
HAL Id: hal-02148006
https://hal.univ-lille.fr/hal-02148006v1

Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Aluminum Ingestion Promotes Colorectal
Hypersensitivity in Rodents.

Nicolas Esquerre, Lilian Basso, Caroline Dubuquoy, Madjid Djouina, Daniel
Chappard, Catherine Blanpied, Pierre Desreumaux, Nathalie Vergnolle, Cécile

Vignal, Mathilde Body-Malapel

To cite this version:
Nicolas Esquerre, Lilian Basso, Caroline Dubuquoy, Madjid Djouina, Daniel Chappard, et al.. Alu-
minum Ingestion Promotes Colorectal Hypersensitivity in Rodents.. Cellular and Molecular Gas-
troenterology and Hepatology, 2018, Cellular and Molecular Gastroenterology and Hepatology, 7,
pp.185-196. �10.1016/j.jcmgh.2018.09.012�. �hal-02148006�

https://hal.univ-lille.fr/hal-02148006v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


ORIGINAL RESEARCH
Aluminum Ingestion Promotes Colorectal Hypersensitivity
in Rodents

Nicolas Esquerre,1 Lilian Basso,2 Caroline Dubuquoy,3 Madjid Djouina,1 Daniel Chappard,4

Catherine Blanpied,2 Pierre Desreumaux,1 Nathalie Vergnolle,2 Cécile Vignal,1,§ and
Mathilde Body-Malapel1,§

1Université Lille, INSERM, CHR Lille, Lille Inflammation Research International Center, U995, Lille, France; 2INSERM U1043,
CNRS U5282, Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France; 3Intestinal
Biotech Development, Lille, France; 4GEROM, Groupe d’Etudes sur le Remodelage Osseux et les bioMatériaux, IRIS-IBS,
CHU Angers, Angers, France
Mast cell activation

Dietary
Aluminum

Colorectal 
hypersensitivity

Irritable 
Bowel

Syndrome ?

PAR-2 activation

Rats

Mice
SUMMARY

Aluminum, which is commonly present in food, induces
visceral hypersensitivity in rats and mice when ingested at
dosages relevant to human exposure. Aluminum might be
the first identified dietary risk factor for irritable bowel
syndrome.

BACKGROUND & AIMS: Irritable bowel syndrome (IBS) is a
multifactorial disease arising from a complex interplay between
genetic predisposition and environmental influences. To date,
environmental triggers are not well known. Aluminum is
commonly present in food, notably by its use as food additive.
We investigated the effects of aluminum ingestion in rodent
models of visceral hypersensitivity, and the mechanisms
involved.

METHODS: Visceral hypersensitivity was recorded by colo-
rectal distension in rats administered with oral low doses
of aluminum. Inflammation was analyzed in the colon of
aluminum-treated rats by quantitative PCR for cytokine
expression and by immunohistochemistry for immune cells
quantification. Involvement of mast cells in the aluminum-
induced hypersensitivity was determined by cromoglycate
administration of rats and in mast cell-deficient mice
(KitW-sh/W-sh). Proteinase-activated receptor-2 (PAR2) acti-
vation in response to aluminum was evaluated and its
implication in aluminum-induced hypersensitivity was
assessed in PAR2 knockout mice.

RESULTS: Orally administered low-dose aluminum induced
visceral hypersensitivity in rats and mice. Visceral pain
induced by aluminum persisted over time even after cessa-
tion of treatment, reappeared and was amplified when
treatment resumed. As observed in humans, female animals
were more sensitive than males. Major mediators of
nociception were up-regulated in the colon by aluminum.
Activation of mast cells and PAR2 were required for
aluminum-induced hypersensitivity.

CONCLUSIONS: These findings indicate that oral exposure to
aluminum at human dietary level reproduces clinical and
molecular features of IBS, highlighting a new pathway of pre-
vention and treatment of visceral pain in some susceptible
patients. (Cell Mol Gastroenterol Hepatol 2019;7:185–196;
https://doi.org/10.1016/j.jcmgh.2018.09.012)
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rritable bowel syndrome (IBS) is a chronic functional
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Igastrointestinal disorder affecting 10–25% of the
population and twice as many women as men in Western
countries.1–3 It occurs at all ages; however, 50% of patients
report having had symptoms before 35 years of age. As there
are no specific biomarkers, IBS is diagnosed according to
symptom-based criteria. IBS is diagnosed if patients
described recurring pain or discomfort in the lower
abdomen accompanied by altered stool formation or fre-
quency. According to the ROME classification, IBS patients
are subcategorized as diarrhea predominant, constipation
predominant, alternating, or unspecified.4 IBS is thus a het-
erogeneous disorder with multiple pathophysiological
mechanisms and likely different causes.5,6 A defect in intes-
tinal barrier defense with an increased intestinal perme-
ability has been observed in IBS.7 Alterations of the immune
system have also been described with an abnormal activa-
tion status of immune cells, particularly mast cells or T cells.
Peripheral and central modifications in brain–gut in-
teractions are also believed to be involved in the visceral
pain perception.8 However, even if these mechanisms play a
crucial role in IBS pathophysiology and the maintenance of
visceral hypersensitivity, the question of the initial trigger
still remains unresolved.9 Therefore, a better understanding
of the triggering factors will help to develop new therapeutic
strategies. Few risk factors have been linked to IBS devel-
opment; the best-documented ones are female sex, psycho-
logical factors, and preceding gastrointestinal infections.10,11

Besides, many IBS patients identify food as a possible cause
of their symptoms.12 A broad restriction diet low in
fermentable oligosaccharides, disaccharides, mono-
saccharides, and polyols has been suggested as a strategy to
improve symptoms, irrespective of the underlying cause.13 A
more precise link between food and IBS has been demon-
strated for gluten and other wheat proteins, lactose, and
nickel, highlighting particular subset of IBS patients now
diagnosed as nonceliac gluten/wheat sensitivity, lactose
intolerance, and nickel-allergic contact mucositis.14–17 For
these subgroups of IBS patients the withdrawal of wheat,
lactose, or nickel has been shown to improve symptoms.18,19

Here, we evaluated the effect of aluminum, a common
contaminant of food and water, on the abdominal pain.
Aluminum is a ubiquitous element in nature, and thus it can
naturally contaminate food as a result of food grown in
aluminum containing soils.20 Aluminum is also used as a
food additive. It can also be taken up through contact with
kitchenware or packaging.21–23 In Europe, it was estimated
that the tolerable intake of aluminum is exceeded in a sig-
nificant proportion of the population, especially in children,
who are more vulnerable to toxic effects of pollutants than
adults.24,25 A U.S. food additives survey calculated that most
Americans ingest from 0.01 to 1.4mg$kg body weight$d of
aluminum. In the same study, it was estimated that about 5%
of Americans ingested more than 95mg/d aluminum
(meaning 1.58 mg$kg$d if a 60-kg person is considered).20

