
HAL Id: hal-01396832
https://hal.univ-lille.fr/hal-01396832

Submitted on 15 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Week-End Off: The First Extensive
Number-Theoretical Computation on the ENIAC

Liesbeth de Mol, Maarten Bullynck

To cite this version:
Liesbeth de Mol, Maarten Bullynck. A Week-End Off: The First Extensive Number-Theoretical Com-
putation on the ENIAC. Lecture Notes in Computer Science, 2008, 5028, pp.158-167. �10.1007/978-
3-540-69407-6_19�. �hal-01396832�

https://hal.univ-lille.fr/hal-01396832
https://hal.archives-ouvertes.fr

A week-end off.

The first extensive number-theoretical

computation on the ENIAC

Liesbeth De Mol1⋆ and Maarten Bullynck2⋆⋆

1 Center for Logic and Philosophy of Science, University of Ghent, Blandijnberg 2,
9000 Gent, Belgium

elizabeth.demol@ugent.be
2 IZWT, Gaussstrasse 20, 42119 Wuppertal, Germany and REHSEIS, Paris, France

bullynck@uni-wuppertal.de

Abstract. The first extensive number-theoretical computation run on
the ENIAC, is reconstructed. The problem, computing the exponent of 2
modulo a prime, was set up on the ENIAC during a week-end in July 1946
by the number-theorist D.H. Lehmer, with help from his wife Emma and
John Mauchly. Important aspects of the ENIAC’s design are presented
and the reconstruction of the implementation of the problem on the
ENIAC is discussed in its salient points.

Key words: ENIAC, Derrick H. Lehmer, number theory, Fermat’s little
theorem, early programming, parallelism, prime sieve

1 Introduction

Just too late to help win the Second World War, just in time to start off the
computer age, the first digital electronic general-purpose computer (See e.g. [2]),
the ENIAC, was presented to the public February 15, 1946 at Penn University.
The Ballistic Research Laboratories (Aberdeen Proving Ground) had “assem-
bled a ‘Computations Committee’ to prepare for utilizing the machine after its
completion” [1, p. 693], and the ENIAC was extensively test-run during its first
months.

One of the members of this committee was the number-theorist Derrick H.
Lehmer who spent a Fourth-of-July weekend testing the ENIAC. The Lehmer
family – Derrick, Emma and two teenage kids – arrived at the Moore school on
Friday 5 p.m. where they met John Mauchly, who was, together with Presper
Jr. Eckert, the father of the ENIAC-design. He helped them set up the ENIAC
for the implementation of an interesting number-theoretical problem and stayed
on as an operator through the week-end [10, p. 451]. Lehmer’s computation was
important to the post-war reputation of electronic computers among mathemati-
cians.

⋆ Postdoctoral Fellow of the Fund for Scientific Research – Flanders (FWO)
⋆⋆ Postdoctoral Research Grant, Alexander-von-Humboldt-Stiftung

2 Liesbeth De Mol and Maarten Bullynck

The ENIAC was an electronic and highly parallel machine. As a consequence
it was revolutionary fast in its time. However, setting up a program on the
ENIAC was time-consuming. The original control system of the ENIAC was de-
centralized, its elements were distributed over the different units of the machine.
The programming had to be done “directly”, i.e., there was no converter code,
let alone a programming language available to set up a ‘program’. Instead, one
had to connect the different parts of the machine through cables and adaptors.
Only in 1948 was the ENIAC rewired into a serial computer that could be set
up using a converter code that selected subroutines from a function table, thus
simulating a stored-program computer [11]. The original “local programming”
method can best be described “as analogous to the design and development of
a special-purpose computer out of ENIAC component parts for each new appli-
cation.” [3, p. 31] Or as Jean Bartik, one of the ENIAC’s female programmers,
put it: ‘The ENIAC was a son-of-a-bitch to program.’

The particularities of programming the ENIAC make it interesting for present-
day computer scientists. As W.B. Fritz, one of the ENIAC-operators remarks:
“Anyone now doing research in parallel computing might take a look at ENIAC
during this first time period, for indeed ENIAC was a parallel computer with
all of the problems and opportunities this entails.” [3, p. 31] More importantly
even, ‘programming’ the ENIAC invites one to question many things taken for
granted nowadays, amongst them the relation between the user and the machine.

