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Several older and more recent results on the boundaries of solvability and unsolvability in tag systems
are surveyed. Emphasis will be put on the significance of computer experiments in research on very
small tag systems.

1 Introduction

Tag systems were invented and studied by Emil Leon Post during his Procter fellowship at Princeton
during the academic year 1920-21 [20, 21]. Although Post never wanted to work on these systems again,
he was convinced that they are recursively unsolvable. This was proven by Minsky in 1961 [10]. He
showed that any Turing machine can be reduced to a tag system with v = 6, where v denotes the number
of deleted letters (see Definition 1, p. 16). This result was improved by Cocke and Minsky to v = 2
[4, 11].
Minsky was the first to construct a very small universal Turing machine that simulates 2-tag systems [11].
The machine has 7 states and 4 symbols. Minsky’s machine, however, has a defect: it erases its output
before halting. Hence, it is not a truly universal machine. Nowadays, tag systems still play a fundamental
role in the race for finding small universal systems. I.e., many small universal systems are proven to be
universal through simulation of 2-tag systems, or some variant of tag systems. For example, Rogozhin
[23] constructed several small universal Turing machines by 2-tag simulation and improved Minsky’s
machine. It uses less instructions and does not erase its output before halting. Neary and Woods [17]
found a universal Turing machine with 6 states and 4 symbols, simulating what they have called bi-tag
systems, a variant of tag systems. For an overview on small universal systems we refer the reader to [7].
Given, on the one hand, the simplicity of the form of tag systems, and, on the other hand, their com-
putational power, tag systems are also possible candidates for finding the “simplest” possible universal
system. Because of this simplicity, they are also very suitable to be implemented on and studied with the
help of the computer. These reasons motivate more research on tag systems for their own sake.
In this paper we will survey and discuss several older and more recent results on tag systems. The main
focus of the paper are results connected to finding small universal tag systems. We will consider two
main approaches: a more theoretical (Sec. 2) and a more heuristic approach (Sec. 3). Emphasis will
be put on the significance of experimental research on very small tag systems, the largest portion of
this paper being devoted to a summary of previously unpublished results from computer experiments on
tag systems. The motivation behind these experiments is that, for now, complementing theoretical with
more experimental methods seems to be the best method available to come to a better understanding of
the complex behavior of very small tag systems.

∗This research was supported by the Flemish fund for Scientific Research – FWO, Belgium and the Kunsthochschule für
Medien, Köln.



16 On the boundaries of solvability and unsolvability in tag systems

1.1 Definitions and notational conventions

Definition 1 A tag system T consists of a finite alphabet Σ of µ symbols, a number v ∈N and a finite set
of µ words w0,w1, . . . ,wµ−1 ∈ Σ∗, called the appendants, where any word wi corresponds with ai ∈ Σ.

Given an initial word A0 ∈ Σ∗, the tag system appends the appendant wi associated with the leftmost
letter a0,i of A0 at the end of A0, and deletes the first v symbols of A0. This computational process is
iterated until the tag system halts, i.e. produces the empty word ε . If this does not happen the tag system
can either become periodic or show unbounded growth.
To give an example, let us consider the tag system mentioned by Post with v = 3, 0→ 00, 1→ 1101 [20].
If A0 = 001101 we get:

001101
10100

001101
The word A0 is reproduced after 2 computation steps and is thus an example of a periodic word. Post
called the behaviour of this tag system “intractable”. He also mentioned that he studied the class of tag
systems with v = 2,µ = 3 and described it as being of “bewildering complexity” and as “[. . . ] leading to
an overwhelming confusion of classes of cases, with the solution of the corresponding problem depending
more and more on problems of ordinary number theory.” [21].
Post considered two decision problems for tag systems, which we will call the halting problem and the
reachability problem for tag systems.

Definition 2 The halting problem for tag systems is the problem to determine for a given tag system T
and initial word A0 whether or not T will halt when started from A0.

Definition 3 The reachability problem for tag systems is the problem to determine for a given tag system
T , a given initial word A0 and an arbitrary word A ∈ Σ∗, whether or not T will ever produce A when
started from A0.

