and John Stringer
had published a description of this hardware technique in 1953 [65], though
the idea had been discovered independently by a number of other engineers.
Microprogramming is an example of engineering minimalism. The idea was
to economize on the hardware parts by analyzing programming instructions as
sequences of machine transfers and signals.

While arithmetic operations are usually considered as basic by pro-
grammers, to the engineer it is simpler operations, namely shifts and
transfers, that are basic. Microprograming is the same process as
programming, but with engineering operations as the basis. The dis-
tinction between microprogramming and programming is a question
of drawing a line between the machine’s control and the programer’s
control. [56, p. 74]

A sequencing control unit, often a matrix circuit, “brings the machine to life by
supplying the pulses which cause the suboperations required in the execution
of an order to take place.” [66, p. 19] These so-called microprograms could be
hardwired in the machine. Most vendors did not provide the user access to this
matrix, but the user could pay the vendor extra to provide a new microprogram
to be wired in the matrix. The design of the sequences was generally not guided
by a systematic logico-mathematical framework (with the possible exception of
a Boolean West Coast ‘rational design’ as Wilkes seems to suggest [66, p. 20]),
though experience and context provided the pragmatic guidelines to decide on
how and which microprograms to provide. The microprogramming idea proved
to be a useful hardware medium to implement the small computer designs of
the 1950s: the Zebra used a (rather slow) sequencing unit, and the Bendix G-
15 and the TX-0 extensively used a magnetic core matrix to stimulate various
microprograms.

5.1 From ZERO to ZEBRA

In Europe the Dutch engineer Willem L. van der Poel pioneered investigations
into the structure of simple digital computers. Van der Poel had been recruited
as a graduate student in 1947 to work on the ARCO, a relay-based “all-round”
calculating machine, a “self-thinking” device. ARCO was a project started
by Nicolaas G. de Bruijn (1918–2012), who had just been appointed professor
in Delft. Leen Kosten, head of the Mathematics Department of the Central
Laboratory of the PTT in The Hague, ensured that de Bruijn’s project in
Delft would receive multiple relays “for loan.” Immediately after graduation in
1950, van der Poel joined Kosten’s team to finalize the ARCO’s construction,
a machine that was later coined “the TESTUDO” (turtle) due to its extremely
slow execution speed.
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Van der Poel had characterized the most essential problems for the Delft
project as “programming problems”.

Solving a problem by programming amounts to choosing an appropriate
set of instructions. Of course, the challenge is to accomplish as much as
is feasible with as few instructions as possible. [41, p. 60]

At PTT, Kosten and van der Poel decided to build a radically new, digital,
calculating machine, the PTERA, [PTT Elektronische Reken Automaat” (PTT
Electronic Calculating Automaton)] which differed greatly from the TESTUDO
(more details in Kranakis [29, p. 70-72]). Many years later, van der Poel de-
scribed the transition from the TESTUDO to the PTERA as a transformation
from “pre-von-Neumann” machines to “post-von-Neumann” computers.

[The TESTUDO] was still a pre-von-Neumann machine. At that time I
did not yet have the idea to store instructions and numbers in the same
memory. I became aware of that idea when I read the famous report
‘Preliminary discussion of the logical design of an electronic computing
instrument’ of Burks, Goldstine and von Neumann [. . .] [45, p. 8]

In 1952 then van der Poel’s knowledge of the literature (next to IAS-reports also
Shannon and Turing) became applied in what he later called his “most beautiful
machine ever”: the ZERO machine which had only 7 instructions. The ZERO
was really an experimental machine which “not meant as a practical computer,
but only serves the purpose of gaining experience” [42, p. 368]. The idea was to
build the simplest possible computer taking into account at least some practical
limitations [42, p. 367]:

In this article will be described the logical principles of an electronic
digital computer which has been simplified to the utmost practical
limit at the sacrifice of speed.