In this paper, we will present Lehmer’s problem and show how to set it up
on the ENIAC. Given the complexity of ‘programming’ (actually wiring) the
ENIAC, we will not be able to provide all details here. Instead we will merely
outline our reconstruction, providing details only for certain aspects of the set-
up.3

1.1 How a number-theorist got involved with computers

Derrick H. Lehmer (1905-1991) was born into number theory. His father, Derrick
N. Lehmer, was a reputed number-theorist, best known for his factor table up to
10,000,000 and his stencil sheets to find factors of large numbers. Already as a
young boy D.H. devised a way, using bicycle chains, to mechanize these stencils,
building the first electro-mechanical number sieve in 1926, the first photo-electric
sieve in 1932. Given this lasting interest in making mathematical tables (always
a time-consuming job) and particularly in mechanizing sieves, it is clear that
D.H. Lehmer perfectly fitted into the ‘Computations Committee’.

Lehmer also contributed in other ways to the advance of the computer age.
He helped R.C. Archibald’ to publish the important journal Mathematical Ta-

bles and other Aids to Computation (known as MTAC) from 1943 to 1950, and
served as the editor-in-chief himself until 1959. This journal was an important
channel of publication during the early years of computing, offering a fast way of

3 We want to thank Martin Carlé (Humboldt University Berlin) for his stimulation to
get involved into the ENIAC’s technical details and wirings. This reconstruction is
intended as a contribution to the ENIAC NOMOI project.

The first number-theoretical computation on the ENIAC 3

getting new results in print, and it reads like the diary-like records of advances
in hardware and computing techniques from 1943 to 1959. Lehmer also often
ventilated his strong opinions on computing in this journal, making a case for
seeing mathematics (especially number theory) as an observational science for
which data had to be gathered through computation. Lehmer argued strongly
and convincingly that the computer would change the world of mathematics.

1.2 The Structure of the ENIAC

The Electrical Numerical Integrator And Computer (ENIAC) was first described
in a proposal John Mauchly submitted to Penn University, and was ultimately
built with U.S. Army money by a team of engineers under the direction of Presper
Eckert Jr. It used about 18,000 vacuum tubes and 1,500 relays. From 1945 to
1947 this was a highly parallel computer, though its parallelism was hardly ever
used [2, p. 376] one of the notable exceptions being Lehmer’s program.

The ENIAC had a modular architecture. It comprised 20 accumulators, a
multiplier, a divider and square rooter, a constant transmitter, 3 function ta-
bles, a master programmer, a cycling unit, an initiating unit and also a card
reader and a printer. The constant transmitter and the function tables are the
ENIAC’s main memory storage units. Function tables had to be set manually
with switches, the constant transmitter could store upto 16 numbers read from
a punched card (before or during the computation) and 4 numbers that had to
be set manually with switches.

The ENIAC had two kinds of electronic circuits: the numerical circuits for
storing and processing electric signals representing numbers and programming

circuits for controlling the communication between the different parts of the
machine. Most of the units had both kind of circuits, except for the master pro-
grammer and the initiating unit which consisted only of programming circuits.
All units had to be programmed locally. The program switches, located on the
front face of the units, had to be set before a computation started to specify
which operations had to be performed. It will become clearer in the remainder
of the paper how to control the order of the operations.

Of crucial importance in the ENIAC was the central programming pulse
(CPP), emitted by the cycling unit once every 1/5000th of a second, marking
the beginning and end of a computation cycle. These pulses synchronized the
operations of the units. When a unit completed an operation it emitted one of
these as a program output pulse, stimulating the next operation. All the units
required an integral number of cycles. E.g. an accumulator required 1/5000th of
a second for an addition, so we speak also of an addition time instead of a cycle.

We will now detail the design of the accumulator and the master programmer
and explain how to set up some basic processes such as branching and iteration.
For more details we refer to [2,5] and especially the detailed Report on the ENIAC

by Adèle Goldstine [4].4

4 We would also like to refer to Till Zopke’s Java-applet ENIAC simulation [12], that
proved handy for testing some easy cablings.

