
HAL Id: hal-01674676
https://hal.univ-lille.fr/hal-01674676v1

Submitted on 3 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming systems: in search for historical and
philosophical foundations

Liesbeth de Mol, Giuseppe Primiero

To cite this version:
Liesbeth de Mol, Giuseppe Primiero. Programming systems: in search for historical and philosophical
foundations. Reflections on Programming Systems. Historical and Philosophical Aspects, Springer,
2019. �hal-01674676�

https://hal.univ-lille.fr/hal-01674676v1
https://hal.archives-ouvertes.fr


Chapter 1
Programming systems: in search for historical
and philosophical foundations

Liesbeth De Mol, Giuseppe Primiero

“Today we tend to go on for years, with tremendous investments to find that the
system, which was not well understood to start with, does not work as anticipated.
We build systems like the Wright brothers built airplanes – build the whole thing,

push it off the cliff, let it crash, and start over again.” (Graham 1968)

1.1 Methodological Background

The purpose of this book is to engage with historical and philosophical issues un-
derpinning, what we identify here, as ‘programming systems’, viz. large systems
that have been programmed in order to control some process or set of processes.

In a recent paper published in the Communications of the ACM, we read the
following assessment of the state of modern computing systems, [Neumann, 2017,
p. 3]:

“Unfortunately, the trends for the future seem relatively bleak. Computer system trustwor-
thiness and the implications of its absence are increasingly being questioned. Semi- and
fully autonomous systems, the seemingly imminent Internet of Things, and artificial intel-
ligence are providing further examples in which increasing complexity leads to obscure
and unexplainable system behavior. The concept of trustworthiness seems to becoming sup-
planted with people falsely placing their trust in systems and people that are simply not
trustworthy – without any strong cases being made for safety, security, or indeed assurance
that might otherwise be found in regulated critical industries”.

L. De Mol
CNRS, UMR 8163 Savoirs, Textes, Langage
Université de Lille
e-mail: liesbeth.demol@univ-lille3.fr

G. Primiero
Department of Computer Science, Middlesex University London
e-mail: G.Primiero@mdx.ac.uk

1

liesbeth.demol@univ-lille3.fr
G.Primiero@mdx.ac.uk


2 Liesbeth De Mol, Giuseppe Primiero

Trustwortiness of large systems is just one of a growing number of serious problems
related to computing, with the potential to affect millions of lives.1 This is due not
just to properties of the systems themselves but also their use, design and develop-
ment by humans. On the one hand, these systems are ubiquitous, both in terms of
usage and impact: almost everyone in large part of the developed world interacts
constantly with a computing device; also, some of these systems have progressively
evolved into cyber-physical entities, capable of acting upon and being affected by
the external environment. On the other hand, though, there is an obvious mismatch
between the complexity and ability of these systems to act in our world, and the level
of knowledge required to interact with them intelligably and so critically. While this
possibility of use without knowledge and understanding of these systems has been
a major factor in their diffusion, it also has the important drawback that comput-
ing systems are nowadays used mostly by people who are unaware of the risks and
consequences involved. Additionally, the increasing complexity and size of those
systems, which is often rooted in a historically accumulated set of layers of abstrac-
tion and so-called bloated software systems [Wirth, 1995], has only deepened the
issues of software design, development and maintenance as they came to be known
in the 1960s (see Sec. 1.3). By consequence, it has become more difficult to pre-
vent (potentially disastrous) errors. While this is principally a technical concern, it
involves also political and commercial aspects underpinning the design, production
and distribution of computing systems. From the point of view of the social and
political implications, suffice here to mention issues of accountability in algorithm
design and privacy of users.2