The ZERO’s beauty indeed exemplified economy of design and logical minimal-
ism as the following examples show. Van der Poel used the same register to
serve both as accumulator and control register. He avoided expensive multipli-
cation and division components in hardware by programming them in terms of
addition. He implemented the addition of two numbers in one and the same elec-
tronic component by means of bit-wise addition sequentialized in time. (These
last two design choices led to slow computers.) Finally, van der Poel resorted
to four “functionally independent bits” [42]. One bit b1 expressed whether the
machine’s instruction had to read something from (b1 = 0) or write something
to (b1 = 1) the drum. Another bit b2 independently expressed whether the
accumulator had to be cleared (b2 = 0) or not (b2 = 1). The two bits together
(b1b2) then defined four possible combinations: 00, 01, 10, and 11. Because the
value of the first bit did not depend on that of the second and vice versa, no
control box was required and, hence, less equipment was needed, which resulted
in small and cheap computing machinery. The ZERO only existed for a couple
of months and was quickly dismantled in favor of the PTERA.
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However, because usability would suffer, van der Poel did not push the min-
imalist philosophy to its limits on the ZERO: “Of the seven instructions that
are possible only three are strictly necessary [...] Of course, many more instruc-
tions, even for quite simple programs, are then required.” [42] Later, in his
PhD [43] he would go further. First, van der Poel made an analysis of the 7
instructions, remarking that, e.g., shift instructions can be omitted because (on
a binary machine) shift to the left is actually doubling, a number, or, a number
once added to itself. He concluded, “there are left the operations store with
clear (T), add (A), subtract (S), jump (X) and some form of test order.” [43,
p. 95] But one could do with less, van der Poel showed how subtraction could be
done using additions (and vice versa), and also how a test order is not strictly
necessary. “It is a widespread opinion that automatic computers are universal
because they have a facility to discriminate, a test order” [43, p. 96], but van der
Poel showed it is superfluous, or rather, that one out of the three orders (test,
shift to the right and conjunction) suffice to build the other two. This leaves
only the order X, S and T, but “S and T can be combined into a single order”
which is Bn, it substracts n from the value in the accumulator and stores the
result [43, p. 97]. Van der Poel concludes: “Now the machine only knows two
types of instructions X and B. As a last step we shall discuss the cancelling of
the X-operation.” [43, p. 98] This is done by automatic alternating between B
and X orders. Depending on the n of Bn, the machine simply jumps to the next
line, or (if n = 0) jumps to the next line and interprets the next Bn as jump
to location n. This led ultimately to the one-instruction machine, the so-called
“purely one-operation machine”, that is “a purely jumpless machine” without
“disguised jump”. Van der Poel showed the possibility of this one instruction,
going over all three registers (accumulator, memory and control register), first
extracting 0 or 1 (in case of 1 a B instruction will be executed, in case of 0
an X instruction), followed by a quite intricate round of transfers between the
registers [43, pp. 100-102]. At the very end of his dissertation van der Poel
concluded:

It is more a question of economy to determine the optimum capacity
of the store, and the complication of the operational part, in relation
to the speed and the price. It is very remarkable that the ZERO is
already a practicable machine, though it is hardly more complicated
than the one-operation machine, which is completely impractical.
[43, p. 105]

In other words, there is a trade-off between the size of the instruction list and the
working memory available, a one-instruction machine would need much memory
all the time to be workable, whereas a machine with a reasonable number of
instructions can do with less memory.

Given his combined experience with the ZERO and the PTERA, van der
Poel started on another computer known as the ZEBRA, the “Zeer Eenvoudig
Binair Rekenapparaat” (Very Simple Binary Calculating machine) which he
described at length in his 1956 Ph.D. dissertation [43], supervised by professor
van Wijngaarden from the University of Amsterdam. It was inspired by ZERO
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Figure 3: The STANTEC ZEBRA computer. The blackboard displays a typical
example of Van der Poel’s programming style with arrows indicating the timing
relationships between the instructions.

and built to resolve some practical problems, mostly related to speed, of the
PTERA. Just as ZERO, it made extensive use of the functional bits, though
there were now 15 rather than 4 bits. Moreover, it strove for “complete duality,”
between the fetching of an instruction (which allowed jumps) and the execution
of some operation. This was achieved in the ZERO by setting the X-bit to 0 or
1; in the ZEBRA this technique basically remained unchanged. Van der Poel
realized fully well that “this is seldom of practical importance” [43, p.18-19].

