C. Canavan, J. West, and T. Card, The epidemiology of irritable bowel syndrome, Clin Epidemiol, vol.6, pp.71-80, 2014.

G. S. Sayuk and C. P. Gyawali, Irritable bowel syndrome: modern concepts and management options, Am J Med, vol.128, pp.817-827, 2015.

P. Enck, Q. Aziz, G. Barbara, A. D. Farmer, S. Fukudo et al., Irritable bowel syndrome, Nat Rev Dis Primer, vol.2, p.16014, 2016.

G. F. Longstreth, W. G. Thompson, W. D. Chey, L. A. Houghton, F. Mearin et al., Functional bowel disorders, Gastroenterology, vol.130, pp.1480-1491, 2006.

S. Fukudo, M. Kanazawa, and . Gene, environment, and braingut interactions in irritable bowel syndrome

, J Gastroenterol Hepatol, vol.26, issue.3, pp.110-115, 2011.

P. A. Hughes, H. Zola, I. A. Penttila, L. A. Blackshaw, J. M. Andrews et al., Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms?, Am J Gastroenterol, vol.108, pp.1066-1074, 2013.

L. Öhman, H. Törnblom, and M. Simrén, Crosstalk at the mucosal border: importance of the gut microenvironment in IBS, Nat Rev Gastroenterol Hepatol, vol.12, pp.36-49, 2015.

E. A. Mayer and K. Tillisch, The brain-gut axis in abdominal pain syndromes, Annu Rev Med, vol.62, pp.381-396, 2011.

G. E. Boeckxstaens and M. M. Wouters, Neuroimmune factors in functional gastrointestinal disorders: A focus on irritable bowel syndrome, Neurogastroenterol Motil, vol.29, p.13007, 2017.

R. C. Spiller, Irritable bowel syndrome: gender, infection, lifestyle or what else?, Dig Dis Basel Switz, vol.29, pp.215-221, 2011.

M. S. Riddle, M. Welsh, C. K. Porter, C. Nieh, E. J. Boyko et al., The Epidemiology of Irritable Bowel Syndrome in the US Military: Findings from the Millennium Cohort Study, Am J Gastroenterol, vol.111, pp.93-104, 2016.

M. Rajili-c-stojanovi-c, D. M. Jonkers, A. Salonen, K. Hanevik, J. Raes et al., Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena?, Am J Gastroenterol, vol.110, pp.278-287, 2015.

E. Altobelli, D. Negro, V. Angeletti, P. M. Latella, and G. , Low-FODMAP diet improves irritable bowel syndrome symptoms: a meta-analysis, Nutrients, vol.9, 2017.

R. Borghini, G. Donato, D. Alvaro, and A. Picarelli, New insights in IBS-like disorders: Pandora's box has been opened; a review, Gastroenterol Hepatol Bed Bench, vol.10, pp.79-89, 2017.

U. Volta, M. I. Pinto-sanchez, E. Boschetti, G. Caio, D. Giorgio et al., Dietary triggers in irritable bowel syndrome: is there a role for gluten?, J Neurogastroenterol Motil, vol.22, pp.547-557, 2016.

M. El-salhy, Recent developments in the pathophysiology of irritable bowel syndrome, World J Gastroenterol, vol.21, pp.7621-7636, 2015.

C. Böhmer and H. Tuynman, The effect of a lactoserestricted diet in patients with a positive lactose tolerance test, earlier diagnosed as irritable bowel syndrome: a 5-year follow-up study, Eur J Gastroenterol Hepatol, vol.13, pp.941-944, 2001.

E. F. Verdu, Editorial: Can gluten contribute to irritable bowel syndrome?, Am J Gastroenterol, vol.106, pp.516-518, 2011.

A. Picarelli, D. Tola, M. Vallecoccia, A. Libanori, V. Magrelli et al., Oral mucosa patch test: a new tool to recognize and study the adverse effects of dietary nickel exposure, Biol Trace Elem Res, vol.139, pp.151-159, 2011.

C. C. Willhite, N. A. Karyakina, R. A. Yokel, N. Yenugadhati, T. M. Wisniewski et al., Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts, Crit Rev Toxicol, vol.44, issue.4, pp.1-80, 2014.

J. L. Greger and J. E. Sutherland, Aluminum exposure and metabolism, Crit Rev Clin Lab Sci, vol.34, pp.439-474, 1997.

C. Vignal, P. Desreumaux, and M. Body-malapel, Gut: An underestimated target organ for aluminum, Morphol Bull Assoc Anat, vol.100, pp.75-84, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01935789

, European Food Safety Authority. Safety of aluminium from dietary intake -Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC): safety of aluminium from dietary intake -Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials, vol.6, p.754, 2008.

N. Arnich, V. Sirot, G. Rivière, J. Jean, L. Noël et al., Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study, Food Chem Toxicol, vol.50, pp.2432-2449, 2012.

D. González-weller, A. J. Gutiérrez, C. Rubio, C. Revert, and A. Hardisson, Dietary intake of aluminum in a Spanish population (Canary Islands), J Agric Food Chem, vol.58, pp.10452-10457, 2010.