We previously reported, in a context of inflammatory
bowel diseases, that aluminum ingestion in mice at a dose of
1.5 mg$kg$d altered gut homeostasis and modified tight
junction proteins expressed by epithelial cells. These
changes favored a leaky gut and enhanced the intensity
and duration of inflammation.26 In the present study, we
showed that a 1.5 mg$kg$d ingestion of aluminum
induced dose-dependent and persistent colorectal hyper-
sensitivity in rodents. To link aluminum and IBS condi-
tion, we highlighted that aluminum triggered mechanisms
involved in IBS pathophysiology. Indeed, we demon-
strated that aluminum induced mast cell degranulation
and activation of the proteinase-activated receptor-2
(PAR2) which were required for aluminum-induced
visceral pain. Our findings indicate that oral exposure to
aluminum can reproduce clinical and molecular features
of IBS. We revealed a role for aluminum as a dietary factor
that can promote abdominal hypersensitivity and a
possible therapeutic strategy via controlled aluminum
uptake or chelation.
Results
Oral Aluminum Administration Induces Visceral
Hypersensitivity

In rats, CRD is the most widely used method to assess
visceral pain thanks to its ease of use and robust reproduc-
ibility. In our study, the recorded parameter was a pain
threshold, characterized by clearly visible abdominal con-
tractions and elevation of the hind part of the animal’s body.27

Rats were treated orally with aluminum citrate (AlCi) at a
concentration of 1.5 mg$kg$d, corresponding to the high value
of dietary aluminum ingested by human, and visceral hyper-
sensitivity was assessed.20,21,24,25 In control animals receiving
water, a mean pressure of 52 ± 1.1 mm Hg was required to
induce pain (Figure 1A). AlCi treatment within 8 days
decreased the mean pressure necessary to induce allodynia
compared with control rats (54.5 ± 0.9 mm Hg vs 48 ± 1.7
mm Hg) (Figure 1A). This aluminum-induced nociceptive ef-
fect was maintained for the duration of administration. After
30 days of exposure, it led to a 30% increase in pain
compared with control animals (Figure 1A). A lower concen-
tration of AlCi of 0.5 mg$kg$d significantly decreased the pain
threshold by day 8 of administration (Figure 1B), while with a
higher dose of 3 mg$kg$d, a significant increase in visceral
pain was observed as early as on the second day of treatment
(Figure 1C). Increased pain induced by 1.5 mg$kg$d persisted
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Figure 1. Aluminum-induced visceral hypersensitivity in rats. (A) Pain threshold in rats orally administered with water
(Control), 1.5 mg$kg$d AlCi or ZnCi for 30 days (n ¼ 10/group). Abdominal withdrawal reflex in response to CRD was measured
after 2, 4, 8, 15, and 30 days of exposure. (B) Pain threshold in response to CRD in rats after 8 days of 0, 0.5, or 1.5 mg$kg $d of
AlCi administration (n ¼ 9–10/group). (C) Pain threshold in response to CRD in rats after 2 days of 0, 0.5, 1.5, and 3 mg$kg$d of
AlCi administration (n¼ 8–10/group). (D–F) Time course of pain threshold after administration, discontinuation, and resumption
of AlCi at oral dosages of (D) 1.5 mg$kg$d, (E) 0.5 mg$kg$d, or (F) 3 mg$kg$d (n ¼ 10/group). (G) Variation of pain threshold
in response to CRD in male and female rats after 4 days of water (Control) or 1.5 mg$kg$d AlCi ingestion (n ¼ 8–10/group).
(H) Pain threshold variation in rats after AlCi (1.5 mg$kg$d) ingestion compared with butyrate (200 nM) and
2,4,6-trinitrobenzenesulfonic acid (150 mg/kg) administration (n ¼ 10/group). *P < .05, **P < .005, ***P < .0005 using the
Mann-Whitney nonparametric U test.
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significantly for 7 days after discontinuation of treatment, and
4 weeks were needed to reach the threshold of nontreated
rats (Figure 1D). A second administration of AlCi at the same
dose of 1.5 mg$kg$d induced pain within 2 days of adminis-
tration compared with 8 days during the first administration
(Figure 1A and D). Similar long-lasting effects and sensitiza-
tion to repeated administration of AlCi were observed with
the doses of 0.5 and 3 mg$kg$d (Figure 1E and F). Compari-
sons between genders showed that in each case (control or
with aluminum treatment), a significantly lower pain
threshold was observed among the female rats, mimicking the
gender effect observed in human IBS (Figure 1G). Female rats
were also more susceptible to aluminum than male rats as
they showed a significant decrease in pain threshold after 4
days of treatment (Figure 1G).
To assess whether the painful impact of aluminum is a
common effect to all metals or arises from the citrate
complexation with aluminum, rats were treated with ZnCi at
the same dosage of 1.5 mg$kg$d. Up to 30 days of treatment
with ZnCi did not induce any significant variation in the pain
threshold compared with control rats (Figure 1A).

Noninflammatory and inflammatory irritation models of
colonic hypersensitivity relevant to IBS have been devel-
oped. For example, repeated butyrate enemas and intra-
rectal injection of 2,4,6-trinitrobenzenesulfonic acid in
combination with 25–50% ethanol have been used as
noninflammatory and inflammatory models of IBS, respec-
tively.28 We compared the effects of AlCi treatment
on visceral hypersensitivity with those induced by butyrate
and 2,4,6-trinitrobenzenesulfonic acid injections. The



Figure 2. A dose of 1.5 mg$kg$d aluminum induced low-grade inflammation in the colon. Several inflammatory markers
were analyzed in the colons of rats administered orally with water (Control) or 1.5 mg$kg$d AlCi for 1 month. (A) Colon MGG
staining, CD68, serotonin, and tryptase immunohistochemistry. (B) MPO activity levels (n ¼ 10/group). (C) Tnfa, Il1b, Cxcl1,
and Il10 transcript levels (n ¼ 10/group). (D) Number of eosinophils, CD68-positive cells, and serotonin-positive cells (n ¼ 9
or 10/group). (E) Cd11c, Cd68, and Chga transcripts levels (n ¼ 10/group). (F) Total number of tryptase-positive mast cells
(n ¼ 10/group). (G) Percentage of degranulated mast cells. (H) Colon histamine levels determined by enzyme-linked immu-
nosorbent assay kits (n ¼ 8–10/group). (I) Colon Hdc transcript levels (n ¼ 10/group). *P < .05, using the Mann-Whitney
nonparametric U test.
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hypersensitivities induced in these models and by oral
administration of 1.5 mg$kg$d AlCi were of similar ampli-
tudes (Figure 1H).
Aluminum Activation of Mast Cells Is Necessary
for Its Pronociceptive Effect