Neither the PTT , nor Philips, showed interest in building the ZEBRA. The
firm ZUSE did but not for long. It was the English company STANTEC
which eventually manufactured the ZEBRA from 1957 onwards, delivering dozens
of ZEBRAs throughout Europe [29, p.74]. The lively correspondence between
the users of those machines led to the formation of the ZEBRA club, with van
der Poel at its center. Van der Poel’s style of computer design and his comple-
mentary approach to computer programming (described below), along with the
ZEBRA user club, made him an influential computer pioneer in the 1950s and
1960s [2].

The construction of a machine which is considered to be the practical ap-
proximation of the ideal of a one-instruction computer however also had one
major drawback: speed. Combined with the very lengthy programs required
because of the limited number of functional bits, it was not practical enough.
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It is for that reason that van der Poel developed intricate programming tricks,
exploiting his thorough knowledge while programming. Specifically, he per-
fectionized two already existing techniques, optimum coding and underwater
programming. Optimum coding essentially meant accessing the drum econom-
ically; e.g., by interleaving instructions and data on the drum in conformance
with the way the program would behave. The drum was, after all, the slowest
part of the computer. The common practice of independently storing instruc-
tions and data on the drum, resulted in several drum rotations (during program
execution). To reduce the number of drum rotations, van der Poel opted for a
less orderly solution by interleaving the instructions and the data on the drum
in conformance with the order in which they would be called by the proces-
sor [62, p.26]. Underwater programming amounted to minimizing the drum
accesses; e.g., by copying an instruction I from the drum to the registers and
subsequently modifying the contents of the registers in order to transform I into
the next instruction I ′, and I ′ into I ′′, and so forth. Until the drum was ac-
cessed a second time, the program was executing “under water,” using van der
Poel’s terminology [13]. The reduced number of accesses to the drum allowed
the program to maintain a high execution speed. It was not easy to circumvent
the drum by exclusively resorting to the registers. To be successful in this re-
gard, the underwater programmer had to have a thorough understanding of the
machine. However, as the STANTEC manual noted: “a good deal of skill and
experience is required in the programmer”. Therefore a Simple Code was devel-
oped that could be used instead of the Normal Code: “a special instruction code
known as the ‘simple code’ has been devised, which works in conjunction with
interpretive routines stored in the machine” [60, p. 13]. Using this interpreta-
tive programming language “day to day problems” could be programmed “after
brief training”, making the machine only “one-sixth to one-fifth”, sometimes
even “half as fast” as when operated under Normal Code [60, p. 14]. Without
the support for optimum coding and underwater programming and the develop-
ment of the Simple Code, van der Poel’s aesthetically pleasing machines would
have remained both slow and difficult to program, and, as a result, economically
unattractive.

5.2 Frankel’s MicrocephalAC and the LGP-30

Stanley Frankel was a physicist who had been part of the Los Alamos team that
had used the ENIAC for their calculations back in 1945-48. After that period,
Frankel became a professor at CalTech, but remained interested in computing,
in particular in developing a small and cheap computer. Through his contacts
at Hughes Aircraft, Frankel got free diodes and thanks to his consultancy at
Northrop he became familiar with the usage of Boolean algebraic equations in
computer design, typical of the Western Coast style of designing computers [55].
Together with a CalTech student, James Cass, Frankel managed to (partially)
build a small computer, the MINAC (1954). Frankel subsequently sold his idea
to Librascope who had been interested earlier in Huskey’s design, but lost the
bid to Bendix. With James Cass as main engineer, they developed the LGP-30,
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Figure 4: Librascope’s General Purpose computer LGP-30.