Given these circumstances, we are very much in need of a deeper reflection on
the nature of computing systems. A methodological safe ground for such an inves-
tigation into the foundations of computing would require us to have a clear under-
standing of the field in itself, of the relations among its several sub-fields, and a solid
grasp of how different approaches interact in the development of complex systems.
There is, however, no such well-defined and clean foundation for the computing
field in general: as it was argued in [Tedre, 2015], there is not even a clear and co-
herent identity. This is rooted, on the one hand, in the fact that computing has not yet
reached its maturity as a discipline and, on the other, that it is both a science and a
technology, with often different and sometimes conflicting interests. While science
aims at stable, durable and solid results, technology is driven by the need of quick
innovation and even quicker market returns. As Kalanick, former CEO of Uber, has
recently remarked in the context of discussions on self-driving cars:
1 This is a long standing issue in computing, touching on several areas. One of the early and most
broad views on computing, risk and trust can be found in [MacKenzie, 2004]. Recently, the area
of computational trust has grown sensibly in its impact and applications, from software packages
distribution systems to vehicular networks, see e.g. [Primiero, Boender, 2017, Primiero et al., 2017]
for some approach and overviews of the related literatures. For a high-level commentary on trust
of digital technologies, see [Taddeo, 2017].
2 The issue of algorithm accountability is gaining much traction, especially in view of current
progress in AI. For a recent high-level analysis of the problem, see [Diakopoulos, Friedler, 2016].
For contributions concerning the debate on the ethical relevance of algorithms in terms of account-
ability and their public impact, see [Mittelstadt et al., 2016] and [Binns, 2017].



1 Programming systems: in search for historical and philosophical foundations 3

“We are going commercial [...] This can’t just be about science.”.3

The DHST/DLMPST Commission for the History and Philosophy of Computing
(www.hapoc.org) was established in 2013 with the awareness that such a funda-
mental reflection on the computing field can only be possible through the interac-
tion and dialogue among different expertises. The approach of the Commission is
to create opportunities for collaborations and discussions within a pluri-disciplinary
and pluri-methodological group of researchers, engaging with both the history, the
philosophy and the formal and technical aspects of computing. We are strongly con-
vinced that it is only by being embracive and tolerant with respect to different view-
points, methods, and topics that it will be possible to develop a history and philoso-
phy of computing which can account for both the scientific, social and technological
aspects of the discipline.

Among others, one of the series of events organized by the Commission is the
Symposia on History and Philosophy of Programing (HaPoP). The third in this se-
ries, HaPoP-3 was organized on June 25, 2016 at the Conservatoire des Arts et des
Métiers, Paris by Liesbeth De Mol, Baptiste Mélès, Giuseppe Primiero and Raphaël
Fournier-S’niehotta. Contrary to previous editions, this meeting focussed on one
particular topic, namely on the nature, problems and impact of operating systems.
The present volume collects contributions to HaPoP3.

Operating systems historically resulted from a broad set of general problems
related to a large variety of aspects of computing (languages, memory, task com-
plexity, to name a few) and so can be understood and contextualized as a (partial)
answer to some of those problems. Moreover, both from the contemporary and his-
torical perspective, it is hard to strictly isolate operating systems from others they
are closely connected to, like networks and hardware systems. Accordingly, the ed-
itors have decided to shift the focus of the current volume to programming systems,
to underline both the presence of historical aspects that precede and follow the birth
of what qualifies as an operating system, the programming practices that underpin
their design and development and the need to account for extensions of the concept
of operating systems that we are witnessing today.

The general methodological approach of this book fits with the HaPoC philos-
ophy. Accordingly, the current volume includes both papers which are motivated
by conceptual issues or questions alive in the contemporary debate but which have
roots in early episodes of the history of computingwhereas other more historical
contributions bring to the fore fundamental problems which are still pressing today.
In other words, the pluralistic approach of this book, allows and even necessitates to
overstep boundaries between communities and it is our hope that this effort will en-
gage researchers from the different communities to advance the very much needed
foundations of computing.

3 Quoted in [Chafkin, 2017]

www.hapoc.org


4 Liesbeth De Mol, Giuseppe Primiero

1.2 Introducing Programming Systems

The term ‘program’ can have different meanings, and the historical context taken as
a starting point for the origins of the activity of ‘programming’ largely affects the
accepted definition. For the present purposes, we chose to start with ENIAC, since
this is the historical context in which our contemporary use of ‘program’ originates.4

ENIAC, one of the so-called first computers, was unveiled to the public in 1946. This
machine, in its initial configuration, had two fundamental properties that no other
computing device had at that time:

1. it was an electronic machine, and so computation was done at a very high, hu-
manly impractical speed;

2. it was programmable, i.e. it could be set-up to compute any function within the
material limits of the machine.