In a particular subgroup of patients, IBS symptoms might
be the result of an altered immune response.7 Signs of
inflammation were assessed in the colons of rats exposed to
AlCi (0, 1.5, and 3 mg$kg$d) for 1 month. Colonic histology
did not show inflammatory changes (Figures 2A and 3A,
MGG panel). The other evaluated parameters, colonic mye-
loperoxidase activity (Figures 2B and 3B) and mRNA
expression of Tnfa, Il1b, Cxcl1, and Il10 (Figures 2C and 3C)
did not indicate any signs of inflammation. More specifically,
histological evidence of low-grade inflammation was
assessed by the evaluation of the recruitment of
inflammatory cells. No differences were observed in stained
colonic sections for the infiltration of eosinophils or mac-
rophages (Figures 2A and 3A, MGG and CD68 panels,
respectively; and Figures 2D and 3D), or by real-time PCR
analysis of Cd11c and Cd68 mRNA expression (Figures 2E
and 3E). However, we observed that the number of
serotonin-positive cells (Figure 3A and D) and Chga mRNA
levels (Figure 3E) were lower in the colon after AlCi treat-
ment at 3 mg$kg$d compared with control animals, sug-
gesting an effect of aluminum on enteroendocrine cells.
Moreover, though the total number of mast cells, assessed
by tryptase immunoreactivity, was not modified by AlCi
treatment, activated or degranulated mast cells were more
frequent in the colons of treated rats at dosages of 1.5 and
3 mg$kg$d compared with control rats (Figures 2A, F, and G
and 3A, F, and G). AlCi treatment also induced upregulation
of colon histamine contents (Figure 2H) and Hdc transcripts
(Figure 2I), indicating a mast cell activation by aluminum.



Figure 3. A dose of 3 mg$kg$d aluminum induced low-grade inflammation in the colon. Several inflammatory markers
were analyzed in the colons of rats administered orally with water (Control) or 3 mg$kg$d AlCi for 1 month (n ¼ 10/group). (A)
Colon MGG staining, CD68, serotonin, and tryptase immunohistochemistry. (B) MPO activity levels. (C) Tnfa, Il1b, Cxcl1, and
Il10 transcript levels. (D) Number of eosinophils, CD68-positive cells, and serotonin-positive cells. (E) Cd11c, Cd68, and
Chga transcripts levels. (F) Total number of tryptase-positive mast cells. (G) Percentage of degranulated mast cells. *P < .05,
***P < .0005 using the Mann-Whitney nonparametric U test.
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We then explore the role of aluminum-induced mast
cells activation in visceral hypersensitivity. Rats were
treated with water or AlCi together with cromoglycate, a
compound known to prevent the degranulation of mast cells
and thus the release of mast cell-derived mediators.29 Cro-
moglycate administration did not modified total number of
mast cells but slightly decreased mast cells activation
(Figure 4A and B). However, this was not accompanied with
a modification in pain threshold (Figure 4C). On the other
hand, cromoglycate administration significantly diminished
mast cells activation induced by AlCi (Figure 4B), which was
associated with a significant increase in the mean pressure
needed to induce pain in AlCi and cromoglycate co-treated
rats compared with AlCi treated rats (Figure 4C), reflect-
ing an inhibition of aluminum-induced hypersensitivity
by cromoglycate. To explore this further, we used a
mast cell–deficient mouse strain (KitW-sh/W-sh) harboring a
reduction in c-kit tyrosine kinase–dependent signaling
resulting in disrupted normal mast cell development but not
in total deletion of mast cells.30 First, and consistently with
our data in rats, a significant increase of visceral motor
response was observed in AlCi-exposed wild-type (WT)
mice compared with control WT mice (Figure 4D). In WT
mice, aluminum treatment also increased the number of
activated mast cells (Figure 4E and F, white and gray scat-
terplots). Without any exogenous challenge, KitW-sh/W-sh

mice were as sensitive to colorectal distension as WT mice
(Figure 4G). However, hypersensitivity induced by
aluminum in WT mice was suppressed in KitW-sh/W-sh mice
(Figure 4H and I). This was correlated with a significant
decrease in aluminum-induced activation of mast cells
(Figure 4E and F, blue scatterplots). Together, these data
indicate that aluminum-induced mast cells activation is
required for the observed hypersensitivity.



Figure 4. Involvement of mast cells in aluminum-induced hypersensitivity. (A–C) Rats were treated for 8 days with
water (Control) or 1.5 mg$kg$d AlCi alone or concomitantly with cromolyn sodium (50 mg$kg$d intraperitoneal). (A) Total
numbers of tryptase-positive mast cells (n ¼ 10/group). (B) Percentage of degranulated mast cells (n ¼ 10/group). (C) Pain
threshold variation in response to CRD (n ¼ 10/group). WT or KitW-sh/W-sh female mice were orally administered with water
(Control) or 1.5 mg$kg$d AlCi for 1 month and (D, G–I) pain threshold variation in response to CRD was recorded (Control:
n ¼ 13 WT, n ¼ 10 KitW-sh/W-sh; AlCi: n ¼ 14 WT, n ¼ 10 KitW-sh/W-sh). (E) Total number of tryptase-positive mast cells.
(F) Percentage of degranulated mast cells (Control: n ¼ 9 WT, n ¼ 5 KitW-sh/W-sh; AlCi: n ¼ 8 WT, n ¼ 5 KitW-sh/W-sh). *P < .05,
**P < .005, ***P < .0005 using the Mann-Whitney nonparametric U test for panels A–C, E, and F and 2-way analysis of variance
for panels D, G, H and I.
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PAR2 Activation by Aluminum Is Required for the
Induction of Visceral Pain

Several mediators have been involved in visceral noci-
ception.9 We observed that aluminum treatment modified
the transcript levels of receptors from the cannabinoid,
transient potential channel, proteinase-activated, tachyki-
nin, and sigma-1 families in the colon of rats (Figure 5A and
B). We chose to focus our attention on PAR2. As observed in
rats, Par2 mRNA was also upregulated by aluminum treat-
ment in the colon of mice (Figure 5C).

To assess the role of aluminum-induced PAR2 activation
in hypersensitivity, visceral pain was recorded in PAR2 KO
mice. In absence of aluminum treatment, PAR2 KO mice
displayed the same response to colorectal distension as WT
mice (Figure 5D). Once stimulated with aluminum, WT mice
showed an increased visceral hypersensitivity whereas



Figure 5. Involvement of PAR2 in aluminum-induced hypersensitivity. (A, B) Transcript levels of major mediators of
nociception in the colons of rats orally treated with water (Control) or AlCi (1.5 mg$kg$d) for 1 month (n ¼ 10/group). (C) Par2
transcript levels in the colons of mice orally administered with water (Control) or AlCi (1.5 mg$kg$d) for 1 month (n ¼ 10/group).
(D–G) WT and PAR2 KO mice were orally treated with water (Control: n ¼ 13 WT, n ¼ 7 PAR2 KO), or AlCi 1.5 mg$kg$d (n ¼ 15
WT, n ¼ 11 PAR2 KO) during 1 month. Pain threshold variation in response to CRD. *P < .05, **P < .005 using the Mann-
Whitney nonparametric U test for panels A–C and 2-way analysis of variance for panels D–G.
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PAR2 KO mice were unresponsive, describing a pain hy-
persensitivity dependent on PAR2 activation by aluminum
(Figure 5E–G).