LGP standing for Librascope General Purpose.
Frankel’s machines had a theoretical background that was laid out in three

journal articles. The first explained how a small computer with a magnetic
drum could be a general-purpose machine, using Turing’s 1936-paper:

One remarkable result of Turing’s investigation is that he was able to
describe a single computer which is able to compute any computable
number. He called this machine a universal computer. It is thus the
‘best possible’ computer mentioned. [...] This surprising result shows
that in examining the question of what problems are, in principle,
solvable by computing machines, we do not need to consider an
infinite series of computers of greater and greater complexity but
may think only of a single machine. Even more surprising than the
theoretical possibility of such a ‘best possible’ computer is the fact
that it need not be very complex. The description given by Turing
of a universal computer is not unique. Many computers, some of
quite modest complexity, satisfy the requirements for a universal
computer. In particular, it will be seen in the following that any
of the modern general purpose computers, such as the relatively
simple LGP-30, is a universal computer, as is the Analytical Engine
mentioned previously. We now have a partial answer to our question
as to the range of problems which can, in principle, be solved by a
general purpose computer (GPC); namely: What one GPC can do
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Figure 5: Frankel’s Boolean equations for the LGP-30.

so can another. [17, p. 635]

For the LGP-30, using a 4-bit-order-code, 16 instructions were chosen. While
one instruction normally would take 17 microseconds, due to the speed of the
magnetic drum, “by exercising moderate care in coding”, this could be sped up
by a factor of four.

Memory locations are so spaced around a track of the drum that
eight word periods elapse between the presentations of two consecu-
tively numbered words (in particular, two consecutively obeyed in-
structions). Problems may be so planned that the operand word
usually appears in one of the middle six of these word periods. Plan-
ning a problem in this way is called “minimum latency coding.” [17,
p. 638]

This minimum latency coding is yet another name for the typical magnetic drum
technique appearing on the ZEBRA as “optimum coding” or on the Bendix G-15
as “minimum acces coding”.

In a follow-up article, Frankel dug deeper into the question of small, general-
purpose machines. In “The Logical Design of a Simple General Purpose Com-
puter” [18], Frankel explicitly deduces the more than 40 logical Boolean equa-
tions that describe the logical structure of the LGP-30 (see figure 5). In 1958,
Frankel went for the “minimum logical complexity” in his description of the
M’AC (MicrocepalAC) [19], whose informal description resembles a Turing ma-
chine:

22



The computer described here is designated M’AC (from Microcepha-
lAC). Its memory organ is a magnetic tape which presents and re-
ceives information in several channels. Each of two channels is served
by two heads spaced by integral multiples of the distance correspond-
ing to a digit period. One of these channels acts as a circulating
register: the first of its heads records a bit in each digit period, the
second (in the direction of tape motion) presents to the computer
proper the bit which was recorded in a correspondingly earlier digit
period. The other of these channels holds the main memory. [19,
p. 283]

In spite of the stored-program idea, in actual computers, storage and working
memory are neatly separated, as are numerical and programming data. For
his theoretical ‘paper’ machine M’AC, however, Frankel used one and the same
tape both as register and as memory, though they are separable because of their
numerical spacing.

Pursuing his analysis, Frankel noted that three distinguishable operations
suffice for general-purposeness:

The elementary operations of M’A C are intended to provide a mini-
mum set of operations into which the activities of a computation can
be broken. [...] The basic set of operations required for a gpc thus
appears to be 1) subtract, 2) record in memory, and 3) branch. It is
not necessary, however, that these operations have separate orders.
In M’A C each instruction execution accomplishes all three of these
operations – a number read from memory (by head M) is subtracted
from that held in the circulating register, the result is simultaneously
recorded in memory (by head M*), and the next instruction is then
read either from M or from M*, depending on the outcome of the
subtraction. [19, p. 284]

Pushing three instruction into one, Frankel established one kind of minimal
machine, the one-instruction general-purpose machine that can be described
by a mere seven logical equations (see figure 6). But this machine is hardly
practical, because, as Frankel remarked, “the simplification of reducing the order
list to one item is obtained at the cost of less efficient use of memory capacity
and greater complexity of the programmer’s task.”