Note that the halting problem is a special case of the reachability problem.
In the remainder of the paper we will use the notations and definitions given in this paragraph. In what
follows, TS(µ,v) denotes the class of tag systems with deletion number v and µ symbols. Now, let T be
a v-tag system in the class TS(µ,v) and appendants w0,w1, . . . ,wµ−1. Then:
a. lA denotes the length of word A.
b. lmax denotes the length of the lengthiest appendant wi, lmin the length of the shortest appendant w j,
0≤ i, j < µ .
c. T is said to have unbounded growth on word A0 iff. for each natural number n there exists an i such
that for each j > i, any word A j produced after j computation steps of T on A0 has length greater than n.
d. A word A = a1a2 . . .alA is said to be a periodic word with period p if there is a p such that T will
reproduce A after p computation steps of T starting from A.
e. The set of words [P] is called a set of periodic words with period p when for any Pi,Pj ∈ [P],
1≤ i, j ≤ p, T produces Pj from Pi after at most p computation steps.
f. The periodic structure, S, of a periodic word S = a1,Sa2,S . . .alS,S is the word
a1,Sav+1,Sa2v+1 . . .alS−(lS−1 mod v),S.
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2 Theoretical Methods and Results.

2.1 Decidability Criteria for Tag Systems

The results by Cocke and Minsky (Sec. 1) were generalized by Maslov. He proved that for any v > 1
there is at least one tag system with an unsolvable decision problem [8] and furthermore proved that
any tag system with v = 1 has a recursively solvable halting and reachability problem. This was proven
independently by Wang [26], and about 40 years earlier by Post. It thus follows that the deletion number
v is one decidability criterion [7] for tag systems with v = 2 as the frontier value.
Another such criterion is the length of the appendants. Wang proved that any tag system with lmin ≥ v
or lmax ≤ v has a solvable halting and reachability problem [26]. He also proved that there is a universal
tag system with v = 2, lmax = 3, lmin = 1. This result was proven independently by Maslov [8]. Minsky
and Cocke also constructed a universal tag system with the same parameters [3]. This criterion was also
studied by Pager [19]. It follows from these results that lmax−v resp. v− lmin are decidability criteria for
tag systems with 1 as the frontier value.
A third decidability criterion is the number of symbols µ . Post proved that the classes TS(1,v) and TS(2,
2) have a solvable halting and reachability problem. Regretfully, Post never published these results. He
does mention that the proof for the class TS(1, v) is trivial, while the proof for the class TS(2,2) involved
“considerable labor”. A proof for the class TS(2,2) has recently been established. The proof is quite
involved due to the large number of cases studied. An outline of the proof as well as a description of
the main method of proof, called the table method, can be found in [13]. Although it follows from these
results that µ is a decidability criterion, its frontier value is still unknown.
Until recently the number of symbols µ was never really studied, with Post as an exception. As a
consequence, although one has constructed the smallest possible universal tag systems with respect to
v, lmax and lmin, the value of µ for these universal tag systems is still relatively large. It follows from
the results of [3, 11] that it is possible to reduce any 2-symbolic Turing machine with m states to a
tag system with v = 2, µ = 32m. Using the universal Turing machine constructed by Neary in the
class TM(18, 2) which simulates a variant of tag systems called bi-tag systems [16, 17] or the machine
constructed by Baiocchi, which simulates 2-tag systems, in the class TM(19,2) [2], where TM(m,n)
denotes the class of Turing machines with m states and n symbols, it is possible to construct universal
tag systems in the classes TS(576, 2) resp. TS(608,2). If one would be able to construct a universal tag
system with a significantly smaller number of symbols µ it might be the case that v, lmax and lmin would
become significantly larger. I.e., it might be the case that there is a trade-off between µ,v, lmax and lmin
comparable to the trade-off between number of states and number of symbols in Turing machines.

2.2 Reduction of the Collatz problem to TS(3,2).

Let C : N→ N be defined by:

C(n) =
{ n

2 if n is even
3n+1 if n is odd

The Collatz problem is the problem to determine for any n ∈ N, whether C(n) will end in a loop C(4) =
2,C(2) = 1,C(1) = 4, after a finite number of iterations. For now, the conjecture is that any number n
will ultimately end in this loop. This has been checked for all starting values up to 10×258.
In [15] it was proven that the Collatz problem can be reduced to a tag system with v = 2, µ = 3. The
production rules are: a0→ a1a2,a1→ a0,a2→ a0a0a0. Note that lmax− v = v− lmin = 1.
The Collatz problem had previously already been reduced to several small Turing machines by Baiocchi,
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(mentioned in [7]), Margenstern [7] and Michel [9]. However, the description of these machines is longer
than that of the Collatz tag system.
These results are very significant because the 3n+1-problem is known to be a very intricate problem of
number theory. Given the complexities involved with the Collatz problem, it might thus be very hard to
prove the class TS(3, 2) recursively solvable.