Aluminum Plays a Central Role in Mast Cells and
PAR2 Activation and the Following Pain Initiation

We previously showed that mast cells activation was
critical for visceral pain induced by aluminum treatment.
Mast cells activation status was thus assessed in PAR2 KO
mice. In the control condition, the percentage of activated
mast cells was lower in PAR2 KO mice compared with WT
mice, nevertheless this was not accompanied by a decrease
in visceral hypersensitivity (Figures 5D and 6A and B).
However, aluminum-induced mast cell activation
(Figure 6B), histamine release (Figure 6C), and Hdc mRNA
upregulation (Figure 6D) observed in the colon of WT mice
and correlated with visceral hypersensitivity were abolished
in PAR2 KO mice, indicating a central role for aluminum in
visceral pain induction.
Tryptase, released during mast cell degranulation, has
been demonstrated to specifically activate PAR2 through the
cleavage of its N-terminal domain.31,32 Therefore, Par2
expression was assessed in the colon of mast cell–deficient
mice. In control condition, Par2 mRNA levels were not
modified in mast cells deficient mice. However, aluminum-
induced upregulation of PAR2 in WT mice was abolished
in KitW-sh/W-sh mice (Figure 6E). These data show that
aluminum-induced mast cells activation is required for
PAR2 upregulation.

Discussion
IBS is a heterogeneous condition in view of symptoms,

underlying mechanisms and causes.2,3 IBS is a lifelong dis-
ease characterized by periods of exacerbations and
remissions. Current therapies do not cure the disease but
rely on symptoms and quality-of-life improvement (con-
stipation, diarrhea, pain, or depression). Elucidating trig-
gering factors for IBS is crucial for effective treatment of



Figure 6. Central role of aluminum in mast cells and PAR2 activation and the following pain initiation. (A) Total number
of tryptase-positive mast cells. (B) Percentages of degranulated mast cells (Control: n ¼ 11 WT, n ¼ 7 PAR2 KO; AlCi:
n ¼ 10 WT, n ¼ 10 PAR2 KO). (C) Colon histamine levels determined by enzyme-linked immunosorbent assay (Control: n ¼ 10
WT, n ¼ 7 PAR2 KO; AlCi: n ¼ 10 WT, n ¼ 10 PAR2 KO). (D) Colon Hdc transcript levels (Control: n ¼ 19 WT, n ¼ 9 PAR2
KO; AlCi: n ¼ 12 WT, n ¼ 10 PAR2 KO). (E) Par2 transcript levels in the colon of WT and KitW-sh/W-sh mice (Control: n ¼ 11 WT,
n ¼ 10 KitW-sh/W-sh; AlCi: n ¼ 11 WT, n ¼ 11 KitW-sh/W-sh). *P < .05, ***P < .0005 using the Mann-Whitney nonparametric U test.
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the disease. In specific subtypes of IBS patients, for which
a precise trigger has been highlighted, that is gluten or
wheat, lactose, or dietary nickel, a withdrawal of the causal
factor ameliorated symptoms.9,10,12,33 Here, we assessed
the role, in IBS development, of a commonly found dietary
contaminant, the aluminum. Aluminum is found in food
products, either naturally occurring or as an additive.
Aluminum can also be ingested through beverages,
including water, or as a result of aluminum leaching from
kitchenware or packaging.21–23 We first showed that
aluminum, at dosages relevant to human exposure,
induced persistent and dose-dependent colonic hypersen-
sitivity in rats and mice. Aluminum-induced hypersensi-
tivity persisted over time even in case of aluminum
cessation. It appeared again and amplified when aluminum
treatment resumed, suggesting a sensitization phenome-
non. A link to IBS triggering was evaluated according to
mechanisms implicated in IBS pathophysiology that are
low grade inflammation linked to aberrant neuroimmune
alterations.6,9,34–36
We showed that AlCi treatment activated mast cells and
triggered the release of tryptase and histamine in the colon
of rats. We also demonstrated that stabilization of mast cells
by cromoglycate administration, or deficiency of mast
cells in KitW-sh/W-sh mice, abolished the hypersensitivity
induced by aluminum. Peripheral mast cells are often
found in proximity to sensory nerve endings and vascula-
ture, and mediators released by activated mast cells stim-
ulate nociceptive afferents contributing to pain
perception.37 In patients with IBS, increased expression of
tryptase and elevated number of mast cells in proximity to
nerves have been shown and correlated with abdominal
pain.38,39 We speculate that aluminum activate mast cells to
release mediators that can increase excitability of nocicep-
tive afferences contributing to the visceral pain phenotype.

Mast cells synthesize mediators that can activate PAR2
leading to visceral pain.40–42 Here, we showed that AlCi
administration activated PAR2 in the colon of mice and rats.
In addition, we demonstrated that PAR2 activation by
aluminum was essential in the induction of visceral
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hypersensitivity, as PAR2 KO mice were unresponsive to
aluminum. We also demonstrated that PAR2 activation
by AlCi was inhibited following mast cell stabilization.
Moreover, mast cell activation and subsequent histamine
release induced by aluminum were abolished in PAR2 KO
mice, suggesting that aluminum is a key player in mast cell–
and PAR2-mediated hypersensitivity.

We also found that increased visceral hypersensitivity
induced by aluminum was correlated with fewer enter-
oendocrine cells secreting serotonin, supporting a role for
these cells in aluminum-induced visceral pain. Enter-
oendocrine cells are specialized epithelial cells that respond
to luminal stimuli by releasing various biologically active
compounds. They regulate several physiological and
homeostatic functions of the gastrointestinal tract, such as
postprandial secretion, motility, immune responses, and
sensory functions.43 A reduced number of enteroendocrine
cells has been observed in the duodenum, ileum, and colon
of some patients with IBS.44,45 and it has been speculated
that this might be responsible for the visceral hypersensi-
tivity seen in affected patients.16 Further studies are needed
to understand whether aluminum has a direct impact on
enteroendocrine cell activation or differentiation. Enter-
oendocrine cells together with mast cells activate neurons of
the enteric nervous system notably through the release of
histamine and serotonin, which activate receptors located
on intestinal nerves conveying pain stimulus to the
brain.46,47 Taken together, our results linked aluminum to
several mechanisms implicated in IBS pathophysiology,
highlighting a possible role for aluminum as a triggering
factor in IBS development.

Implication of aluminum in pain development has been
recently suggested. Indeed, cold allodynia associated with
an elevated TRPA1 expression and aluminum accumulation
in dorsal root ganglia was observed in mice intraperitone-
ally injected for 15 days with aluminum chloride.48

Furthermore, decreasing aluminum concentration in dorsal
root ganglia by glutathione treatment alleviated cold allo-
dynia, opening a way for treatment in patient suffering from
neuropathic pain induced by aluminium.49

Despite promising evidence that some treatments
improved symptoms and visceral pain in IBS patients in the
short term, there is no medical intervention that are effec-
tive in the long term.9,50 The elucidation of the upstream
triggers that induce and maintain the pathways involved in
symptoms is needed for providing novel therapeutic stra-
tegies. Some progress have been made with patients
suffering from nonceliac gluten or wheat sensitivity, lactose
intolerance, and nickel-allergic contact mucositis whose
symptoms have improved with an exclusion diet.15,17–19

Similarly, in particular subgroups of IBS patients, a low-
aluminum diet or aluminum chelation strategies would
have an effect on IBS symptoms. Accordingly, targeting
aluminum might be a promising therapeutic strategy, as
suggested in neuropathic pain.49

Aluminum ingestion at dosages relevant to human
exposure induced colonic hypersensitivity in rats and mice.
Aluminum-induced visceral hypersensitivity is profound,
persistent, and dose and gender dependent. It requires mast
cells activation and is mediated through the PAR2.
Aluminum might be the first identified dietary risk factor for
IBS, implying that measures to limit aluminum dietary
consumption or to chelate aluminum may represent novel
pathways of prevention and treatment of IBS in some
susceptible patients.

