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Abstract
We address the problem of bud-
geted/constrained reinforcement learning

in continuous state-space using a batch of
transitions. For this purpose, we introduce
a novel algorithm called Budgeted Fitted-Q
(BFTQ). We carry out some preliminary bench-
marks on a continuous 2-D world. They show
that BFTQ performs as well as a penalized
Fitted-Q algorithm while also allowing ones
to adapt the trained policy on-the-fly for a
given amount of budget and without the need
of engineering the reward penalties. We
believe that the general principles used to
design BFTQ could be used to extend others
classical reinforcement learning algorithms to
budget-oriented applications.

1 Introduction

Classic reinforcement learning (RL) algorithms focus on
the maximization of a unique expected reward signal. But
many applications have multiple, possibly conflicting,
objectives. For example, an autonomous driving car must
optimize its travel time, its fuel consumption, as well
as the safety of people. In this example, the first two
objectives are of the same nature. Although conflicting

on short term, they become coherent on the long term.

If the fuel tank is depleted, then the travel time will be
potentially infinite. In practice, by replacing this infinite
value by the time needed to walk to the next fuel station,
one gets a reasonable way to combine these two objectives
into a single one. The safety objective is of different
nature: it is quite difficult to assess the cost of a dramatic
car accident and it’s often more intuitive to think in term
of probability for a given run to fail the constraint.

*now with Google Brain, Paris

This problem is better formalized as a worst-case con-
strained or risk-sensitive RL problem: the car should
optimize the expected travel time while guaranteeing a
crash probability strictly lower than the one of a human
driver. The natural formalism for constrained RL is given
by Constrained Markov Decision Processes (CMDP Beut;
ler and Ross, 1985 |Altman, |1999).

The most direct approach to these kind of problems is to
relax the constraint by adding a reward penalty. That is to
say, if the cost is C' we replace the reward R by R — \C
where A > 0 is the strength of the penalty. But the
calibration of this penalty requires the ability to simulate
the policies.

Most of the existing solutions focus on the modelling of
one policy for each budget. But in some practical situa-
tions, the budget can decrease with time. Let us consider
the example of a military swarm of drones in a recon-
naissance mission. In that case, the individual drones
policies should become more risk-averse as the swarm
population decreases. For these kind of problems, the
budget is a parameter of the policy; they are formalized
as Budgeted Markov Decision Process (BMDP Boutilier
and Lu}2016)). Solving a BMDP is a harder problem than
solving a CMDP.

The aim of our work is to handle budgeted RL problems:

e Directly from batch of transitions (i.e. without sim-
ulation or interaction with the environment during
training);

e In a continuous-state space;

e With the budget as a parameter of the policy.

For this purpose we introduce Budgeted Fitted-Q (BFTQ),
an extension of the Fitted-Q (FTQ) algorithm. It takes as
input a batch of RL transitions and estimates the optimal
parametric strategies under budget. We experiment BFTQ



on 2-D worlds with forbidden areas. We show that BFTQ
performs as well as a FTQ with reward penalties.

2 Background and Related Works

2.1 Markov Decision Process

A Markov Decision Process (MDP) is formalized as a
tuple (S, A, R, P,~); where S is the state set, A is the ac-
tionset, R : S X Ax S — Ris the (potentially stochastic)
reward function, P : S x A x § — [0,1] is the transi-
tion function, and -y is the reward discount factor. The
behaviour of the agent is defined as a policy 7 : S — A,
which can either be deterministic or stochastic. Solving
an MDP consists in finding a policy 7* that maximises the
~-discounted expected return E« >, v R(s¢, as, S¢41)]-
The optimal policy 7* satisfies Bellman’s optimality equa-
tion (Bellman|(1956)):

7" (s) = argmax Q* (s, a),
a€A

Q" (s,0) =Eys.a [R(s,0,5) +7Q" (s, 77 (s))]

If v < 1, this equation admits a unique solution. If
the MDP structure is known, and if the state set S is
of tractable size, the optimal policy can be computed
directly as a fix-point of the Bellman equation. This
algorithm is called Value-Iteration (VI). When the state
set S is continuous or too large, the (Q-function has to be
approximated. Fitted Value-iteration fulfils this role.