5.3 The TX-0 at Lincoln Lab

At MIT’s Lincoln Laboratory, another kind of small computer was developed,
called the TX-0 (1956-1958). The Semi-Automatic Ground Environment (SAGE)
project had been the start for Lincoln Laboratory and they had developed the
Whirlwind computer as its central data processor. They had also built a copy
of the Whirlwind, the Memory Test Computer (MTC), for testing the newly
developed ferrite-core magnetic memory technology (1953). Now, for testing
yet another new and promising technology, transistors, a team at Lincoln Lab
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Figure 6: Frankel’s Boolean equations for the M’AC.

started out to build a test computer before embarking on the development of
a transistor-based remplacement for the Whirlwind (that would ultimately be-
come the TX-2). This test computer was the TX-0, it pioneered the use of
transistors but also some ideas that would only become current in the era of
personal computing.

As Wesley A. Clark, the main engineer on the project, stated [8]:

“Well, all right, let’s build the smallest thing we can think of,” and
designed the TX-0, which was very primitively structured and quite
small, quite simple - small for the day. Not physically small - it took
lots of space; it still took a room.

The TX-0 was designed as an experimental machine, testing both transistors
and elaborate input/output facilities, as a test-case for the monumental TX-
2. Interestingly, the design of the TX-0 was done by a group of engineers
who had been immersed in mathematical logic and computers. From October
1955 to January 1956 the engineers at Lincoln Laboratory had followed an
intensive course on “the logical structure of digital computers”, organized by
Wes Clark. The course was part of discussions “about the various possible
minimal machines” that could be designed [7, p. 144].

Clark’s course contained six courses, each part building on the previous one:

• The Turing machine: a basic introduction to the Turing machine concept

• The universal Turing machine (2 courses)

• Boolean Algebra

• Synthesis of Boolean machines (2 courses), including a discussion on the
Sheffer stroke as candidat for sole building block in designing circuits.
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Clark had used Moore’s 1952 article as the main source for the part on Turing
machines and his small universal machine was explained in detail. As Clark re-
marked, this universal machine constitutes a “critical complexity beyond which
no further increase in generality can be guaranteed!” [6, p. 13] During the course,
Clark followed Moore’s encoding and construction, but mashed the three tapes
back into one tape using a specific encoding scheme.

The part on Boolean logic, apart from the obvious reference to Shannon,
relied mostly on work done by Richard C. Jeffrey and Irving S. Reed at Lincoln
Lab. The connection between Turing machines and Boolean logic was quite
essential, the Boolean logic was considered as the lower-level description of the
Turing machine.

The symbol-printing operations in a Turing machine can be de-
scribed in terms of the tape cells themselves. For example, a ma-
chine which performs the sequence “If cell A holds “1” or if cells
B holds “0”, print “1” on cell C is described by the stamement:
A1orB0 : C1”’ The manipulative aspect of this notation can be ex-
ploited in demonstrating that the rules for printing symbols define
a Boolean algebra” [6, p. 26]

The course ends with the development of minimal circuits for encoding and for
cyclic counting.

It is remarkable that this group of engineers familiarised itself with rather
advanced techniques from mathematical logic to develop a transistor-based com-
puter. How much of the logical minimalism taught in Clark’s course found its
way into the TX-0’s design is difficult to evaluate, but it surely was important
in their development of minimal modules (such as flip-flops) that could be stan-
dardised for use in building the TX-0 and TX-2. As Kenneth Olsen, who did
the circuit design, remarked, “circuits which are repeated often were designed
with as few components as possible.” [35, p. 100] And because transistors were
physically better behaved than vacuum tubes, they could be formalised more
easily “transistors also can give improvements in speed and tolerance to param-
eter variations, and that they lend themselves to standardized building blocks.”
[35, p. 98]

As was the case with the other small machines, the minimal architecture of
the TX-0 entailed a rich unfolding of programming practices. The TX-0 itself
only had a small instruction set of four instructions:

1. sto x, place the value of the accumulator in the register

2. add x, add the value in the register to accumulator

3. trn x, if the value in the accumulator is negative, take next instruction
from register x, if positive, go to the next instruction

4. opr x, execute an operate class command
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Figure 7: A block diagram of the general structure of the PDP-1. The triangle
of Accumulator, Memory Buffer and In/Out register echoes the TX-0 design.