It was this combination of high-speed and programmability that required a deeper
reflection on both the design of the machine and the ‘art’ of programming it – two
strongly connected aspects for early ENIAC, where ‘programming’ meant phys-
ically rewiring the machine: there was a large gap between the time required to
prepare and set-up a program and its execution time; unlike other contemporary
machines like the Mark I, it was no longer possible to ‘follow’, and hence to fully
control a computation; finally, it made no sense to provide ‘code’ through the me-
chanically and slowly punched cards. The answers to these issues were twofold:
first of all, ENIAC was permamently rewired as a stored-program machine and a
new design, known generically as the EDVAC or von Neumann design, was de-
scribed; secondly, different approaches for controlling “the automatic evolution of
a meaning” [Goldstine, 1947] were developed.5

The ENIAC was a one-of-a-kind machine and by the late 1940s-early 1950s the
standard design had stabilized on the EDVAC design [Neumann, 1945]6 and the
stored-program.7 The latter is today considered as the stabilising technical and con-
ceptual element from which ‘programming systems’ became possible: the stored-

4 See [Grier, 1996]. Obviously, an ENIAC program is something quite different from a program
expressed in a high-level language. See [Haigh, 2016b] for a different approach in which one
starts from a generic definition of ‘program’ (as a ‘sequencing of operations’). In that work then, a
‘modern program’ is rooted in the ENIAC machine and EDVAC design.
5 More particularly, the approach taken by von Neumann was the identification of different steps
in the preparation and set-up of a problem – a kind of division of labor – where the most promi-
nent stage is that in which the ‘dynamics’ of a program is captured by means of a flowchart. The
other is due to Curry, who focussed on the automation of the coding process and developed a
logic for program compositionality. See [De Mol, 2015] for a partial comparison between the two
approaches.
6 It should be added that this is the standard narrative. Of course, there were many variants on the
EDVAC design and also entirely different designs such as that for the Whirlwind which was not
serial. See also [Backus, 1978] for a critical discussion of the von Neumann method.
7 There are different understandings of the origins of the stored-program concept, its intellec-
tual lineage and its historical implementation and understanding. See [Haigh et al., 2014] and
[Copeland, Sommaruga, 2015] for two different interpretations.



1 Programming systems: in search for historical and philosophical foundations 5

program concept expresses the basic principle of computer science that programs
and data are interchangeable and granting, ultimately, the possibility to “[simplify]
the circuits at the expense of the code” [Turing, 1946]. As it will become clear from
several contributions to this volume, contrary to what Goldstine and von Neumann
believed, i.e. that:

“the problem of coding routines need not and should not be a dominant difficulty. [In] fact
we have made a careful analysis of this question and we have concluded from it that the
problem of coding can be dealt with in a very satisfactory way.” [Goldstine, 1946]

programming problems would not be resolved nor absolved by this basic principle,
nor by initial symbolizations of the general flow of a program.

Once the design of computing machines had more or less stabilized, the construc-
tion of computing machinery moved away from the research labs at the university
to industry, and so commercial interests started to play their role. However, for both
scientific (e.g. SWAC) and business-oriented applications (e.g. in the context of LEO
machines), and thus also for machines used in both contexts (IBM and Burroughs),
there remained an important set of programming and physical problems to be re-
solved. Originally, computers were coded through machine instructions and so the
semantic gap between “code” and hardware execution was quite small. However,
this coding through stacks of punched cards or tape was a highly time-consuming
and very error-prone process. Another associated issue was developing at the hard-
ware level: the need of increasingly complex sets of instructions to execute meant
the need for greater amounts of memory and the ability to centralize the different in-
struction control in one physical unit. In the 1950s, these two problems were tackled
in a timely fashion and almost in parallel, as analysed in Part I of this volume.