2.2 RL algorithms for continuous MDP

Fitted Value-iteration (FVI) is a generic planning algo-
rithm. It implements Value-Iteration with a regression
model as a proxy for the Q-function. At each iteration
it fits the model to map the state-action couples (s, a) to
their respective expected values in the Bellman equation
involving R and P. However, in RL problems, R and P
are usually unknown.

Fitted-Q) (FTQ, [Ernst et al.| (2005))) resolves the afore-
mentioned problem. Let (s;, a;, 7}, 5});c[o,n] be a batch
of transitions which covers most of the state space. Given
this batch, FTQ trains the ()-function at each iteration of
VI using a supervised learning algorithm that regresses

the following supervised training batch:

{(s6,00), 74+ max Q(st @ icpo.vy

2.3 Budgeted Markov Decision Processes

A Constrained Markov Decision Process (CMDP, Beutler
and Ross|(1985); |Altman| (1999)) is an MDP augmented
with a cost function C' : S x A x S — R, a cost discount

7., and a budget 5. The cost function and its budget
represent the “hard” constraint of the problem, while the
reward function represents the task to complete. The
problem of constrained RL consists in finding the policy
which maximizes the expected return while keeping the
discounted sum of the cost under the given budget .
Formally:

7 =argmax E, Ztht, (D
i t

subjectto . Z ViCy < B (2)
t

where R; = R(sy,a, s¢+1) and Cy = C(sy, ay, Se41)-

For the sake of simplicity we consider a weak form of risk
in Eq. (2): the budget is only constrained on average. For
sensitive applications the failure risk should be modelled
in term of worst-deviation from the expected cumulative
cost or in term of worst-percentile (Chow et al.| 2018)).

The Budgeted Markov Decision Process (BMDP,
Boutilier and Lu(2016))) problem is a generalisation of the
CMDP problem where the objective is to find a generic
policy 7 which works for any CMDP of budget 5 > 0.

2.4 A remark on deterministic policies

A convenient property of MDPs, is that the optimal
policy is unique, deterministic and greedy: 7*(s) =
argmax, Q(s,a). In a CMDP, and a fortiori in a BMDP,
this is in general not the case. It has been shown indeed
that the optimal policy under constraint is a random mix-
ture of two deterministic policies [Beutler and Ross| (1985]
Theorem 4.4).

To illustrate this fact, let us consider the trivial BMDP on
the left of Fig.[I] On this example we have E; R = 107,
and E,C = 7. The deterministic policy consisting in
always picking the safe action is feasible for any 5 > 0.
But if § = 1/2, the most rewarding feasible policy is to
randomly pick the safe and risky actions with equal prob-
abilities. If we attempt to cast this BMDP into an MDP
by replacing the costs by negative rewards, the policy we
will obtain will be deterministic, hence suboptimal.

2.5 Related work

Optimization under constraint algorithms have proven
their worth in many real life applications like operational
efficiency for businesses or network design problems dur-
ing the 90s (Bertsekas| (1996)). But, these algorithms do
not capture the temporal nature of a wide class of RL
problems, such as in robotics, dialogue systems, control
systems, or trading strategies.



Figure 1: On the left hand side, a simple risky-vs-safe
BMDP. The probability of picking the risky action is 7.
On the right hand side an attempt to relax the problem
with negative rewards.

As a consequence, researchers got interested in resolving
constrained sequential problems (|Garcia and Fernandez
(2015))), such as MDP under constraints Beutler and Ross
(1985);|Altman! (1999)). [Undurti et al.|(2010) proposes an
algorithm to solve CMDP with a continuous state-space
using the same principles as FVI; but they assume that
the environment (R, C' and P) is known.

Geibel and Wysotzki| (2005); |Chow et al.| (2018)); |/Achiam
et al.| (2017) propose algorithms for CMDP, but they
require interactions with the environment during the
training (actor-critic, -learning and Policy Gradient,
Constrained-Policy-Optimization).

Abe et al.| (2010) work with constraint-based RL but their
solution is a -learning algorithm adapted to batch learn-
ing, which is known not to be a sample-efficient batch
RL algorithm. Thomas et al.| (2015)); |Petrik et al.| (2016));
Laroche and Trichelair{ (2017) introduced batch RL algo-
rithms for risk sensitive problems but these algorithms
were not adapted for continuous environments.