2.3 Fast universal tag systems.

As was explained in Sec. 1, many known small universal systems, including Turing machines, are
simulators of 2-tag systems. However, since Cocke and Minsky’s 2-tag simulation of Turing machines is
exponentially slow, every one of these universal systems suffered from this same defect and it was thus
unclear whether or not there is a trade-off between program size and space/time complexity. However,
Neary and Woods proved quite recently that 2-tag systems are efficient simulators of Turing machines.
They proved that cyclic tag systems, a variant of tag systems, simulate Turing machines in polynomial
time and that 2-tag systems are efficient simulators of cyclic tag systems [18, 31]. These results not only
prove that there are fast universal tag systems, but, more importantly, they imply that many known small
universal systems are polynomial time simulators.

3 Heuristic Methods and Results.

”Post found this (00, 1101) problem “intractable”, and so did I even with the help of a com-
puter. Of course, unless one has a theory, one cannot expect much help from a computer
(unless it has a theory) except for clerical aid in studying examples; but if the reader tries to
study the behaviour of 100100100100100100100 without such aid, he will be sorry.”

Marvin Minsky, 1967.

Upon reading Post’s description of his research on tag systems, it becomes clear that he tested several
different tag systems, trying out several initial words for each of these tag systems, in order to come to
a better understanding of these systems, initially, with the hope of proving them recursively solvable.
Nowadays this kind of approach can be seriously extended through the use of computer experiments.
Computer experiments can indeed be useful tools to study small computational systems. The research of
Wolfram on cellular automata is one more well-known example of this kind of approach [29]. Another
example is the use of the computer to find winners of the Busy beaver game (see e.g. [22]). Computer
experiments can help to build up an intuition of a given class of computational systems, they can suggest
new approaches and conjectures, and, in some cases, might even result in a proof of a certain conjecture.
One should always be extremely careful both in the set-up of and the process of drawing conclusions
on the basis of computer experiments. Also the formulation of a conjecture should always be done with
extreme care.

3.1 Post’s tag system in TS(2,3).

Probably the most well-researched tag system is the one example provided by Post with v = 3,µ =
2,0→ 00,1→ 1101. Up to today, it is still not known whether this particular example has a decidable
reachability problem, despite its apparent simplicity. Post mentions that the numerous initial words he
tested always led to a halt or to periodicity and that he had a kind of statistical method to predict that an
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initial word would become periodic. After Post some other researchers, including Minsky [12], tested this
tag system on their computer, resulting in the same conclusion: every initial word tested resulted in a halt
or periodicity. It is mentioned by Asveld [1] that some people claimed to have found a counterexample,
i.e., the word A0 = (100)110 would lead to unbounded growth. Asveld disproved this. After 43 913 328
040 672 computation steps, the tag system halts on this initial word.
This kind of ultimate behaviour does not mean that this tag system is a very easy one to understand. On
the contrary, if one observes the computational process of this tag system the evolution of the lengths of
the words over time is highly erratic. Furthermore, the fact that the tag system behaves erratically but, in
the end, always seems to result in a halt or periodicity together with the fact that it is not unrealistic to
assume that the Collatz problem can be reduced to a very small tag system, suggests that this tag system
might be closely related to the Collatz problem. This has been suggested before by Ansveld and Hayes
[1, 6]. Proving this one tag system either solvable or recursively unsolvable could thus have an impact
on research on the Collatz problem. An interesting approach for studying this tag system would be to
deepen its possible connection with the Collatz problem.
Post’s tag system was also studied by Watanabe, who is known for his work on constructing small
universal Turing machines in the 60s (see e.g. [27]). He did not use computer experiments but made a
detailed theoretical analysis of the periodic behaviour of the tag system“as a preliminary of obtaining a
simple universal process” [28]. Let a = 00,b = 1101. Watanabe deduced wrongly that there are only
four kinds of periodic words in Post’s tag system, i.e., b2a3(b3a3)n with period 6, ba with period 2, b2a2

with period 4, or any concatenation of the last two.