First, one sees the development of techniques to optimize the coding process:
while, at first, these were mainly developed and used in one particular practice and
around a specific hardware system, there were clearly attempts at more systematic
approaches. One well-known example is the programming book for the EDSAC
[Wilkes, 1951] which is basically a ‘library’ of more or less standardized subrou-
tines and, in its reprinted version, wanted to transcend the particularities of ED-
SAC to be a “general introduction to programming for any computer of the stored-
program type”. These approaches went hand-in-hand with approaches to improve on
the hardware design to have more efficient and simpler coding with fewer errors or
better error-handling.8 The example of the LEO machines presented in Chapter ??
is illustrative of these initial more systematic attempts. More particularly, it focuses
on how approaches are developed to identify and resolve errors in a fashion that
anticipates the definition of principles of correctness inspiring modern research in
program verification. These efforts were strongly characterised by the business na-
ture of the Lyons company who developed the machine: for this reason, more formal

8 See for instance the development of microprogramming which is basically anm approach of
hardware programming [?]: “This paper describes a method of designing the control circuits of a
machine which is wholly logical and which enables alterations or additions to the order code to
be made without ad hoc alterations to the circuits” The paper [De Mol, 2017] discusses several
machines, some of which fit into the microprogramming strategy, that stick close to the hardware
and develop optimum coding techniques such as latency and underwater programming.



6 Liesbeth De Mol, Giuseppe Primiero

principles of valid program execution (like ensuring termination) are accompanied
by heavily pragmatic choices (e.g. in the way program were designed and tests per-
formed). Second, the improvement on hardware was essential not only in reducing
the risks associated with component failures, but in particular in guaranteeing the
possibility of accomodating a lot more memory. Complementary to these more sys-
tematic approaches that remain, basically, in the realm of the order, assembler and
machine code, the first steps are being taken towards the development of higher-level
languages and techniques of ‘automatic coding’ which were aimed at relieving the
programmer from the tedious coding task and so to ‘automate’ the programmer.9

So, for instance, Grace Hopper made the first steps for automating subroutining for
the A0-language of UNIVAC I.10 Chapter ?? is to be set against the background
of automating aspects of the programming process. More particularly, it focuses on
the period 1954-1964, the decade before the term ‘operating system’ has more or
less stabilized. This chapter deconstructs a classic narrative from the history of com-
putig, viz. that the operating system is basically the IBM vision of automating the
operator and so is historically located at the transition from batch processing (where
the operator was human) to time-sharing systems. It is argued that this narrative in
fact hides a more complex history which is about automating different aspects of
programming. It is shown that it took several years before one could start to dif-
ferenitate more clearly between different kinds of systems, including the operating
system. More particularly, a taxomomy of different types of systems from the late
50s and early 60s is offered. It is within that taxomomy that the steady development
of ‘operating system’ is seen and so, it becomes clear that the automation of the
operator is just one of a set of parallel developments that brought about the distin-
guishability of operating systems from other systems.

1.3 The Complexity of Programming Systems

In the early 1960s, it is no longer mainly the hardware that shapes the problems re-
lated to the design and development of large-scale programming systems, but rather
the programming systems themselves that determine the problems at stake. Indeed,
as summarized by the developers of the AOSP operating system for the Burroughs
D825, [Anderson, 1962]:

“computers do not run programs, [...] programs control computers.”

This underlies the diffuse realization that the problem does not lie with the ma-
chines, but rather with the ‘programs’, the way they are written, the way they con-
stitute a complex system ready for commercial and scientific use by a broad range
of different ‘users’ with different aims, who want well-documented, error-free and

9 See for instance [Daylight, 2015] which discusses the approach of hte so-called ‘space cadets’.
See also [Nofre, 2014] for a discussion of the use of the notion of language in this context.
10 See [Hopper, 1980] for a personal account of that development.



1 Programming systems: in search for historical and philosophical foundations 7

efficient systems. What is hard, is the software-side of computing.11 From realizing
that the programming problem was not simply going to be resolved by faster systems
with larger memory, (the legend of) the software crisis was born. As summarized by
Dijkstra in his Turing award lecture [Dijkstra, 1972]:12

“instead of finding ourselves in a state of eternal bliss with all programming problems
solved, we found ourselves up to our neckys in the software crisis [m.i.]! [...] To put it
quite bluntly, as long as there were no machines, progamming was no problem at all; when
we had a few weak computers, programming became a mild problem, and now we have
gigantic computers, programming has become an equally gigantic problem.[...] To put it
in another way: as the power of available machines grew by a factor of more than a thou-
sand, society’s ambition to apply these machines grew in proportion, and it was the poor
programmer who found his job in this exploded field of tension between ends and means.”