It is important to note, that these algorithms are designed
to work for CMDP and require some adaptation to fit the
general BMDP problem. On the contrary, [Boutilier and
Lu| (2016) resolve a BMDP using a VI-like algorithm;
however it only applies to finite and known environments.

3 Penalized Fitted-() Iteration

As mentioned before, a natural way to relax the constraint
of Eq. (2)) is to penalize states with high cost. Assuming
Y =y = ., the MDP problem to solve becomes:

7y =argmaxE, Z Y (Re — ACy), 3)
i t

As explained on Fig.[2] the optimal deterministic policy
can be obtained by a line-search on the Lagrange multi-
plier values \. Then, according toBeutler and Ross| (1985}

T
stddev 1
cost-calibration

budget [

04 o

average cost per run

02 | i

i i i
0

AF *
1 10 Aavg )\safc 1000 10000

penalization A

Figure 2: Calibration of a penalty multiplier according to
the budget 3. The optimal multiplier A}, is the smallest
one to satisfy the budget constraint on average. Safer poli-
cies can also be selected according to the largest deviation

form this mean cost.
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Figure 3: A simple deterministic finite BMDP.

[

Theorem 4.4), the optimal policy is a randomized mixture
of two deterministic policies: the safest deterministic pol-
icy that violates the constraint 7y _ and the riskier of the
feasible ones 7y .

Fitted-Q can be easily adapted continuous states CMDP
and BMDP through this methodology, but, given the high
variance, it requires a lot of simulations to get a proper
estimate of the calibration curve. Our purpose is to avoid
this calibration phase.

4 Budgeted Fitted-() Iteration

In this section, we introduce Budgeted-Fitted-Q)
(BFTQ), a batch RL under constraints algorithm for
BMDP, as an extension of the regular FTQ algorithm.

4.1 Intuition

We illustrate the principle of BFTQ on a simple BMDP
described on Fig. [3| This example counts 7 states and 2
actions, its transition, reward, and constraint functions are



fully deterministic. In order to maximise the cumulative
reward while keeping the sum of the cost under 3, there
are only 3 parameters to optimise: w9 = P(ayq | start),
T = HD(CLO | 52), and Ty = ]P)(ao | 82).

First note that on the left hand side of the figure, on state
s1, the action ag dominates a; for any budget: we can
safely set m; = 1 and replace state s; by a terminal state
of expected reward 10 and cost 5. We write: Q,-(sg, ag) =
10 and QC(SQ, CLQ) =2

Assuming v = 7. = 1, the optimization problem of Eq_I]
simplifies into:

max 107y + (1 — mp) - (2 + 9m2)

o, T2

s.t. 2mo+ (1 —mg) - (1+2m) <8

The best policy depends on the budget: If 5 < 1 the
problem is infeasible, if § > 3 we maximize reward by
playing a1, then ag. If 3 = 3/2, the best policy is to
take mp = 1/2 and mo = 0, if 8 = 5/2, we rather take
T = 1/2 and7r2 =1.

It is also possible to solve the problem locally on ss as
long as the budget 3 > 1 is left as a free parameter:

75 (8) = argmax 9mg s.t. 2my < 5 — 1

T2

— min {1, (8 - 1)/2}

‘We then write:

Qr(s0,a1,3) =2+ 9m3(8)
Qc(s0,a1, ) = 14 2m5(5)

The final optimization problem becomes:

(1 _TO)Q:(SO,al,Bl) (4)

max moQ; (S0, ao) +
0,81

s.t.:
Q7 (S0, a0) + (1 — mo) Q7 (s0, a1, 1) < B

If the values @, and (. are known for each
state/action/budget triplet we can drive the agent locally
according to this equation.

For tree-shaped BMDP like this one, the global optimiza-
tion problem can always be separated in independent
sub-problems (one for each sub-treeﬂ Intuitively speak-
ing, the agent optimises its budget distribution over all
possible actions.

'To the best of our knowledge, this separability assumption
is still a conjecture for general BMDPs (with loops).

4.2 Training Algorithm

The preceding example can be extended to continuous-
states environments by the use of function approximation.
In BFTQ, two functions have to be approximated. The
regular ()-function estimating the expected discounted
sum of rewards, denoted here by .., is defined on a state-
action-budget triplet. The constraint ()-function for the
sum of constraints, denoted here by @), is defined on a
state-action-budget triplet as well. For both Q-functions,
the budget variable contextualises with the current budget
remaining when evaluating the function.