Materials and Methods
Animals and Treatments

Adult Sprague Dawley rats (100–150 g) and C57 BL/6
mice were purchased from Janvier Labs (Le Genest St Isle,
France). KitW-sh/W-sh and PAR2 knockout (KO) mice were
bred in the animal facilities in the Institut Pasteur de Lille
and Toulouse University, respectively. Except for the com-
parison between males and females, only male rats were
used. For experiments in KitW-sh/W-sh and PAR2KO mice,
female mice were used. Rats were administered orally with
aluminum citrate (AlCi) (a dietary form of aluminum) (Pfaltz
& Bauer, Waterbury, CT, ref. A16090) at dosages of 0.5, 1.5,
and 3 mg$kg body weight$d or zinc citrate (ZnCi) (Sigma-
Aldrich, Lyon, France, ref. 480762) at 1.5 mg$kg$d for
different times, as detailed in the figure legends. ZnCi was
used to assess whether aluminum effect is common to
another metal or arose from the citrate complexation of
aluminum. Some groups of rats were also treated daily with
intraperitoneal cromoglycate for 8 days (50 mg$kg$d)
(Sigma-Aldrich, ref. C0399). Mice were treated orally with
AlCi at a dose of 1.5 mg$kg$d for 1 month.
Colorectal Distension and Visceral Sensitivity
Assessment in Rats

Male and female rats were acclimatized to laboratory
conditions for 1 week before each experiment. Colonic hy-
persensitivity was assessed by measuring the intracolonic
threshold required to induce a behavioral response during
colorectal distension (CRD) caused by the inflation of a
balloon introduced in the colon. This response was charac-
terized by an elevation of the hind part of the animal body
and a clearly visible abdominal contraction. Distension
balloons were prepared by using a 2-cm flexible latex
balloon ligated to the tip of a 2-mm catheter (Vygon, Ecouen,
France). Animals were lightly anesthetized with isoflurane,
and the deflated flexible latex balloon was inserted intra-
anally into the descending colon such that its end was 1
cm proximal to the anus. The flexible catheter was taped to
the base of the tail to prevent displacement. Animals were
allowed to recover for 30 minutes before CRD was initiated.
The CRD tests were performed using an electronic barostat
apparatus (Distender series II, G&J Electronics, Toronto,
Canada) after a 5-minute retrieval period. Increasing pres-
sure was applied continuously until pain behavior was
displayed or a cutoff pressure of 80 mm Hg was reached.
Butyrate (Sigma-Aldrich, ref. B5887) was administered
intrarectally twice a day over 3 days (200 nM) before CRD.
2,4,6-Trinitrobenzenesulfonic acid (Sigma-Aldrich, ref.
92823) was injected intrarectally once 1 month before CRD
(150 mg/kg).
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CRD and Visceral Sensitivity Assessment in Mice
Three days before CRD, 2 electrodes were implanted in

the abdominal external oblique musculature of mice pre-
viously anesthetized with xylazine and ketamine (Bioflex
AS-631, Cooner Wire, Chatsworth, CA). Electrodes were
exteriorized at the back of the neck and protected by a
plastic tube attached to the skin. Electrodes were con-
nected to a Bio Amplifier, which was connected to an
electromyogram acquisition system (ADInstruments, Col-
orado Springs, CO). A 10.5-mm-diameter balloon catheter
was gently inserted into the colon at 5 mm proximal to the
rectum (Fogarty arterial embolectomy catheter, 4F, Vygon).
Ten-second distensions were performed at pressures of 15,
30, 45, and 60 mm Hg acquired by inflating the balloon in a
stepwise fashion with water (20, 40, 60 and 80 mL
respectively) with 5-min rest intervals.51 Electromyo-
graphic activity of the abdominal muscles was recorded
and visceromotor responses were calculated using Chart 5
software (ADInstruments).

Real-Time Quantitative Polymerase Chain
Reaction

Colonic tissue samples were homogenized with ceramic
beads using Precellys Lysing Equipment (Bertin Technol-
ogies, Montigny le Bretonneux, France, ref. P000911-
LYSK0-A). Total RNA was extracted from colonic samples
with NucleoSpin RNAII kits (Macherey-Nagel, Hoerdt,
France, ref. 740955). The complementary DNA was pre-
pared with High-Capacity Complementary DNA Archive
kits (Thermo Fisher Scientific, Villebon-sur-Yvette, France,
ref. 4368813). Transcripts levels of genes involved in
inflammation and pain transduction were quantified in the
StepOne real-time polymerase chain reaction (PCR) system
using a SYBR Green PCR master mix (Thermo Fisher Sci-
entific, ref. 4385612). Relative messenger RNA (mRNA)
levels were determined using the DDCt method and the
values were normalized to the expression of PolR2a for
mice and Gapdh for rats.52 Primer sequences are available
upon request.

Myeloperoxidase Activity Assay
Neutrophil influx in tissue was analyzed by assaying the

enzymatic activity of myeloperoxidase (MPO). Rat colons
were excised following euthanasia of the animals, thor-
oughly washed in phosphate-buffered saline, and homoge-
nized in 0.5% hexadecyltrimethylammonium bromide
(Sigma-Aldrich, ref. H6269) in 50-mM phosphate-buffered
saline, freeze-thawed 3 times, sonicated, and centrifuged.
MPO was assayed in the clear supernatant by adding 1 mg/
mL of dianisidine dihydrochloride (Sigma-Aldrich, ref.
D3252) and 5 � 10–4% H2O2. The change in optical density
was measured at 450-nm wavelength. Human neutrophil
MPO (Sigma-Aldrich, ref. M6908) was used as a standard.
One unit of MPO activity was defined as the amount that
degraded 1.0 mmol H2O2/min at 25�C. Readings from tissue
samples were normalized to total protein content as
detected by DC protein assays (Bio-Rad, Marnes-la-
Coquette, France, ref. 5000111).
Histological Analysis and Immunohistochemistry
Colons were fixed in 4% paraformaldehyde overnight,