The ‘software crisis’ is thus closely tied with the development of progressively
larger and more complex systems. Two approaches can be identified as answers
to the problem:

1. the formal approach, closely associated with a logical understanding of the foun-
dations of computing;

2. the modernist approach, associated with the development of ‘grand designs’ that
would provide universal environments for the solution of multiple programming
problems.

The contributions in Part II of this volume provide an understanding of the first of
the two approaches above. A very direct case of treating a programming system as a
formal system is the development of programming semantics: these were introduced
precisely to deal with issues related to mapping specification with implementation
on possibly different machine architectures. Chapter ?? goes back to a basic histor-
ical case to discuss and compare four different styles of formal semantics that were
developed in that context. More particularly, the paper focuses on the origins and
problems of formal semantics that were developed for the case of Algol 60. It was
considered a good language to demonstrate the potential of a logical approach since
it was supposed to scale well to realistic languages. More particularly, the paper dis-
cusses: the Vienna operational description; Vienna functional description; Oxford
denotational description and the VDM denotational description. For each style, the
authors discuss not just the historical context, but engage with particular stylistic,
syntactic as well as modelling features. This uniform approach for analyzing each
of the styles not only results in a historical study of the reasons and modalities of
their origins, but it also allows a more critical review of each semantical description
of the language.

The formal approaches did not come about in a straighforward manner, but
are based on a critical study of the foundations of programming and computing.
Amongst others, they require an analysis of what constitutes a full-fledged compu-
tational object, including whether some ‘objects’ are going to have fewer rights than

11 See [Mahoney, 2008] for a historical take on this wordplay.
12 See [Haigh, 2010] and [Ensmenger, 2010] for two different interpretations of the impact of the
so-called software crisis.



8 Liesbeth De Mol, Giuseppe Primiero

others, thus introducing a principle of non-uniformity. Chapter ?? engages with this
problem, in particular with the possibility of treating functions as so-called first-
class citizens. This basic problem in the foundations of programming, first pointed
out by Strachey in the Algol context,13 opens up a discussion on the technical and
conceptual consequences of a particular formalization of computational citizenship;
but it also connects developments in programming with the foundational debate in
mathematics from the late 19th and early 20th century. Within this setting, the nature
of operating systems and their coming about is investigated at an even higher level
of abstraction than language: the system becomes an environment in which func-
tions can be treated as computational objects. This understanding of an operating
system has the advantage of generating the conceptual space for a number of other
associated (both theoretical and technical) topics fully developed in the modern un-
derstanding of systems: execution privileges, access privileges, and the possibility
of delegating those in different environments. It is especially interesting how estab-
lishing these traits of operating systems as environments of function definition and
execution makes possible the convergence of both formal and technical discourse,
in a move highlighting the foundation of both theoretical and physical computing.

The two contributions in Part III of this volume approach the mentioned ‘mod-
ernist’ take on the problem of system complexity. They both center their analysis on
what is often considered on of the most successful of the grand design approaches to
operating systems, namely Unix. In Chapter ??, Unix is approached through its re-
lations with other designs, both those that were supposed to improve it (like Plan 9),
and those that had different philosophies (like Smalltalk). This analysis highlights
a number of important features that have emerged as unifying traits in the process
of system design: the focus on programmability as the main core-business of the
system; the creation of a meta-system providing a unified semantic description for
different types of objects (e.g. programs, files, devices); and its flexible ‘everything
is a file’ design, allowing any program to be used with any file as input and any de-
vice as output. It is argued that both Unix and Smalltalk, while usually interpreted
as ‘grand designs’, can also be aligned with a more postmodern understanding of
programming in which there is not just one ultimate language but many where each
offers its own “viewpoint”. The operating system then becomes the backbone to
support that postmodernism.