Notation Description

n Current iteration of BFTQ.

i Index of the i transition.
reg Regression of f using

f(zi) Yi | database {(zs,9) biep,n-

Ay Probability simplex over A.

Table 1: Notations used in BFTQ

In Fig. E} the environment transitions, rewards and con-
straints were assumed to be known. In most situations, the
model of the environment is unknown. FTQ, like many
others RL algorithms, overcomes this problem by using
the agent interactions with the environment through a tri-
als and errors process. Those interactions are collected
as a base of transitions. To take the budget into account
while constructing the optimal policy in BFTQ this train-
ing base is enriched as a list: (s;, a;, 77}, s}, ¢ BZ)ZE[O N
where r; and ¢; denote respectively the effective rewards
and the costs of the transition and the 3; are taken from a
discretization of the admissible budgets’}

The training phase of BFTQ relies on two policies: with
the notations summarized on Table [T} the behavioural-
policy m(s, a, 3) : SxR — A 4 is the classical stochastic
policy mapping states to distributions over actions, aug-
mented with the budget dependency. The budget-policy
b(s,a,B) : S x A x R — R allocates constraint budget
to each triplet (action, state, budget).

The BFTQ algorithm consists in iterating over its two
Q-functions: the reward action-value )-function @)}’ is
evaluated with Eq.[5] and the constraint action-value Q-
function Q7 is evaluated with Eq.[6] Both can be trained
with any supervised learning regression algorithm.

Q"M (54, a4, B;) <L )

by Y a(shd, B)QN (sl d! b (sh, d, B))

a’eA

2For example, if the cumulative cost of a problem is in
interval [1, 3], we can take 3 in {1 + n/100 | 0 < n < 200}.



QM (54, a4, B;) <2 (6)

e S (sl d, B)QL (s d b (s By)
a’€eA

Contrary to regular FTQ where the policy is a simple
greedy exploitation of the (Q-function, BFTQ has to com-
pute its two policies 7" and 0™ at each iteration. Since
taking some actions could exceed the budget, both budget-
policy and behavioural-policy are jointly optimised under
the constraint of belonging to set ¥, described in Eq.
This equation denotes the search space for admissible
(behavioural-policy, budget-policy) couples. Eq. [§| de-
scribes the optimisation process.

e AYE b e RSXAXE,
such that, Vs € S,V € R,

y" =
> 7(s.a,8)Q1(s,a,b(s,a,B)) < B
ac A
@)
(ﬂ_n+1’bn+1) — (8)
a‘rgma‘x 7T(57a)ﬂ)Q:}+1(s7a?b(57a)5))

n+1
(mb)ewnt1 24

The stopping criterion of BFTQ is classically defined as a
threshold 1 on (Q-functions parameters differences.

The main result of this training phase is the couple of
fitted Q-functions @), and Q.. As a side result we also
obtain approximations of the optimal action and budget
policies 7; and b; for each transition of the training base.

4.3 Theoretical Policy Execution

Let 5; and s; be respectively the remaining budget and
state of the agent at time step ¢. The agent can theoret-
ically use the two @-functions ), and @), according to
Eq. () to determines the optimal distribution 7 (s, -, 8;)
over the actions and the corresponding budget repartition
b(st, -, ft). It then samples an action according to the
distribution and replaces its current budget according to
the budget repartition and the action sampled.

The advantage of this ap-
proach is that it only ap-
proximates on (), and
Q.. Its downside is that
one has to solve a non-
linear problem under constraints at each time step of the
policies execution: for time-critic applications, its use
would be disastrous.

ag ~ W(St, Yy ﬁt) (9)
Bit1 = b(s¢, ar, Br) (10)
St+1 ™~ P(St,at»‘)

4.4 Policies approximations

Having to solve Eq. (8) is painful for both the training
and deployment phases. To overcome this issue, we ap-
proximate the functions 7 and b using regressions on the

training transitions. The optimisation described in Eq.[§]
does not need to be computed exhaustively: it has to be
performed only for the transitions in the learning base. For
this purpose, we use the sets 7", as defined in Eq. (1)),
which are the projections of the set )" of Eq. (7)) on the
training transitions.