The fourth opr command triggered an elaborate vocabulary of ‘class commands’,
viz. the operands of the opr command are actually special bit-encoded instruc-
tions. Through the class commands, a wide rang of specially wired micro-
programs could be addressed. Because of its processing speed (thanks to the
transistors) and its large and fast memory (thanks to the ferrite core memory),
the TX-0 was much faster than the other small machines discussed here (Bendix
G-15, LGP-30 and ZEBRA), all using tubes and a much slower magnetic drum.
This made it worthwhile to not only have a potent interpretive routine (as had
the Bendix G-15 and the ZEBRA), but also interactive command-line like fea-
tures. A versatile symbolic assembler language and a powerful interpretative
routine, the Direct Input routine, were programmed for the TX-0 along with
many utility routines. Moreover, the TX-0 possessed a range of interactive possi-
bilities: a flexowriter, a cathode ray tube, and later, a light pen. In combination
with the interpretive routines, this made for an interactive system.

When DEC would later develop its PDP-1, the first minicomputer, it would
take its cue from the TX-0 design [1, pp. 124-128]. Ben Gurley, the head engi-
neer, had worked on the Whirlwind and its successors, and now transported his
know-how to the PDP-1. The idea of standardized building blocks was pursued,
but also parts of the general design. While the number of registers was reduced,
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they kept the core of three registers that pulse the flow of information: an ac-
cumulator, a memory buffer and and an I/O register (called live register on the
TX-0). The instruction set was, as with the other commercial versions of small
computers, expanded. Instead of just four, 28 instructions would be included,
plus a great number of microprograms known as the “Operate Group”.

6 Discussion

Computer science as a practice was, from the beginning, characterized by the
coming together of different practices, most notably, mathematics and logic
on the one hand and engineering on the other. By studying how, throughout
the history of computing, these different practices came to be intertwined to
build computers or to develop programming techniques, it becomes possible
to make transparent how formal and engineering practices really constitute a
new discipline that can perhaps not be classified using old schemes and fences.
Within computing itself, many people have pointed out the multidisciplinary
nature of computing and have invested a lot of work into bringing together
different approaches (see, e.g., the final ACM/IEEE committee report on the
core of computer science [16], cf. with [57].) The challenge then is to pick
up the relevant theoretical ideas and unravel how pure theory is transmuted
into technology (and conversely) to constitute a practice that can be reduced to
neither.

Seen from this angle, the Turing machine has often been hailed as a most
practical outcome of the foundational debates of the early 20th century, the
positive face of the negative Entscheidungs-result. But as we have shown here,
it also fits in a tradition of logical minimalism: the search for a minimum of op-
erations, of axioms, of length of propositions etc. This facet of logical research
proved to be quite useful in the early days of computing when the results from
mathematical logic were ported to computer design and programming. Such a
transformation was pioneered by people like Curry, von Neumann and Turing,
but was further exploited in the 1950s leading to commercial computer designs
such as the STANTEC ZEBRA, Bendix G-15 or LGP-30. There also was a
reverse influence: the (informal) fact that four elementary instructions suffice
to compute anything computable, that nowadays belongs to the lore of theo-
retical computer science, is constituted during this encounter between logic and
engineering in the 1950s.

After 1960, the search for an optimum in combining a minimum of elements
to have a general-purpose computer became less pressing, due to the arrival
of new, very scalable technologies (especially transistors) and cheaper and/or
faster memories. However, the topic would remain quite important in theoret-
ical computer science, mostly because it provided a simple model (such as the
register machines) for theoretical research on computers. More even, triggered
by Minsky’s results on constructing small universal Turing machines, a kind
of competition on the smallest machine developed during the 1960s (cf. the
survey in [67]). Of course, the question of simplicity would remain relevant for
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computer engineers. For instance, in the 1980s there was a debate between the
RISC (Reduced Instruction Set) and CISC (Complex Instruction Set) philoso-
phies for developing microchips, where the RISC proponents sought to minimize
the instruction set to achieve higher effiency.