4 Liesbeth De Mol and Maarten Bullynck

The accumulator The accumulators were the main arithmetic units of the
ENIAC and could be used to add or subtract. Each accumulator held a 10-
place decimal number and a sign, stored in ten decade ring counters and a PM
counter. It had 5 input channels (α to ǫ) to receive a number. It had two output
channels (A and S) to transmit a number n (through A) or its complement
1010 −n (through S). In one addition time, the accumulator could either receive
a number n adding (if n ≥ 0) or subtracting (if n < 0) it to/from its content, or
transmit the number it stored through one or both of its outputs. The program
part of the accumulator consisted of 16 program controls: 4 receivers and 12
transceivers. A transceiver had a program pulse input and output terminal, a
clear-correct switch (to clear or not clear its content after a cycle; it could also
be used to round off numerical results), an operation switch (to be set to α to ǫ,
A, S, AS or 0, determining whether the accumulator should receive or transmit
a number, or do nothing) and a repeat switch (with which it could either receive
or transmit up to 9 times). When a transceiver received a program pulse through
a program cable at addition time r, the operations set on the program switch
associated with that transceiver were executed. When these had been finished
after n (1 ≤ n ≤ 9) addition times, a program pulse was transmitted through
the output of the transceiver at addition time r + n. A receiver differs from a
transceiver in that it has no output terminal and no repeater switch.

The master programmer The master programmer provided a certain amount
of centralized programming memory. It consisted of 10 independently functioning
units, each having a 6-stage counter (called the stepper), 3 input terminals (the
stepper input, direct input and clear input), and 6 output terminals for each
stage of the stepper. Each such stage s was associated with a fixed number ds

by manually setting decade switches, and with 1 to 5 decade counters.

If a pulse arrived at the stepper input (SI) of a stepper, one was added to the
counter of stage s. If this number equaled the preset number ds, it cleared the
counter of stage s and cycled to the next stage s + 1. In both cases, a program
pulse was emitted through the output terminal of stage s. A pulse at the direct
input (DI) cycled immediately to the next stage, and a pulse at the clear input
(CI) reset the stepper to its initial configuration. In neither case a program pulse
was emitted. In this way the master programmer could be used, among other
things, to sequence operations and to iterate a given subroutine.

Branching The ENIAC was capable of discriminating between program se-
quences by examining the magnitude of some numerical result. This “magnitude
discrimination” or “branching” was possible because 9 digit pulses were trans-
mitted for sign indication M and none for sign indication P. The fact that digit
pulses were transmitted for every digit except for 0 could be exploited in a sim-
ilar manner. The digit pulse corresponding to the sign (or a digit) could then
be converted into a program pulse by connecting the PM lead (or another digit
lead) of the A and/or S output terminal of an accumulator to the program pulse

The first number-theoretical computation on the ENIAC 5

input terminal of an otherwise unused ‘dummy (program) control’ by using a
special adaptor [4, Sec. 4.5].

Fig. 1. Wiring schemes for each of the branching methods. The if-routine is started
when a program pulse is received at the first program cable. Depending on the sign of
the number in the accumulator, either subroutine S1 or S2 will be executed.

There were basically two ways to do this branching: either by using the two
output channels A and S of an accumulator and two dummy program controls,
or, by using only one output channel, A or S, one dummy control and the master
programmer. Fig. 1 shows possible implementations of these two ‘if’ methods.
They were reconstructed on the basis of the (limited) information on branching
in [2,4].

2 Lehmer’s ENIAC ‘program’

2.1 The mathematical problem

Primality tests and factoring methods belong to the most important topics in
number theory. One class of primality tests are (partial) converses of Fermat’s
little theorem. Unfortunately, the direct converse of the theorem is false in gen-
eral: If ap−1 ≡ 1 mod p for an arbitrary a (not dividing p), then p is often though
not always a prime. A way out of the failing general converse is to list all excep-
tions, i.e., all composite p for which ap−1 ≡ 1 mod p is true. Taking a equal to 2
is computationally the most advantageous choice. To compute the composite p’s
for which 2p−1 ≡ 1 mod p one needs a table of all exponents e of 2 modulo the
prime p, e being the least value n such that 2n ≡ 1 mod p and e is some divisor of
p− 1 = ef . Kräıtchik published such an exponent table in 1924 for p < 300000,

6 Liesbeth De Mol and Maarten Bullynck

but it contained quite some errors [6]. D.H. Lehmer now proposed to use the
ENIAC to compute a table of exponents correcting and extending Kräıtchik’s
table to p < 4.5 · 106. The results of Lehmer’s calculation on the ENIAC were
published as a list of corrigenda to Kräıtchik’s table in 1947 (MTAC 2 (19)
p. 313). In 1949 an article discussing some computational details of setting up
this ‘program’ on the ENIAC appeared [7].