7 € Ay, b; € RA, such that:

> mi(@)Qr (sia,bi(a) < Bi (11

acA

v =

The projection of Eq. (8) on the training set is formalized

in Eq.[12]

7rn+1(5ia K 6i)7bn+1(5i5 " 51) <_7f2 (12)
argmax Z mi(a)QI (54, a,bi(a))

(mi,bi) €I T e

At the end of the training process, we can drop the Q-
functions and work directly with the fitted policies as in

Eq. (9) and Eq. (T0).

4.5 Solving the non-linear problem

The main remaining challenge is to solve the non-linear
problem Eq[I2] during the training phase. One may use
some black-box optimization algorithm like random sam-
pling, SLSQP (Kraft and Schnepper (1989)) but it would
be inefficient. Hopefully we can exploit some specific
properties of the (Q-functions to speed-up the optimization.
Let Q5 () denote the following parametric function:

Qs,a(B) = (Qc(s,a,B), Qr(s,a,8))  (13)

This function is concave and strictly increasing in 3 along
the axis of @,.. Indeed, given a budget 3, a state s and
an action a, the expected reward and actual budget con-
sumption for a given action, Q,.(s, a, 8) and Q.(s, a, 5)
will be lower or equal to the ones yield by a larger budget
B = B + € Ve > 0. The intuition is as follows: given a
budget ', in worst case scenarios (when extra budget € is
useless), one can always achieve at least the same perfor-
mances as with the lower budget /3; indeed, the space of
admissible policies for 5’ contains the one for 3.

We need to solve Eq|8|for a state s. For the moment, we
assume to have 2 possible actions a and a. The func-
tions Qs o, and Qs o are plotted on Fig[zi_f} The optimal
@, value is necessarily obtained by the probabilist com-
bination of those actions. This combination of actions
yield values (Q., Q) on a straight line. Since @ func-
tions are concave and strictly increasing, the line defining
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Figure 4: An example of Q-functions as defined in
Eq[I3] The dot lines are tangent to both curves. The
tangent at the right defines the optimal policy when the
budget 3 lies between Q.(s,a,,b ) and Q.(s,aT,bT).
The value y3 is then equal to (s, a1, 8)Q,(s,a.,3) +
n(s,aT,B)Qr(s,aT,B).

the optimal and admissible solutions is actually a tangent
of both Q5 ,, and Q) ., lying on top of both functions
as shown on Fig[d] We need to find both intersections
points between the tangent and the () functions to define
the optimal solution. Let (Q.(s,a1,b1),Q(s,a1,b1))
and (Q.(s,aT,b1),Qr(s,aT,bT)) denote the two inter-
sections points. The optimal budget-policy in s is then
defined as b(s,a,,8) = b, and b(s,aT,) = bt. The
optimal behavioural-policy in s is the following:

m(s,at,B) + m(s,at,B) =1,

if 8 <Qc(s,ar,by), w(s,at,B) =0, (14)
if 8> Q.(s,a1,b1), w(s,aT,B) =1,
B—Qc(s,a1,b1)

otherwise, 7(s,aTt,B) =

One can extend this reasoning to cases with more than
two actions by considering actions two by two. Finally,
solving Eq [12] actually amounts to solve the following
non linear program:

T (84,0, Bi) " (i, Bi) < (15)
argmax Z 771(@)@?+1 (Sia a, bz(a))

(b ) EQITT e A

QC(Sa aT, bT) - Qc(sa aj, bL) '

Figure 5: An execution of SOLVE with three actions.
Each dots correspond to discretization w.r.t 3. Red dots
are considered to compute the convex hull. Blue dots are
removed since they reach a worst value of @, for greater
Q.. Finally, pink cross are the dots retained to compute
the optimal policy.

where

m;, b;, such that:
(aL, at) € A%
(bL,bT) S Rz,
bi(at) = bT,
bi(ar) =by,

Qr = bi(a) =0Va € A\ {aT,a.}
Qr(si,a1,b1) < B < Q(si,aT,bT),
mi(a) =0Va € A\ {aT,a.}

. ﬂi—Qll(S'na 7b )
ﬂ—i(al) - QZ’(SmaT,bT)*Q;(S:aLJu)’
mi(at) =1—mi(ay),

=A; =AT
with A — Qr(si,aT,b1) — QF(si,a1,b1)