3.2 Five computer experiments on the class TS(2,v)

Six computer experiments were performed on 52 different tag systems in the class TS(2,v) [14] of which
we will briefly discuss five here. The main purpose of the experiments was to come to a better under-
standing of the behaviour of very small tag systems, similar to Post’s tag system. The class TS(2,v) was
chosen because, on the one hand, it contains Post’s tag system, and, on the other hand, it allows to study
very small tag systems with respect to µ .
In the experiments 50 out of the 52 tag systems tested were selected from a randomly generated set
of tag systems. The maximum value for v was set to 15. Besides Wang’s decidability criterion with
lmax− v≥ 1,v− lmin ≥ 1 the two most important selection criteria used are heuristic in nature. The first
criterion concerns the relative proportion between the total number of occurrences #a0,#a1, . . . ,#aµ−1
of each of the symbols a0,a1, . . . ,aµ−1 in the appendants of a given tag system T . For each symbol ai,
we can measure the effect of reading ai on the length of a word A produced by T , i.e., it can lead to a
decrease, an increase or have no effect on lA. This effect is computed by lwai

− v. If we then sum up the
products #ai · (lwai

− v) for each of the symbols ai, and the result is a negative resp. a positive number,
one might expect that, on the average, T will halt or become periodic resp. show unbounded growth.
Although this is not true in general, the criterion allows for a quick selection of tag systems for which it
is not immediately obvious that they have a solvable reachability problem. It should be noted that this
criterion is based on the fact that Post’s tag system also has this property.1

The tag systems thus selected were each run with 20 different and randomly selected initial words of
length 300. If the tag system did not lead to a halt, periodicity or was not recognized as a possible case
of unbounded growth after 10.000.000 computation steps for any of these initial words, it was selected.
Since it is very difficult to track unbounded growth, we simply placed a bound on the lengths of the

1This was first pointed out by Minsky [12].
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words produced. If the tag system produced a word W with LW > 15000 it was excluded.2 From the 50
tag systems thus generated, the smallest resp. the largest v was 3 resp. 13. The smallest resp. largest
value for lmax− v and v− lmin was 1 and 4.
The other two tag systems tested are, on the one hand, Post’s tag system, and, on the other hand, a tag
system that we ourselves had already constructed and tested to some extend.

3.2.1 Experiment 1: Distribution of the three classes of behaviour

In the first experiment, each of the 52 different tag systems was run with 1998 randomly selected initial
words. The program kept track of the number of initial words leading to a halt, periodicity, the production
of a word W with lW > 15000 and the number of initial words that did not lead to either of these three
classes of behaviour after 10.000.000 computation steps. The results showed, for each of the tag systems,
that the number of initial words that produced words W with lW > 15000 was very low, varying between
0 and 43. If an initial word did lead to a halt, periodicity or the production of a word W , lW > 15000, the
program also kept track of the number of computation steps it took the tag system before any of these
three cases occurred. On the basis of this count, a plot was made for each of the tag systems showing the
number of computation steps against the number of initial words that have not led to a halt, periodicity
or the production of a word W , with lW > 15000.3

We do not have the space to give all the results here. However, it should be noted that there was a clear
variation between the different tag systems concerning the distribution of the number of initial words
that halt, become periodic, produced a word W, lW > 15000 or those that could not be placed in any of
these three classes of behavior. Most significant were the results from the plots. Fig. 3.2.1 shows two
such plots.

As is clear from these plots, the number of initial words that do not lead to a halt or periodicity, first
decreases exponentially fast but then decreases exponentially slow. Most of the plots for the other 50
tag systems are quite similar to these plots. Now, if one could generalize these plots, i.e., if one would
always get this kind of switch between exponentially fast decrease and exponentially slow decrease
in the number of non-halting and non-periodic words, whatever the length and the number of initial
words tested, these plots indicate that the 52 tag systems tested behave quite unpredictably. Indeed, this
would mean that given any n, it is always possible to find an initial word that will not have halted or
become periodic after n computation steps. Of course, this is always the case for tag systems that can be
proven to show unbounded growth, i.e., tag systems with a decidable reachability problem. However, the
results from this and experiments 3–5 make it seem quite improbable that these tag systems grow in a
“predictable” manner. Rather the evolution of the lengths of the words over time is highly erratic. More
experiments would be needed to support this.