2.2 Description of the main steps of the computation

As Lehmer remarks right at the beginning of his description of the ENIAC set-
up: “The method used by the ENIAC to find the exponent of 2 modulo p differs
greatly from the one used by human computers” [7, p. 301]. A number-theorist
knows that the exponent e of 2 so that 2e ≡ 1 mod p (p prime) is either a divisor
of or equal to p − 1, and can thus restrict himself to doing trial divisions with
suitable divisors of p− 1 only. On the ENIAC, however, it is more expeditive to
compute 2t for all t < p− 1. This ‘idiot approach’ takes, in the worst case, “less
than 2.4 seconds, less time than it takes to copy down the value of p”, whereas
the sophisticated method requires “much outside information via punched cards
[...] to be prepared by hand in advance.” [7, p. 302]
Lehmer’s flow-diagram [7, p. 303] gives the following main steps of the ENIAC
computation:
Step 1. Initiation and preliminary set-up, go to Step 2.
Step 2. Increase p by 2, goto Step 3.
Step 3. Sieve on p: Is p divisible by a prime ≤ 47? Yes/No, goto Step 2/Step 4.
Step 4. Exponent routine to find e. Is e > 2, 000? Yes/No, goto Step 7/Step 5.
Step 5. Does e divide p − 1? Yes/No, goto Step 6/Step 7.
Step 6. Punch p, e and f (p − 1 = ef), goto Step 7.
Step 7. Erase exponent calculation, goto Step 2.

The sieve set-up (step 3) can take advantage of the parallelism of the ENIAC’s
hardware. Thus implemented, this becomes a fast method for minimizing the
chance that p = 2n + 1 is not a prime. The sieve implemented on the ENIAC
sieved out all numbers p = 2n + 1 having prime factors ≤ 47. As Lehmer notes
[7, p. 302], about 86 percent of the composites were eliminated after step 3
(sieve). The remaining 24 percent were required to pass a further test: namely
p − 1 must be divisible by e (step 5). This requirement is so strict that the
remaining number of composites is very small. Finally, these were eliminated by
hand through comparison with D.N. Lehmer’s list of primes.

The exponent e is calculated by a simple recursive routine (step 4), building
up a sequence of positive integers rk, where rk is nothing but the remainder on
division of 2k by p. The start value r1 is set to 2. Given rk, the next value rk+1

is set to 2rk − p. If 2rk − p < 0, rk+1 is set to 2rk. If 2rk − p > 0 then the
ENIAC checks whether rk+1 - 2 is negative. If the reply is yes, then rk+1 is 1
and e = k + 1. If no, then the ENIAC checks whether k + 1 = 2001. If not, then
rk+2 is the next value computed. If yes, then the ENIAC gives up the search for
e and tries the next value of p.

The first number-theoretical computation on the ENIAC 7

2.3 Outline of the Set-up of the computation on the ENIAC

We will now give an outline of how to wire the ENIAC to perform Lehmer’s
computation. Due to lack of space not all details can be given. We will focus on
the parallel set-up of the sieve and then give a sketch of the complete reconstruc-
tion. The reconstruction is based upon the 7-step-diagram (sec. 2.2) and some
implementational details given in Lehmer’s [7,8,9]. Important to note: Lehmer’s
description does not completely determine the actual machine implementation,
the design of the ENIAC, however, seriously limits the possibilities.

Wiring a sieve Sieves check for every subsequent number of a specific sequence
if the number fulfills j conditions/congruences. If it fulfills one or more congru-
ences, it is sieved out, if not, the number is let through. The best known sieve,
Eratosthenes’s, checks for every natural number n if it is divisible by a prime
(n ≡ 0 mod pj?), the numbers that pass are relative prime to the primes pj .

Our sieve implementation uses an accumulator Apj
for each prime pj ≤ 47,

(1 ≤ j ≤ 14) except for 2 (See sec. 2.2). To begin (step 1), each Apj
is set to

the complement of pj − 1. E.g. Ap14
will contain M 9999999954. An initiating

pulse is sent to the first transceiver (T1) of all Apj
’s, its operation switch (OS) is

set to α and the repeat switch (RS) to 1, as well as to the constant transmitter
(CT) such that it will transmit the number 2. This results in the addition of 2
in all 14 accumulators. The CT then transmits a program pulse (PP), finishing
the first cycle of the computation. The next steps of the computation check for
each of the Apj