Q?(SiaaT7bT) - Q?(Si7aL7bL)
_ 0Qr(si,au,b1) 0Qc(si a1,by)

e o5 | op
A _ 8QT(8’L7aTabT)/an(si)aTvbT)
T ap ap

One way to solve Eq[I3]is to compute the convex hull of
discrete version of () functions. We propose an algorithm
named SOLVE in Alg|[T]to do so and show an example of
its execution in Fig[5| We assume that the function hull
returns the convex hull H of a set in clockwise order. It
starts with the lowest value in (¢, then the corresponding
budgets B and finally the corresponding actions .Apﬂ
We also need to operate a reasonable discretization of
@-function and reduce the search space. For this reason
we need to know the maximal cumulated constraint the
environment could return. We call it 3,,,42.

3The Graham Scan (Graham!| (1972)) fits all those criteria.



Algorithm 1 SOLVE

In: 5,Qr, Qc, K, B, Brmax
Out: 7,0
P=0
for a in A do
fori =0to K do
step = i/ K * Bmax
b= (QC($7 a, step), Q’V'(57 a, step))
P=PUp
end for
end for
H, B, Ap = hull(P)
found = False
=0
while - found do
qc,qr :HM
found =3 > qc
t=1+4+1
end while
m=1[0...0]
b=1[0...0]
if i < |H| then
a0 g, g = Hil, H[i—1]
pi=0B-a¢)/(¢ —q)
by, bt = B[i — 1], B[]
ay,at = Apli — 1], Ap[i]
mlaL], wlaT] =pi, 1 —p1
b[aﬂ,b[ar] = bL,bT

else
a)] = .Ap [Z — 1]
mlaL] = 1.
bla.] = B[i — 1]
end if
Algorithm 2 BFTQ

In: {Si7 ai, Bi, T£7 Cfiv Sg}ie[O,N],
fitr,fitmfitb,’}/c, e K7 /Bma:c
Out: 7,0
stop = false,k =0
Qr,Q. =lambda: s,a,8 — 0
m,b=1lambda: s, — 0
Vi € [0, N] i, uf, ui uf =0, =0
while —stop do

fori =0to N do

yzr:T;—’—’Y Z 71—(8;7a/7Bi)QT‘(S;7a/7b(S;7a/7Bi))

a’€eA

yzc :C;—'—fyc Z W(S;,(l,,Bi)QC(S;,a,,b(S;,a,,ﬁi))

a’eA
end for

Qr = fitr({si, as, Bi }iefo,n), {¥i Yico.n)
Qc = fite({si, ai, Bi}ticio,n]> {5 bicio,n])

fori =0to N do

y;nfyf = SOLVE(Sinh chKvﬂvﬂmam)

end for
™= fitﬂ'({sh ﬂl}ze[O,N]ay?)

b= fity({si, Bi}icio,N ¥7)
k=k+1

stop = k > K or ("m and b didn’t change too much”)

end while

Finally, Alg. [2|recalls the complete BFTQ algorithm us-
ing Eq.[15] The algorithm should stop when b and 7 don’t
change too much between two iterations. The distances
may use parameters of 7 and b approximations. Note
that, since each transition has been extended with several
values of (3, at each iteration, you can save extra computa-
tions by pre-computing the convex hulls for each state in
the batch of transitions and re-use these hulls for each 5.

In the next section, we evaluate BFTQ on a set of 2-D
worlds.

S Experiments

We do experiments on N x N 2-D worlds with continu-
ous state-space. The agent starts in top-left corner (0, 0).
The goal is to reach the bottom-right corner, at coordi-
nates (N — 1, N — 1), which ends the episode with a
immediate reward of 1. On its way to the goal, the agent
may fall into randomly placed holes. In that case, it also
ends the episode with a constraint of magnitude 1. Con-
sequently, constraints can be seen as failing probability.
The same goes for rewards as success probability. There
are three actions available: move_right, move_bottom
and dont_move. The two first actions yield stochastic
transitions: a Gaussian noise of mean 0 and standard de-
viation o is applied. Last action ensures that there always
exists a solution for any starting state if 3 is zero.