processed, and embedded in paraffin wax by standard
techniques. Sections (4 mm) were stained with May-Grün-
wald Giemsa (MGG) (Carlo-Erba, Val-de-Reuil, France, refs.
E460583 and E453612). For immunohistochemistry (IHC)
analysis, tissue sections were blocked with 2% goat serum
(Thermo Fisher Scientific, ref. 16210064) and incubated
overnight at 4�C with primary antibodies: goat anti-rat
serotonin polyclonal antibody (Abcam, Cambridge, United
Kingdom, ref. ab66047), mouse anti-rat CD68 monoclonal
antibody (Bio-Rad [formerly Abd Serotec], Kidlington,
United Kingdom, ref. MCA341R) and clone AA1 tryptase
antibody (Dako, Les Ulis, France) followed by a rabbit anti-
goat IgG (HþL) secondary antibody Alexa 488 (Thermo
Fisher Scientific, ref. A11034), polyclonal rabbit anti-mouse
immunoglobulin biotinylated antibody, and polyclonal goat
anti-mouse antibody (Dako). Slides were counterstained
with hematoxylin for CD68 and tryptase IHC, and with
Hoechst 33258 (Thermo Fisher Scientific, ref. H3569)
for serotonin IHC. Cells positive for CD68, serotonin and
tryptase, and eosinophils were counted blindly by 2
investigators (5 crypts/slide, 1 slide/animal for eosinophils
and CD68-positive cells; 8 fields/slide, 1 slide/animal for
serotonin-positive cells; and total cells/slide, 1 slide/animal
for tryptase-positive cells).

Histamine Measurement
Histamine levels were detected in colon homogenates by

enzyme-linked immunosorbent assay kits according to the
manufacturer’s instructions (Bertin Bioreagent, Montigny-
le-Bretonneux, France, ref. A05890.96). Readings from tis-
sue samples were normalized to total protein content as
detected by DC protein assays (Bio-Rad, ref. 5000111).

Statistics
Data are expressed as mean ± SD. For Mice visceromotor

response, a repeated-measures 2-way analysis of variance
was performed. For all other parameters, differences
between groups were compared using the Mann-Whitney
nonparametric U test (GraphPad Prism version 5.03,
GraphPad Software, La Jolla, CA) (*P < .05, **P < .005,
***P < .0005 in the figures).

Study Approval
The animal treatment protocol was approved by the

regional bioethics committee (committee no.75; authoriza-
tion no.CEEA2016030317128286, May 23, 2016) and all of
the animals received human care in accordance with Euro-
pean guidelines (Directive 86/609/EEC, European Eco-
nomic Community, November 24, 1986).
References
1. Canavan C, West J, Card T. The epidemiology of irritable

bowel syndrome. Clin Epidemiol 2014;6:71–80.
2. Sayuk GS, Gyawali CP. Irritable bowel syndrome: mod-

ern concepts and management options. Am J Med 2015;
128:817–827.

http://refhub.elsevier.com/S2352-345X(18)30134-6/sref1
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref1
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref1
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref2
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref2
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref2
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref2


2019 Aluminum and Visceral Pain 195
3. Enck P, Aziz Q, Barbara G, Farmer AD, Fukudo S,
Mayer EA, Niesler B, Quigley EMM, Rajili�c-Stojanovi�c M,
Schemann M, Schwille-Kiuntke J, Simren M, Zipfel S,
Spiller RC. Irritable bowel syndrome. Nat Rev Dis Primer
2016;2:16014.

4. Longstreth GF, Thompson WG, Chey WD, Houghton LA,
Mearin F, Spiller RC. Functional bowel disorders.
Gastroenterology 2006;130:1480–1491.

5. Fukudo S, Kanazawa M. Gene, environment, and brain-
gut interactions in irritable bowel syndrome.
J Gastroenterol Hepatol 2011;26(Suppl 3):110–115.

6. Hughes PA, Zola H, Penttila IA, Blackshaw LA,
Andrews JM, Krumbiegel D. Immune activation in irritable
bowel syndrome: can neuroimmune interactions explain
symptoms? Am J Gastroenterol 2013;108:1066–1074.

7. Öhman L, Törnblom H, Simrén M. Crosstalk at the
mucosal border: importance of the gut microenvironment
in IBS. Nat Rev Gastroenterol Hepatol 2015;12:36–49.

8. Mayer EA, Tillisch K. The brain-gut axis in abdominal pain
syndromes. Annu Rev Med 2011;62:381–396.

9. Boeckxstaens GE, Wouters MM. Neuroimmune factors in
functional gastrointestinal disorders: A focus on irritable
bowel syndrome. Neurogastroenterol Motil 2017;
29:13007.

10. Spiller RC. Irritable bowel syndrome: gender, infection,
lifestyle or what else? Dig Dis Basel Switz 2011;
29:215–221.

11. Riddle MS, Welsh M, Porter CK, Nieh C, Boyko EJ,
Gackstetter G, Hooper TI. The Epidemiology of Irritable
Bowel Syndrome in the US Military: Findings from the
Millennium Cohort Study. Am J Gastroenterol 2016;
111:93–104.

12. Rajili�c-Stojanovi�c M, Jonkers DM, Salonen A, Hanevik K,
Raes J, Jalanka J, Vos WM de, Manichanh C, Golic N,
Enck P, Philippou E, Iraqi FA, Clarke G, Spiller RC,
Penders J. Intestinal microbiota and diet in IBS: causes,
consequences, or epiphenomena? Am J Gastroenterol
2015;110:278–287.

13. Altobelli E, Del Negro V, Angeletti PM, Latella G. Low-
FODMAP diet improves irritable bowel syndrome symp-
toms: a meta-analysis. Nutrients 2017;9.

14. Borghini R, Donato G, Alvaro D, Picarelli A. New insights
in IBS-like disorders: Pandora’s box has been opened; a
review. Gastroenterol Hepatol Bed Bench 2017;
10:79–89.

15. Volta U, Pinto-Sanchez MI, Boschetti E, Caio G, De
Giorgio R, Verdu EF. Dietary triggers in irritable bowel
syndrome: is there a role for gluten?
J Neurogastroenterol Motil 2016;22:547–557.

16. El-Salhy M. Recent developments in the pathophysi-
ology of irritable bowel syndrome. World J Gastroenterol
2015;21:7621–7636.

17. Böhmer CJM, Tuynman HARE. The effect of a lactose-
restricted diet in patients with a positive lactose toler-
ance test, earlier diagnosed as irritable bowel syndrome:
a 5-year follow-up study. Eur J Gastroenterol Hepatol
2001;13:941–944.

18. Verdu EF. Editorial: Can gluten contribute to
irritable bowel syndrome? Am J Gastroenterol 2011;
106:516–518.
19. Picarelli A, Di Tola M, Vallecoccia A, Libanori V,
Magrelli M, Carlesimo M, Rossi A. Oral mucosa patch
test: a new tool to recognize and study the adverse
effects of dietary nickel exposure. Biol Trace Elem Res
2011;139:151–159.

20. Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N,
Wisniewski TM, Arnold IMF, Momoli F, Krewski D. Sys-
tematic review of potential health risks posed by phar-
maceutical, occupational and consumer exposures to
metallic and nanoscale aluminum, aluminum oxides,
aluminum hydroxide and its soluble salts. Crit Rev
Toxicol 2014;44(Suppl 4):1–80.