in parallel whether the number P = 2r + 1 (the first P being
3) is or is not divisible by one of the pj . This is done with the second branching
method (See Sec. 1.2), by connecting the PM lead of the S output of each of
the Apj

to 14 dummy controls (T2). This works because if P is divisible by pj ,
the number contained in Apj

will be P 0000000000 and thus positive, while it
will be negative in all other cases (this is why we use complements). If a given
Apj

stores P 0000000000, and P is thus divisible by pj, Apj
has to be reset

to the complement of 2pj.
5 This was a difficult problem to solve, because only

those accumulators that store P 0000000000 should receive a value, and each of
these must receive a different number. The problem for the ENIAC to decide
which accumulators should receive and which should not, was solved by directly

connecting the program pulse output terminal of each of the dummy controls
of the Apj

to the program pulse input terminal of one of the transceivers (T3)
of each of the Apj

. This could be done by using a loaded program jumper [4,
11.6.1]. Each T3 of an Apj

is set to receive once through input channel α, β

or γ depending on the group Apj
belongs to. The transmission of 14 different

numbers to the 14 Apj
’s is done by using the three function tables and special

digit adaptors. The 14 Apj
’s are divided into three groups: Ap1

– Ap5
, Ap6

–
Ap10

, Ap11
– Ap14

. In each group, the PP output terminal of T1 of rsp. Ap1
, Ap6

and Ap11
is connected to three different program cables. The first of these cables

sends a PP to function table 1, the second to function table 2 and the last to

5 We use 2pj since only numbers of the form 2r + 1 are sent through the sieve.

8 Liesbeth De Mol and Maarten Bullynck

function table 3. The argument clear switch of each of the tables is set to O.
Without going into the details of this setting, it is important to know that in this
specific wiring, the switch is set to O so that the function table will transmit the
value f(0) to the input channel it is connected to. Each of the function tables
contains rsp. one of the following values: M 610142226, M 3438465862 and M
64828694 at place 0 (function value f(0)). These numbers are nothing but the
concatenation of the values 2pj which have to be sent to those Apj

for which pj

divides 2r + 1 (Apj
stores P 0000000000). Five addition times after each of the

function tables has received a program pulse, each of these values will be sent
through the respective input channels α, β and γ.

Now, if e.g. accumulator Ap1
has been set to receive through α by its dummy

control it will receive the value M 610142226 through α. A special adaptor is
inserted at the input terminal α of Ap1

. It is used to combine a shifter adaptor
– which is used to shift the digit lines a certain number of times to the left or to
the right – and a deleter adaptor – which makes it possible to select only those
digits needed. Setting both deleter and shifter in the correct way for Ap1

, the
number M 0000000006 (instead of M 610142226) will be subtracted from the
content of Ap1

. After this, Ap1
will contain M 9999999994 which is the value

needed for the sieve to work properly.
Figure 2 shows the details of the wiring of this sieve for Ap1

. Note that

Fig. 2. Parallel Implementation of the sieve for Ap1
, p1 = 3

two stepper counters plus two extra transceivers are used to let ENIAC decide

The first number-theoretical computation on the ENIAC 9

whether 2r+1 passes the sieve test. The first transceiver, situated in Accumulator
Ap1

is needed to delay this decision through the second stepper counter (waiting
until the function tables have sent their values f(0)). The second transceiver
(situated right next to one of the stepper counters) is used to send a program
pulse to the direct input of a second stepper, thus “making” the decision. The
whole sieve process takes 12 addition times and is thus very fast. Fundamental
in this wiring was the synchronization of all the different steps.

Outline of the complete program We will now provide an outline of our
reconstruction of the complete computing-the exponent-of-2-modulo-p-program
(Sec. 2.2). Steps 2 and 3 were already discussed in the previous paragraph.
Step 1.The setting of the Apj

’s as well as the three function tables has already
been discussed. The numbers + 2, -2 and -1 are set manually on the constant
transmitter (CT). An accumulator AP used to store the number P = 2r + 1 be-
ing processed, should be set to store the number 1. The computation is started
by an initiating pulse sent to the 14 accumulators and the CT.
Step 2. This was already discussed. Besides the Apj

’s also the transceiver of AP ,
as well as a transceiver of one other accumulator used in step 4 (Ae1

), should be
set to receive through α.
Step 3. This was already discussed.
Step 4. In this subroutine 5 accumulators are used, i.e. Ae1