In the following experiments, we use two different RL
agents: BFTQ(S) uses BFTQ algorithm to learn its policy.
@, Q., ™ and b are approximated with regression trees.
The algorithm used for computing the convex hull is the
Graham scan (Graham| (1972)). § is the budget used
when initiating a new episode. Note that all BFTQ(/5)
agents use Eq.[5]and [6] The second agent, FTQ()), uses
FTQ with a regression tree. The penalty ) is used when
rewarding a fall into a hole : r <— r — X x ¢. The training
dataset is uniformly distributed over the state-action sets.

On the first experiment, we compare BFTQ(S) with
FTQ()) on a single 5 x 5 world. Results are displayed on
Fig.[6] For a given constraint return, both agents achieve a
similar reward return. In this setting, BFTQ(f) is slightly
optimistic: until 8 = 0.3, there is an offset of 0.05 be-
tween the given budget and the constraint return. So
BFTQ(/3) may not fully respect the given budget. But the
same phenomena occurs for FTQ()): when A = 10%, we
may think that the algorithm should return a constraint
of value 0, but it is actually 0.07. This is because of the
approximations involved in both algorithms. Note that
when the constraint return exceeds 0.4, failing probabili-
ties are capped as well as rewards. The explication is as
follows: at some point, the agent had to take some risk to
get the reward. But taking more risk won’t necessary give
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Figure 6: BFTQ(B) and FTQ(\) reward w.r.t the con-
straints. Values near the dots are the budgets 5 allowed
for BFTQ and the value A for FTQ. Each dot is the mean
on 9 runs on a 5x5 2-D worlds with 1000 test episodes on
each of them. The standard deviation plotted refer to the
variability between all test episodes.

it more reward, since the path to the reward is not that
risky. We can also observe a clear disparity between the
A values and their corresponding budgets. For instance
it seems quite difficult to guess the right A between 100
and 150 in order to stay tightly under a budget of value
0.25 without relaunching simulations. On the contrary,
the BFTQ() policy allows one to fix any budget bound
without worrying about the reward design.

On the second experiment, we compare the two agents
on 30 randomly generated 10 x 10 worlds. Results are
displayed on Fig.[7} Once again performances between
algorithms are similar, although FTQ()) reaches slightly
better reward return than BFTQ(3) for the same constraint
return. This is mainly explained by the approximation
of the behavioural/budget policies and the discretization
of @-functions involved in the computing of the convex
hull. We can also notice that, on Fig.[/| BFTQ(5) agent’s
performances are less noisy than FTQ(A)’s performances.
The explication is as follows: the budget choosing phase
is invariable for any world while the A used in FTQ(\) to
keep the constraint return under a particular value may
be different for two worlds. This is why FTQ(\) needs a
calibration phase - which is impossible when environment
can not be simulated - while BFTQ(3) only needs to
specify a budget.

Finally, some examples of BFTQ(/)’s policies executions
are shown in Fig.[8] For a low budget, 3 = 0.1, the agent
stops its episode after 1 or 2 actions. For g = 0.2, the
agent tries to reach the goal with more insistence but still
stops some episodes prematurely (selecting dont_move

reward return
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Figure 7: Each dot is the mean on 30 2-D worlds with
1000 test episodes on each of them. The standard devia-
tion plotted refer to the variability between the random
2-D worlds.

() B8 =0.1 (b) B =0.2 (©)B=0.6

Figure 8: Execution of a BFTQ(S) policy on a random
10x10 2-D world. Test episodes are in blue, constraints in
red and reward in green.

action). For 8 = 0.6, the agent does not stop until it
reaches the goal.

6 Conclusion

We have introduced BFTQ, a direct extension of FTQ to
solve BMDP problem. To scale things up, we proposed
to learn the policy using supervised learning. We have
also shown that in continuous BMDP, (Q-functions are
concave and increasing. We exploited this property to
approximately solve more efficiently non-linear program
of BFTQ through a dedicated algorithm that we named
SOLVE. Finally, we tested the algorithm on continuous 2-
D worlds: these experiments confirm that BFTQ performs
as well as a penalized FTQ in terms of reward/constraint
raised couple without the need of a simulated calibration
phase.

We believe that classic single reward oriented reinforce-
ment learning algorithms could be extended to solve
BMDP in the same way. It may also be of interest to
find a close form solution for the program in Eq[T3] This
would speed up considerably the computation time of
BFTQ and avoid the need of approximating policies.