21. Greger JL, Sutherland JE. Aluminum exposure and
metabolism. Crit Rev Clin Lab Sci 1997;34:439–474.

22. Vignal C, Desreumaux P, Body-Malapel M. Gut: An
underestimated target organ for aluminum. Morphol Bull
Assoc Anat 2016;100:75–84.

23. European Food Safety Authority. Safety of aluminium
from dietary intake - Scientific Opinion of the Panel on
Food Additives, Flavourings, Processing Aids and Food
Contact Materials (AFC): safety of aluminium from dietary
intake - Scientific Opinion of the Panel on Food Addi-
tives, Flavourings, Processing Aids and Food Contact
Materials. EFSA J 2008;6:754.

24. Arnich N, Sirot V, Rivière G, Jean J, Noël L, Guérin T,
Leblanc J-C. Dietary exposure to trace elements and
health risk assessment in the 2nd French Total Diet
Study. Food Chem Toxicol 2012;50:2432–2449.

25. González-Weller D, Gutiérrez AJ, Rubio C, Revert C,
Hardisson A. Dietary intake of aluminum in a Spanish
population (Canary Islands). J Agric Food Chem 2010;
58:10452–10457.

26. Pineton de Chambrun G, Body-Malapel M, Frey-
Wagner I, Djouina M, Deknuydt F, Atrott K, Esquerre N,
Altare F, Neut C, Arrieta MC, Kanneganti T-D, Rogler G,
Colombel J-F, Cortot A, Desreumaux P, Vignal C.
Aluminum enhances inflammation and decreases
mucosal healing in experimental colitis in mice. Mucosal
Immunol 2014;7:589–601.

27. Moloney RD, O’Mahony SM, Dinan TG, Cryan JF. Stress-
induced visceral pain: toward animal models of irritable-
bowel syndrome and associated comorbidities. Front
Psychiatry 2015;6:15.

28. Greenwood-Van Meerveld B, Prusator DK, Johnson AC.
Animal models of gastrointestinal and liver diseases.
Animal models of visceral pain: pathophysiology,
translational relevance, and challenges. Am J Physiol
Gastrointest Liver Physiol 2015;308:G885–G903.

29. Carroll SY, O’Mahony SM, Grenham S, Cryan JF,
Hyland NP. Disodium cromoglycate reverses colonic
visceral hypersensitivity and influences colonic ion
transport in a stress-sensitive rat strain. PLoS One 2013;
8:e84718.

30. Grimbaldeston MA, Chen C-C, Piliponsky AM, Tsai M,
Tam S-Y, Galli SJ. Mast cell-deficient W-sash c-kit
mutant Kit W-sh/W-sh mice as a model for investigating
mast cell biology in vivo. Am J Pathol 2005;167:835–848.

31. Corvera CU, Déry O, McConalogue K, Böhm SK,
Khitin LM, Caughey GH, Payan DG, Bunnett NW. Mast
cell tryptase regulates rat colonic myocytes through

http://refhub.elsevier.com/S2352-345X(18)30134-6/sref3
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref3
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref3
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref3
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref3
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref3
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref3
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref4
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref4
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref4
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref4
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref5
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref5
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref5
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref5
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref6
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref6
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref6
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref6
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref6
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref7
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref7
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref7
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref7
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref8
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref8
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref8
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref9
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref9
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref9
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref9
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref10
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref10
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref10
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref10
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref11
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref11
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref11
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref11
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref11
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref11
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref12
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref12
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref12
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref12
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref12
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref12
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref12
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref12
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref12
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref13
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref13
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref13
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref14
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref14
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref14
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref14
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref14
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref15
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref15
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref15
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref15
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref15
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref16
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref16
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref16
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref16
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref17
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref17
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref17
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref17
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref17
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref17
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref18
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref18
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref18
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref18
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref19
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref19
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref19
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref19
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref19
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref19
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref20
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref20
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref20
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref20
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref20
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref20
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref20
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref20
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref21
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref21
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref21
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref22
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref22
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref22
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref22
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref23
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref23
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref23
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref23
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref23
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref23
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref23
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref24
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref24
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref24
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref24
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref24
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref25
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref25
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref25
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref25
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref25
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref26
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref26
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref26
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref26
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref26
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref26
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref26
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref26
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref27
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref27
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref27
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref27
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref28
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref28
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref28
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref28
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref28
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref28
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref29
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref29
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref29
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref29
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref29
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref30
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref30
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref30
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref30
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref30
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref31
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref31
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref31


196 Esquerre et al Cellular and Molecular Gastroenterology and Hepatology Vol. 7, No. 1
proteinase-activated receptor 2. J Clin Invest 1997;
100:1383–1393.

32. Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M,
Cumashi A, Hoxie JA, Schechter N, Woolkalis M,
Brass LF. Interactions of mast cell tryptase with thrombin
receptors and PAR-2. J Biol Chem 1997;272:4043–4049.

33. Böhn L, Störsrud S, Törnblom H, Bengtsson U,
Simrén M. Self-reported food-related gastrointestinal
symptoms in IBS are common and associated with more
severe symptoms and reduced quality of life. Am J
Gastroenterol 2013;108:634–641.

34. Chadwick VS, Chen W, Shu D, Paulus B, Bethwaite P,
Tie A, Wilson I. Activation of the mucosal immune system
in irritable bowel syndrome. Gastroenterology 2002;
122:1778–1783.

35. O’Sullivan M, Clayton N, Breslin NP, Harman I,
Bountra C, McLaren A, O’Morain CA. Increased mast
cells in the irritable bowel syndrome. Neurogastroenterol
Motil 2000;12:449–457.

36. Cenac N. Protease-activated receptors as therapeutic
targets in visceral pain. Curr Neuropharmacol 2013;
11:598–605.

37. Héron A, Dubayle D. A focus on mast cells and pain.
J Neuroimmunol 2013;264:1–7.

38. Barbara G, Stanghellini V, De Giorgio R, Cremon C,
Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM,
Grady EF, Bunnett NW, Collins SM, Corinaldesi R. Acti-
vated mast cells in proximity to colonic nerves correlate
with abdominal pain in irritable bowel syndrome.
Gastroenterology 2004;126:693–702.

39. Guilarte M, Santos J, Torres I de, Alonso C, Vicario M,
Ramos L, Martínez C, Casellas F, Saperas E,
Malagelada JR. Diarrhoea-predominant IBS patients
show mast cell activation and hyperplasia in the jejunum.
Gut 2007;56:203–209.

40. Reed DE, Barajas-Lopez C, Cottrell G, Velazquez-
Rocha S, Dery O, Grady EF, Bunnett NW, Vanner SJ.
Mast cell tryptase and proteinase-activated receptor 2
induce hyperexcitability of guinea-pig submucosal neu-
rons. J Physiol 2003;547:531–542.