2Note that this does not necessary mean that the tag system is really a case of unbounded growth. The reason for choosing
such a limit is that for those tag systems T ∈ T S(2,2) that have been proven to show unbounded growth, the length of the words
grows very fast. It thus seemed reasonable to assume that if one has a tag system that can be easily proven to show unbounded
growth, then the length of the words produced by this tag system will grow very fast. If this is not the case one rather expects
that as long as the tag system does not halt or become periodic the average length of the words will increase very slowly.

3Note that since the number of initial words that produced a word W, lW > 15000 was for each of the tag systems very small,
they did not have a major impact on the form of the plots.
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Figure 1: The plot on the left is the plot for Post’s tag system, the plot on the right is the plot of a tag
system v = 5,0→ 1011,1→ 010100.

Type 1 Type 2 Type 3 Type 4
∀S ∈ [P] : min(p, lS) p or p = lS p lS lS
∃S ∈ [P] : n ?= max(p,lS)

min(p,lS) X � X �

Table 1: Summary of the different types of periods.

3.2.2 Experiment 2: Periodicity in tag systems

In the second experiment the periodic behaviour of each of the tag systems was studied. Research on
periodic behaviour of a certain class of computational systems can be very fruitful. For example, Cook
used periodic words to prove that cellular automaton rule 110 is weakly universal [5].

A detailed analysis was performed on the periods produced by the initial words from experiment 1
that led to periodicity, making use of both the computer as well as the more common pencil-and-paper
method. The most important result from this experiment is that we found four basic types of periods,
summarized in Table 1.

Min(p, lS) resp. max(p, lS) gives the minimum resp. maximum of p and lS for a periodic word
S ∈ [P]. Row 2 gives min(p, lS) for each of the four types. For a set of periodic words [P] of type 1 or 2,
the period p is always smaller than or equal to lS for each S ∈ [P], for words [P] of type 3 or 4, we have
the opposite, i.e., lS is always strictly smaller than p. In row 3, if for a given set of periodic words [P] of
type x, there is a word S ∈ [P] for which max(p, lS) is divisible by min(p, lS), then X is used. If this is
not the case� is used. We will not provide examples here of each of the four types.4 In [14] types 1 and
3 were called regular types, types 2 and 4 were identified as irregular types. The fundamental difference
between regular and irregular types has several consequences. Given two sets of periodic words [P1] and
[P2] with period p1 resp. p2. If the words in [P1] and [P2] are either of type 1 or 3, then there is at least
one Wi,1 ∈ [P1] and one Wj,2 ∈ [P2], 1 ≤ i ≤ p1,1 ≤ j ≤ p2 such that any concatenation of Wi,1 and Wj,2

4An example of a period of type 1 was given in Sec. 1.1.
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is again a periodic word. It is exactly this property that allows to generate certain number sequences
with tag systems that are able to produce at least two different sets of periodic words of type 1 or 3. For
example, it is possible to produce, for arbitrary n ∈ N, any period p = 2n with Post’s tag system.5 This
kind of construction is impossible with periods of type 2 and 4.

For Post’s tag system, only words of type 1 were produced during experiment 1. However, during
several preliminary tests on Post’s tag system, we also found two different periodic words of type 4.
Watanabe never considered the possibility of periodic words of type 4. This is one of the reasons why
his conclusions on the periodic behaviour of Post’s tag system are incorrect (see Sec 3.1).

Of course, for now, we are not sure whether these are the only possible types of periods or whether the
four types found contain important new subtypes. This is one of the typical drawbacks of experimental
research. More research in this direction could be important, especially given the fact that these periodic
types provide a possible connection between tag systems and number theory. It would e.g. be very
interesting to know what kind of different number series could be produced by the periodic words of a
given tag system. Furthermore, periods of type 1 and 3 seem very promising with regard to finding small
universal tag systems with the help of a computer (Sec. 4).

It should also be mentioned here that it can be proven that tag systems T ∈ TS(2,2) are incapable
of producing words of type 2 and 4, i.e., irregular types. This is a fundamental difference between this
class, known to have a solvable reachability problem, and the classes TS(2, 3) and TS(3, 2).