References

Naoki Abe et al. Optimizing debt collections using
constrained reinforcement learning. In SIGKDD,
2010. URL http://doi.acm.org/10.1145/
1835804.1835817.

Joshua Achiam, David Held, Aviv Tamar, and Pieter
Abbeel.  Constrained policy optimization. In

ICML, 2017. URL http://proceedings.mlr|

press/v70/achiaml7a.html.

Eitan Altman. Constrained Markov Decision Processes.
CRC Press, 1999.

Richard Bellman. Dynamic programming and lagrange
multipliers. National Academy of Sciences of the USA,
1956.

Dimitri P. Bertsekas. Constrained Optimization and La-
grange Multiplier Methods (Optimization and Neural
Computation Series). Athena Scientific, 1996.

Frederick J. Beutler and Keith W. Ross. Optimal policies
for controlled markov chains with a constraint. Math.
An. and App., 112:236 — 252, 1985. URL http!
//www.sciencedirect.com/science/
article/pii1/0022247X85902884.

Craig Boutilier and Tyler Lu. Budget allocation us-
ing weakly coupled, constrained markov decision pro-
cesses. In UAI 2016. URL http://auai.org/
uai20l6/proceedings/papers/246.pdfl

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Jan-
son, and Marco Pavone. Risk-constrained reinforce-
ment learning with percentile risk criteria. JMLR,
2018. URL http://Jmlr.org/papers/v18/
15-636.html.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-
Based Batch Mode Reinforcement Learning. JMLR,
2005.

Javier Garcia and Fernando Ferndndez. A Comprehen-
sive Survey on Safe Reinforcement Learning. JMLR,
2015. URL http://Jmlr.org/papers/v16/
garcialba.html.

Peter Geibel and Fritz Wysotzki. Risk-sensitive rein-
forcement learning applied to control under constraints.
Journal of Artificial Intelligence, 24, 2005.

Ronald L. Graham. An efficient algorithm for determining
the convex hull of a finite planar set. Inf. Process. Lett.,
1972.

Dieter Kraft and Klaus Schnepper. Slsqp, a nonlinear
programming method with quadratic programming sub-
problems. DLR, Oberpfaffenhofen, 1989.

Romain Laroche and Paul Trichelair. Safe Policy Im-
provement with Baseline Bootstrapping. CoRR, 2017.

Mohammad Petrik, Marek Ghavamzadeh, , and Yin-
lam Chow. Safe policy improvement by minimiz-
ing robust baseline regret. In NIPS, 2016. URL
https://papers.nips.cc/.

Philip Thomas, Georgios Theocharous, and Mohammad
Ghavamzadeh. High confidence policy improvement.
In ICML, 2015. URL http://proceedings.
mlr.press/v37/thomasl5.htmll

Aditya Undurti, Alborz Geramifard, Nicholas Roy, and
Jonathan P How. Function Approximation for Continu-
ous Constrained MDPs. Technical report, 2010.


http://doi.acm.org/10.1145/1835804.1835817
http://doi.acm.org/10.1145/1835804.1835817
http://proceedings.mlr.press/v70/achiam17a.html
http://proceedings.mlr.press/v70/achiam17a.html
http://www.sciencedirect.com/science/article/pii/0022247X85902884
http://www.sciencedirect.com/science/article/pii/0022247X85902884
http://www.sciencedirect.com/science/article/pii/0022247X85902884
http://auai.org/uai2016/proceedings/papers/246.pdf
http://auai.org/uai2016/proceedings/papers/246.pdf
http://jmlr.org/papers/v18/15-636.html
http://jmlr.org/papers/v18/15-636.html
http://jmlr.org/papers/v16/garcia15a.html
http://jmlr.org/papers/v16/garcia15a.html
https://papers.nips.cc/
http://proceedings.mlr.press/v37/thomas15.html
http://proceedings.mlr.press/v37/thomas15.html

	Introduction
	Background and Related Works
	Markov Decision Process
	RL algorithms for continuous MDP
	Budgeted Markov Decision Processes
	A remark on deterministic policies
	Related work

	Penalized Fitted-Q Iteration
	Budgeted Fitted-Q Iteration
	Intuition
	Training Algorithm
	Theoretical Policy Execution
	Policies approximations
	Solving the non-linear problem

	Experiments
	Conclusion