41. Steinhoff M, Vergnolle N, Young SH, Tognetto M,
Amadesi S, Ennes HS, Trevisani M, Hollenberg MD,
Wallace JL, Caughey GH, Mitchell SE, Williams LM,
Geppetti P, Mayer EA, Bunnett NW. Agonists of
proteinase-activated receptor 2 induce inflammation by a
neurogenic mechanism. Nat Med 2000;6:151–158.

42. Coelho A-M, Vergnolle N, Guiard B, Fioramonti J,
Bueno L. Proteinases and proteinase-activated receptor
2: a possible role to promote visceral hyperalgesia in rats.
Gastroenterology 2002;122:1035–1047.

43. Gunawardene AR, Corfe BM, Staton CA. Classification
and functions of enteroendocrine cells of the lower
gastrointestinal tract. Int J Exp Pathol 2011;92:219–231.

44. El-Salhy M, Wendelbo IH, Gundersen D. Reduced
chromogranin A cell density in the ileum of patients with
irritable bowel syndrome. Mol Med Rep 2013;
7:1241–1244.
45. El-Salhy M, Lomholt-Beck B, Hausken T. Chromogranin
A as a possible tool in the diagnosis of irritable
bowel syndrome. Scand J Gastroenterol 2010;
45:1435–1439.

46. Barbara G, Wang B, Stanghellini V, Giorgio R de,
Cremon C, Di Nardo G, Trevisani M, Campi B,
Geppetti P, Tonini M, Bunnett NW, Grundy D,
Corinaldesi R. Mast cell-dependent excitation of visceral-
nociceptive sensory neurons in irritable bowel syndrome.
Gastroenterology 2007;132:26–37.

47. Buhner S, Li Q, Vignali S, Barbara G, De Giorgio R,
Stanghellini V, Cremon C, Zeller F, Langer R, Daniel H,
Michel K, Schemann M. Activation of human enteric
neurons by supernatants of colonic biopsy specimens
from patients with irritable bowel syndrome. Gastroen-
terology 2009;137:1425–1434.

48. Park J-H, Chae J, Roh K, Kil E-J, Lee M, Auh C-K,
Lee M-A, Yeom C-H, Lee S. Oxaliplatin-induced
peripheral neuropathy via TRPA1 stimulation in mice
dorsal root ganglion is correlated with aluminum
accumulation. PLoS One 2015;10:e0124875.

49. Lee M, Cho S, Roh K, Chae J, Park J-H, Park J, Lee M-A,
Kim J, Auh C-K, Yeom C-H, Lee S. Glutathione alleviated
peripheral neuropathy in oxaliplatin-treated mice by
removing aluminum from dorsal root ganglia. Am J Transl
Res 2017;9:926–939.

50. Moayyedi P, Mearin F, Azpiroz F, Andresen V, Barbara G,
Corsetti M, Emmanuel A, Hungin APS, Layer P,
Stanghellini V, Whorwell P, Zerbib F, Tack J. Irritable
bowel syndrome diagnosis and management: a simpli-
fied algorithm for clinical practice. United Eur Gastro-
enterol J 2017;5:773.

51. Cenac N, Andrews CN, Holzhausen M, Chapman K,
Cottrell G, Andrade-Gordon P, Steinhoff M, Barbara G,
Beck P, Bunnett NW, Sharkey KA, Ferraz JGP, Shaffer E,
Vergnolle N. Role for protease activity in visceral pain in
irritable bowel syndrome. J Clin Invest 2007;
117:636–647.

52. Livak KJ, Schmittgen TD. Analysis of relative gene
expression data using real-time quantitative PCR and the
2(-Delta Delta C(T)) Method. Methods San Diego Calif
2001;25:402–408.
Received February 27, 2018. Accepted September 12, 2018.

Correspondence
Address correspondence to: Dr. Cécile Vignal, PhD, Université Lille, Inserm,
CHU Lille, U995-LIRIC-Lille Inflammation Research International Center,
Faculté de Médecine, Pôle recherche, Place Verdun, 59045 Lille Cedex,
France. e-mail: cecile.vignal2@univ-lille.fr.

Conflicts of interest
The authors declare that they have no competing financial interests.

Funding
This work was supported by Digestscience (European Research Foundation on
Intestinal Diseases and Nutrition), and the Hauts de France Region, the
Ministère de l’Enseignement Supérieur et de la Recherche (CPER IRENI), and
the European Fund for Regional Economic Development. We thank David
Dombrowicz for providing the KitW-sh/W-sh mice.

http://refhub.elsevier.com/S2352-345X(18)30134-6/sref31
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref31
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref31
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref32
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref32
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref32
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref32
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref32
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref33
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref33
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref33
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref33
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref33
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref33
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref34
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref34
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref34
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref34
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref34
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref35
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref35
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref35
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref35
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref35
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref36
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref36
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref36
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref36
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref37
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref37
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref37
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref38
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref38
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref38
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref38
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref38
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref38
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref38
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref39
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref39
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref39
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref39
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref39
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref39
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref40
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref40
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref40
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref40
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref40
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref40
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref41
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref41
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref41
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref41
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref41
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref41
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref41
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref42
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref42
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref42
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref42
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref42
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref43
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref43
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref43
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref43
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref44
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref44
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref44
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref44
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref44
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref45
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref45
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref45
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref45
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref45
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref46
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref46
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref46
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref46
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref46
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref46
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref46
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref47
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref47
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref47
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref47
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref47
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref47
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref47
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref48
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref48
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref48
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref48
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref48
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref49
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref49
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref49
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref49
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref49
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref49
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref50
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref50
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref50
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref50
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref50
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref50
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref51
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref51
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref51
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref51
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref51
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref51
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref51
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref52
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref52
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref52
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref52
http://refhub.elsevier.com/S2352-345X(18)30134-6/sref52
mailto:cecile.vignal2@univ-lille.fr

	Aluminum Ingestion Promotes Colorectal Hypersensitivity in Rodents
	Results
	Oral Aluminum Administration Induces Visceral Hypersensitivity
	Aluminum Activation of Mast Cells Is Necessary for Its Pronociceptive Effect
	PAR2 Activation by Aluminum Is Required for the Induction of Visceral Pain
	Aluminum Plays a Central Role in Mast Cells and PAR2 Activation and the Following Pain Initiation

	Discussion
	Materials and Methods
	Animals and Treatments
	Colorectal Distension and Visceral Sensitivity Assessment in Rats
	CRD and Visceral Sensitivity Assessment in Mice
	Real-Time Quantitative Polymerase Chain Reaction
	Myeloperoxidase Activity Assay
	Histological Analysis and Immunohistochemistry
	Histamine Measurement
	Statistics
	Study Approval

	References