In Chapter ??, Unix is set against the background of one of its predecessors,
the Multics project: this detailed analysis of the features and processes in its early
instantiation PDP-7 Unix, shows the switch from a ‘bigger is better’ approach to a
‘simple is better’14 one [Raymond, 2003]:

“Write programs that do one thing and do it well. Write programs to work together. Write
programs to handle text streams, because that is a universal interface”.

13 More particularly, during a talk titled Fundamental concepts of programming languages given
at the International Summer School in Computer Programming in Copenhagen, in August 1967
[Strachey, 1967]
14 Which is basically the ‘worse is better’ philosophy. See also ??



1 Programming systems: in search for historical and philosophical foundations 9

The process of creating the first Unix system started in 1969 and its several versions
were developed until the 1980s, while the success of later instantiations like Linux
and McOS are well-known to everyone.

1.4 Programming Systems in the Real World

The discussion whether a real software crisis has been overcome, or whether we
are witnessing a new one, is still very alive today. Only, the stakes are now much
higher: energy grids, banking systems, border controls, medical appliances, traffic
control and automated vehicles, polling systems, any single important aspect of our
everyday life is managed by and relies on a programming system. Part IV of this
book engages with these more recent developments focusing on ethical, political
and even aesthetical issues of large-scale systems.

In Chapter ??, the problem of defininig ethical principles for operating systems
within a safety-critical setting is analysed. Note how this project relies on the very
same idea that motivates the formal approach to computing from the previous Sec-
tion 1.3: first, the authors seek to connect processing in an ethical cognitive calculi to
a successful, proof-based analysis and verification at the OS level; second, this for-
mal analysis is implemented in a language to demonstrate feasibility in a self-driving
system. The importance of logically grounded, verifiable and formally reliable sys-
tems is expanding from purely academic research, to projects developed in major
private players in the computing industry (Amazon and Facebook are particularly
significative examples).

In Chapter ?? the relation between operating systems and globalization is ex-
amined from the point of view of sovereign nations, which are reconfiguring them-
selves as properly cyber-physical entities whose control extends to the software and
data domains. The integration of state-sponsored and private software and hardware
components is aimed at increasing control and at infringing user privacy: this aspect
becomes nowadays essential in understanding the novel functional configuration of
operating systems. The complexity of systems is thus again at stake in updating
their definition, although this time with an additional level of influence, extending
throughout the whole digital chain.

Finally, the definition of aesthetical criteria for complex systems relies inevitably
on a compositional approach, almost matching the complexity analysis suggested by
[Fetzer, 1988]. In this respect, a first step is made in Chapter ??, where the problem
of defining elegance of simple programs is tackled: this notion is further analysed in
terms of properties depending both on abstract and pragmatic criteria. These neces-
sarily include the program’s ‘fitness for purpose’, a criterium that (again) recalls the
correctness principles mentioned at the very beginning of this volume.

The present volume is the first volume ever published that combines historical,
philosophical and technical approaches to tackle issues of programming systems.



10 Liesbeth De Mol, Giuseppe Primiero

Whereas there are some studies focussing on one of these approaches,15 a com-
bined approach, that allows to see different issues from multiple perspectives, was
still missing from the literature. We consider this volume as a way to open up a
very much needed foundational debate requiring the perspectives from historians,
philosophers and practitioners: the former provide the historical backbone for cur-
rent issues and so, amongst others, help to identify the ‘real’ issues from the more
contingent ones; philosophers help discerning conceptual trajectories and the evo-
lution of ides, like those of correctness and computational citizenship; finally, the
practitioners give the technical and problem context in which those ideas and issues
originated, were technically tackled and evolved.

Acknowledgements We would like to thank Baptiste Mélès and Raphaël Fournier-S’niehotta for
their help with setting up and chairing HaPoP-3. We are also very grateful to the participants to the
symposium as well as the PC members for their help in selecting the accepted talks. Finally, this
book volume would not have been possible without the careful and critical reading of the different
reviewers who helped to improve the contributions.

References

Anderson, J.P.; Hoffman, S.H.; Shiman, J and Williams, R.J. (1962). The D-825,
a multiple-computer system for command & control. 1962 Fall Joint Computer
Conference (AFIPS), pp. 86-96.

Backus, J. (1978). Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Communications of the ACM, vol.
21, nr. 8, pp. 613–641.