Though hardly any detail of Turing’s original construction of a universal ma-
chine made its way into an actual computer, the very idea that 1) such a thing
as a universal machine exists, and 2) it does not need more than 4 or 5 instruc-
tions, was very important to this select group of engineers. It helped them to
articulate the essence of the ‘general-purpose’ character of the digital computer.
They all remarked that there was no need to complexify computer architecture
beyond a certain point to make it more general-purpose, actually, quite a sim-
ple machine already sufficed. Although both van der Poel and Frankel deduced
a one-instruction machine (be it in quite different ways!), this was merely a
theoretical game, proving a lower bound on the set of instructions. More im-
portant was the question of van der Poel of finding an optimum, since every
simplification of hardware brought on a complexification of software. There was
more or less an implicit consensus around Turing’s number of four instructions,
certainly including store, add (or subtract) and a conditional transfer. In prac-
tice, most computers actually built rather had 16 instructions (Bendix G-15,
LGP-30, ZEBRA) or a special order addressing tens of microprograms (TX-0).

In the process of porting a rather theoretical paper machine to actual com-
puters, the tradition of using Boolean logic in developing switching circuits
proved to be important. Although Shannon’s methods did not immediately
and easily extend to design complex machines such as computers, progress was
made. The Boolean equations used at Northrop (used by Frankel) or Jeffrey and
Reed’s algebra (used in the TX-0) helped to translate a theoretical model into
actual, minimal circuits. Further, the microprogramming hardware technique
was important to implement in a flexible way the minimal machine instruction
set, both on the Bendix G-15 and on the TX-0. On a still more concrete level,
all machines needed a capable engineer to make them work. Huskey, though
himself a capable engineer, had the help of Robert Beck; Frankel was helped by
James Cass; and at Lincoln Lab a number of engineers, such as Wes Clark, Ken
Olsen or Ben Gurley were working on the TX-0.

The minimalist philosophy in computer architecture necessarily had to adapt
itself to the realities of the time, money and hardware available. Instead of in-
finite tape, lots of time etc. that abound in theoretical research, the computer
engineers had to find a compromise between different trade-offs. A simple logi-
cal structure of the computer asks for extensive programming possibilities and,
if possible, more (and faster) memory. In the practice of the 1950s, this meant
magnetic drum memories, a bit slow, but reliable and cheap. Because, together
with the small instruction set, this might cripple the processing speed of the
machines, special programming techniques such as optimum or minimum la-
tency coding were developed. But for finding a commercial market for these
machines, this was not enough. Van der Poel developed his Simple Code, user
groups developed libraries of subroutines for the Bendix G-15 and the LGP-30.
Especially Harry Huskey was very active in developing interpretative schemes
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such as the Intercom system to make the G-15 computer more accessible for a
variety of users that did not necessarily wanted to wade through the intricacies of
machine coding. The TX-0, as the expensive experimental machine it was, had
the luxury of lots of fast memory. Therefore, a new kind of programming style
altogether could be developed, an interpreted command line with many utility
routines and some interactive possibilities at the fingers of the programmer.

Nowadays one can find claims on the internet that the Bendix G-15, the
LGP-30 or the TX-0 were the first personal computers, but this is, of course,
anachronistic. These computers did provide blueprints for the architecture of
minicomputers in the 1960s. The TX-0 inspired the PDP-1 design, and the
Bendix G-15, through its family member, the Packard Bell 250, had an influence
on the first SDS minicomputer. But none of these small computers from the
1950s are based on a microprocessor and none was developed for a mass market
of personal users. On the contrary, the market these small computers addressed
were the smaller businesses and universities that could not afford the bigger
computers. They were also often used, even by bigger institutes and companies,
as a cheap and flexible data-processing solution for handling communication
with special-purpose machines. And these computers were rather successful at
that too if one looks at the sales numbers they achieved.
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