3.2.3 Experiment 3 – 5: Summary of the results.

In the three remaining experiments, we tried to measure how unpredictable these 52 tag systems actually
are. The results of experiment 3 showed that each of the tag systems has a very high sensitivity to the
initial words. I.e., one small change in the initial word led to large variations in the long-term behavior
of the tag systems. This is a sign of chaotic behavior. Experiment 4 checked whether the distribution
of the 0s and 1s read in the words produced by these tag systems is random or not. For this experiment
we used Marsaglia’s DIEHARD, a battery of tests for randomness (stat.fsu.edu/pub/diehard/). Although
none of the tag systems passed all tests, there were only two that passed none of the tests, one of them
being Post’s tag system. This rather came as a surprise since Post’s tag system is known to behave very
erratically. It indicates that there might be an important difference between this tag system and 50 of
the other tag systems. We have not been able yet to study this in more detail. In the last experiment
we performed a Markov analysis on the words produced by these tag systems in order to compute their
information-theoretical entropy as defined by Claude Shannon [24]. For most of the tag systems, this
entropy was very high, some were even very close to the maximum value 1.0.

As is clear from these 5 experiments, the class of tag systems with µ = 2,2 < v < 15,1 ≤ lmax− v,v−
lmin ≤ 4 contains tag systems that behave quite unpredictably. This feature serves as an indication that
there are very small tag systems for which it might be very hard if not impossible to prove them recur-
sively solvable.

4 Discussion. In search of small universal tag systems.

As was explained in Sec. 2.1, there are three known decidability criteria for tag systems, i.e., v, lmax−
v,v− lmin and µ . The frontier value for the first two is known, the frontier value for µ is unknown. As a

5This was first noticed by Shearer [25].
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consequence, there is a significant gap between the size of the known universal tag systems and the tag
systems known to have a decidable reachability problem. Despite the relatively large size of µ for the
known universal tag systems, there are some clear indications that it might be possible to decrease µ .
The fact that the Collatz problem can be reduced to a tag system in TS(3, 2) is one such indication. The
experimental resultThere are two main approaches to tackle the problem of finding smaller universal tag
systems. The first, more theoretical, approach, is to search for a simulation of a known universal class
of computational systems by a tag system, trying to decrease µ and keeping v and lmax− lmin relatively
small. This is the standard approach in the context of finding small universal systems in other models
of computability like e.g. Turing machines. It seems quite probable that this kind of approach will lead
to smaller universal tag systems, since, until now, nobody has really searched for small universal tag
systems relative to µ .
A second, more heuristic, approach is to start from a detailed computer analysis of a specific class of tag
systems for which there are indications that it might contain a tag system with a recursively unsolvable
problem. This can be a very fruitful approach, as is e.g. clear from Cook’s proof that cellular automaton
rule 110 is able to simulate any cyclic tag system, which is based on a detailed analysis of the behaviour
of rule 110 [5, 29]. In fact, a detailed computer analysis of one of the periodic words of type 1 in Post’s
tag system, using the table method mentioned in Sec. 2.1, has shown that it might be possible to simulate
the Cocke-Minsky encoding by making use of periods of type 1 (see Sec. 3.2.2) [14]. I.e., the com-
puter analysis shows that one can do certain manipulations on these periodic words which correspond to
several of the kind of operations needed in the Cocke-Minksy scheme, like e.g. halving or doubling the
length of a subword. However, more research is needed here. One of the major problems that still has
to be solved is that one needs to find a way to synchronize every one of the individual operations on the
periodic words.
As is clear from the results discussed in Sec. 2 and 3 both approaches complement each other. For
example, the simulation of the Collatz problem in a very small tag system together with the more ex-
perimental results discussed in Sec. 3.2, have provided us with more information on very small classes
of tag systems. Especially in research on very small tag systems like e.g. Post’s tag system a combined
approach seems the most promising.
In recent years there has been some research on non-standard or more general definitions of universality
in the context of cellular automata and Turing machines (see e.g. [5, 30]). By using more general def-
initions of universality it is possible to lower the boundaries of undecidability for these computational
models. We expect that if it would be possible to prove very small classes of tag systems universal, one
would need a similar more general notion of universality for tag systems. One possibility is to consider
tag systems that cannot halt but always either show unbounded growth or become periodic.
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