Berry, D.M. (2011). The Philosophy of Software – Code and Meditation in the
Digital Age. Palgrave MacMillan.

Binns, R. (2017). Algorithmic Accountability and Public Reason. Philosophy &
Technology. https://doi.org/10.1007/s13347-017-0263-5.

Brennecke, A. and Keil-Slawik, R. (1996). History of Software Engineering, August
26-30 1996, Dagstuhl seminar 9635, organized by W. Aspray, R. Keil-Slawik and
D.L. Parnas

Chafkin, M. (2016). Uber’s first self-driving fleet arrives in Pittsburgh this month.
Bloomberg Businesweek, August 18, 2016. .

Copeland, B.J., Sommaruga, G. (2015). The Stored-Program Universal Com-
puter: Did Zuse Anticipate Turing and von Neumann?, In G. Sommaruga, T.
Strahm (eds.), Turing’s Revolution, pp. 43–101, Springer International Publish-
ing Switzerland.

Daylight, E.G. (2015) Towards a historical notion of ‘Turing-the father of computer
science’. History and Philosophy of Logic, vol. 36, nr.3, pp. 205–228.

15 For historical works, see [Brennecke, 2002] and [Hashagen, 2002]. For computer science works,
see [Tanenbaum, 2008] and [Silberschatz, 2011]; for a philosophical approach to software with
some aspects related to systems, see [Berry, 2011].

https://doi.org/10.1007/s13347-017-0263-5
https://www.bloomberg.com/news/features/2016-08-18/uber-s-first-self-driving-fleet-arrives-in-pittsburgh-this-month-is06r7on


1 Programming systems: in search for historical and philosophical foundations 11

De Mol, L.; Carlé, M.; Bullynck, M. (2015) Haskell before Haskell. An alternative
lesson in practical logics of the ENIAC. Journal of Logic and Computation, vol.
25, nr.4, pp. 1011-1046, A version is available from: http://hal.univ-lille3.fr/hal-
01396482/document

De Mol, L.; Bullynck, M.; Daylight. E. (2017). Less is more in the Fifties. En-
counters between Logical minimalism and computer design during the 1950s.
Available from: hal.univ-lille3.fr/hal-01345592v2/document

Diakopoulos, N., Friedler, S. (2016). How to Hold Algorithms Accountable. MIT
Technology Review. https://www.technologyreview.com/s/602933/how-to-hold-
algorithms-accountable/.

Dijkstra, E. W. (1972). The humble programmer, Communications of the ACM, 15,
859–866.

Ensmenger, N. (2010). The computer boys take over, MIT Press.
Fetzer, J. H. (1988) Program Verification: The Very Idea, Communications of the

ACM, 31(9):1048-1063.
Goldstine, H.H. and von Neumann, J. (1947) Planning and coding of problems for

an electronic computing instrument Volume 2 of Report on the mathematical and
logical aspects of an electronic computing instrument, part I,II and III, 1947-48.
Report prepared for U. S. Army Ord. Dept. under Contract W-36-034-ORD-7481.

Goldstine, H.H. and von Neumann, J. (1946) On the principles of large-scale com-
puting machines. in: Aspray, W. and Burks, A (eds.), Papers of John von Neu-
mann on computing and computer theory, MIT Press, 1987, pp. 317–348.

Grier, D.A. (1996) The ENIAC, the verb ‘to program’ and the emergence of digital
computers IEEE Annals for the history of computing, vol. 18, nr.1, pp. 51–55.

Haigh, T. (2010). Dijkstra’s crisis: The end of Algol and the beginning of software
engineering: 1968-72’ in: Workshop on the history of software, European styles,
Lorentz Center, University of Leiden.

Haigh, T., Priestley, M., Rope, C. (2014). Reconsidering the Stored-Program Con-
cept. IEEE Annals of the History of Computing, vol. 36(1), pp. 4-17.

Haigh, T.; Priestley, M.; Rope, Cr. (2016). Eniac in action. Making and remaking
the modern computer. MIT Press.

Haigh, T.; Priestley, M. (2016). Where Code Comes From: Architectures of Auto-
matic Control from Babbage to Algol Communications of the ACM, vol. 59, nr. 1,
pp. 39–44.