, Ae2
, Ae3

,AP and
AE (which is used to count the number of iterations done before 2rk

− p = 1 or
k > 2000 and thus to determine the exponent). Three stepper counters are used.
One is used to check whether k > 2000 and receives a PP with each iteration of
the subroutine. The others are used in combination with dummy controls: one
to check whether 2rk

− p > 0 and one to check whether 2rk
− p = 1. We do not

have the space here to give the details of the wiring.
Step 5. For this routine 4 accumulators are used, including AP , AE and the
cleared Ae1

(which is used to store f). Besides these three the last unused accu-
mulator A20 is introduced into the computation. Again we cannot provide details
here. It is important that at the start of the subroutine, A20 receives P from AP

and next -1 from the CT. At the end of the computation, Ae1
will contain f ,

the number of times e can be subtracted from p − 1.
Step 6. There are several ways to wire this routine. One way is to use for AP ,
Ae1

and AE accumulators for which there is a static output to the printer.
Step 7. This can be done by using the clear-correct switch for the accumulators
involved (except for AP).

3 Discussion

Our proposed reconstruction of one of the first extensive computer ‘programs’,
executed 1946 on the ENIAC, cannot be said to be complete nor definitive yet,
but we project to present the complete wiring with discussion of difficult points
in another, more extended paper in the near future. Already our outline brings
out some salient points.

10 Liesbeth De Mol and Maarten Bullynck

It is clear that ‘programming’ the ENIAC is perhaps sometimes nearer to
engineering than to programming as we know it today. The ‘if’s are intricate
digit-pulse-to-program-pulse conversions, which, in combination with the step-
pers of the master programmer, can be used to sequence the computation; differ-
ent adaptors have to be inserted at the appropriate places, and the parallelism
has to handled subtly by synchronizing the numerical and the program parts of
the wiring. This polymorphy of combining the units, cables and adaptors of the
ENIAC allows for many small tricks to be implemented in the ‘program’, but
forbids a general approach to setting up the ENIAC. Such a general approach
only arrived with the ENIAC’s rewiring into a serial machine, using the function
tables for ‘indexing’ the subroutines.

Concluding, we would like to encourage research on early computer programs
on the ENIAC or on other early computers. Their study and analysis might con-
tribute to understand the beginnings and achievements of the computer age. It
might especially clarify the development of programming techniques and compu-
tational methods in correlation with the development of the hardware, as well as
the evolution of the interaction and interface between the operator/programmer
and the computer.

References

1. Franz Alt. Archaeology of computers – reminiscences, 1945–1947. Comm. ACM,
15(7): 693–694, July 1972.

2. Arthur W. Burks and Alice R. Burks. The ENIAC: First general-purpose electronic
computer. IEEE Ann. Hist. Comp., 3(4): 310–399, 1981.

3. W. Barkley Fritz. Eniac – A problem solver. IEEE Ann. Hist. Comp., 16(1): 25–45,
1994.

4. Adele K. Goldstine. Report on the ENIAC, Technical report I. Technical report,
Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia,
June 1946. Published in 2 vols.

5. H.H. Goldstine and Adele Goldstine. The electronic numerical integrator and
computer (ENIAC). Math. Tables Aids Comp., 2(15): 97–110, 1946.

6. Derrick H. Lehmer. On the converse of Fermat’s theorem. Amer. Math. Monthly,
43(6): 347–354, 1936.

7. Derrick H. Lehmer. On the converse of Fermat’s theorem II. Amer. Math. Monthly,
56(5): 300–309, 1949.

8. Derrick H. Lehmer. The sieve problem for all-purpose computers. Math. Tables

Aids Comp., 7(41): 6–14, 1953.
9. Derrick H. Lehmer. The influence of computing on research in number theory. In

Proc. Sympos. Appl. Math. 20, p. 3–12, Amer. Math. Soc., 1974.
10. Derrick H. Lehmer. A history of the sieve process. In J. Howlett, N. Metropolis, and

G.-C. Rota, editors, A History of Computing in the Twentieth Century, p. 445–456.
Academia Press, New York, 1980.

11. Hans Neukom. The second life of ENIAC. IEEE Ann. Hist. Comp., 28(2): 4–16,
2006.

12. Till Zoppke and Raul Rojas. The virtual life of ENIAC: Simulating the operation
of the first electronic computer. IEEE Ann. Hist. Comp., 28(2): 18–25, 2006.