Hashagen, U; Keil-Slawik, R.; Norberg, A.L. (eds.) (2002) History of Computing:
Software Issues. Springer.

Hopper, G. (1980). Keynote address Wexelblat, R.L. (ed.), History of Programming
Languages, ACM Press, pp. 7–24.

MacKenzie, D. A. (2004). Mechanizing Proof – Computing, Risk, and Trust. MIT
Press.

Mahoney, M. (2008). What makes the history of software hard? IEEE Annals for
the history of Computing, vol. 30, nr.3, pp.8–18.

Mittelstadt, B.D., Allo, P., Taddeo, M., Wachter, S., Floridi, L. (2016). The ethics of
algorithms: Mapping the debate. Big Data & Society, July-December 2016, pp.
1-21.

https://www.technologyreview.com/s/602933/how-to-hold-algorithms-accountable/
https://www.technologyreview.com/s/602933/how-to-hold-algorithms-accountable/


12 Liesbeth De Mol, Giuseppe Primiero

Neumann, P. G. (2017). Trustworthiness and Truthfulness are essential. Communi-
cations of the ACM, vol. 60, nr.6, pp. 1–3.

Nofre, D.; Priestley, M. and Alberts, G. (2014) When technology became language:
the origins of the linguistic conception of computer programming, 1950-1960.
Technology and Culture, vol. 55, nr. 1, pp. 40–75.

Primiero, G., Boender, J. (2017). Managing Software Uninstall with Negative Trust.
In Jan-Philipp Steghöfer and Babak Esfandiari (eds.), Trust Management XI -
11th IFIP WG 11.11 International Conference, IFIPTM 2017, IFIP Advances in
Information and Communication Technology, vol. 505, pp.79–93, Springer.

Primiero, G., Raimondi, F., Chen, T., Nagarajan, R. (2017). A Proof-Theoretic Trust
and Reputation Model for VANET. In 2017 IEEE European Symposium on Se-
curity and Privacy Workshops, EuroS&P Workshops 2017, pp.146–152.

Raymond, E.S. (2003). The art of Unix programming. Addison-Wesley Profes-
sional.

Silberschatz, A.; Galvin, P.B.; Gagne, G. (2011). Operating system concepts Wiley
and Sons.

Strachey, C. (1967). Fundamental Concepts in Programming Languages. Higher-
Order and Symbolic Computation, 2000, vol. 13, pp. 11-49.

Taddeo, M. (2017) Trusting Digital Technologies Correctly. Minds & Machines.
https://doi.org/10.1007/s11023-017-9450-5.

Tanenbaum, A.S. (2008) Modern Operating Systems. Pearson International Edition,
3rd. edition.

Tedre, M. (2015). The science of Computing. Shaping a discipline. Boca Rato: CRC
Press.

Turing, A. M. (1946) Lecture to the London Mathematical Society on 20 febru- ary
1947. 1947. in: Brian E. Carpenter and Robert W. Doran (eds.), A.M. Turings
ACE Report of 1946 and Other papers, MIT Press, 1986, 106-124.

von Neumann, J. (1945) First draft of a report on the ED-
VAC, University of Pennsylvania, June 30, 1945. Available from:
http://www.virtualtravelog.net/entries/2003-08-TheFirstDraft.pdf.

Wilkes, M.V.; Wheeler, D.J. and Gill, S. (1951) The preparation of programs for an
electronic computer Addison-Wesley Second edition, 1967.

Wilkes, M. and Stringer, B. (1953) Micro-programmingand the design of the con-
trol circuits in an electronic digital computer Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 49, nr. 2, pp. 230–238.

Wirth, N. (1995) A plea for lean software Computer, vol. 28, nr. 2, pp. 64–68.

https://doi.org/10.1007/s11023-017-9450-5
http://www.virtualtravelog.net/entries/2003-08-TheFirstDraft.pdf

	Programming systems: in search for historical and philosophical foundations
	Liesbeth De Mol, Giuseppe Primiero
	Methodological Background
	Introducing Programming Systems
	The Complexity of Programming Systems
	Programming Systems in the Real World
	References