G. Pineton-de-chambrun, M. Body-malapel, I. Freywagner, M. Djouina, F. Deknuydt et al., Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice, Mucosal Immunol, vol.7, pp.589-601, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01935809

R. D. Moloney, S. M. O'mahony, T. G. Dinan, and J. F. Cryan, Stressinduced visceral pain: toward animal models of irritablebowel syndrome and associated comorbidities, Front Psychiatry, vol.6, p.15, 2015.

B. Greenwood-van-meerveld, D. K. Prusator, and A. C. Johnson, Animal models of visceral pain: pathophysiology, translational relevance, and challenges, Am J Physiol Gastrointest Liver Physiol, vol.308, pp.885-903, 2015.

S. Y. Carroll, S. M. O'mahony, S. Grenham, J. F. Cryan, and N. P. Hyland, Disodium cromoglycate reverses colonic visceral hypersensitivity and influences colonic ion transport in a stress-sensitive rat strain, PLoS One, vol.8, p.84718, 2013.

M. A. Grimbaldeston, C. Chen, A. M. Piliponsky, M. Tsai, S. Tam et al., Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo, Am J Pathol, vol.167, pp.835-848, 2005.

C. U. Corvera, O. Déry, K. Mcconalogue, S. K. Böhm, L. M. Khitin et al., Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2, J Clin Invest, vol.100, pp.1383-1393, 1997.

M. Molino, E. S. Barnathan, R. Numerof, J. Clark, M. Dreyer et al., Interactions of mast cell tryptase with thrombin receptors and PAR-2, J Biol Chem, vol.272, pp.4043-4049, 1997.

L. Böhn, S. Störsrud, H. Törnblom, U. Bengtsson, and M. Simrén, Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life, Am J Gastroenterol, vol.108, pp.634-641, 2013.

V. S. Chadwick, W. Chen, D. Shu, B. Paulus, P. Bethwaite et al., Activation of the mucosal immune system in irritable bowel syndrome, Gastroenterology, vol.122, pp.1778-1783, 2002.

M. O'sullivan, C. N. Breslin, N. P. Harman, I. Bountra, C. Mclaren et al., Increased mast cells in the irritable bowel syndrome, Neurogastroenterol Motil, vol.12, pp.449-457, 2000.

N. Cenac, Protease-activated receptors as therapeutic targets in visceral pain, Curr Neuropharmacol, vol.11, pp.598-605, 2013.

A. Héron and D. Dubayle, A focus on mast cells and pain, J Neuroimmunol, vol.264, pp.1-7, 2013.

G. Barbara, V. Stanghellini, D. Giorgio, R. Cremon, C. Cottrell et al., Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome, Gastroenterology, vol.126, pp.693-702, 2004.

M. Guilarte, J. Santos, A. C. Torres-i-de, M. Vicario, L. Ramos et al., Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum, Gut, vol.56, pp.203-209, 2007.

D. E. Reed, C. Barajas-lopez, G. Cottrell, S. Velazquezrocha, O. Dery et al., Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons, J Physiol, vol.547, pp.531-542, 2003.

M. Steinhoff, N. Vergnolle, S. H. Young, M. Tognetto, S. Amadesi et al., Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism, Nat Med, vol.6, pp.151-158, 2000.

A. Coelho, N. Vergnolle, B. Guiard, J. Fioramonti, and L. Bueno, Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats, Gastroenterology, vol.122, pp.1035-1047, 2002.

A. R. Gunawardene, B. M. Corfe, and C. A. Staton, Classification and functions of enteroendocrine cells of the lower gastrointestinal tract, Int J Exp Pathol, vol.92, pp.219-231, 2011.

M. El-salhy, I. H. Wendelbo, and D. Gundersen, Reduced chromogranin A cell density in the ileum of patients with irritable bowel syndrome, Mol Med Rep, vol.7, pp.1241-1244, 2013.

M. El-salhy, B. Lomholt-beck, and T. Hausken, Chromogranin A as a possible tool in the diagnosis of irritable bowel syndrome, Scand J Gastroenterol, vol.45, pp.1435-1439, 2010.

G. Barbara, B. Wang, V. Stanghellini, C. Giorgio-r-de,-cremon, D. Nardo et al., Mast cell-dependent excitation of visceralnociceptive sensory neurons in irritable bowel syndrome, Gastroenterology, vol.132, pp.26-37, 2007.

S. Buhner, Q. Li, S. Vignali, G. Barbara, D. Giorgio et al., Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome, Gastroenterology, vol.137, pp.1425-1434, 2009.

J. Park, C. J. Roh, K. Kil, E. Lee, M. Auh et al., Oxaliplatin-induced peripheral neuropathy via TRPA1 stimulation in mice dorsal root ganglion is correlated with aluminum accumulation, PLoS One, vol.10, p.124875, 2015.

M. Lee, S. Cho, K. Roh, C. J. Park, J. Park et al., Glutathione alleviated peripheral neuropathy in oxaliplatin-treated mice by removing aluminum from dorsal root ganglia, Am J Transl Res, vol.9, pp.926-939, 2017.

P. Moayyedi, F. Mearin, F. Azpiroz, V. Andresen, G. Barbara et al., Irritable bowel syndrome diagnosis and management: a simplified algorithm for clinical practice, J, vol.5, p.773, 2017.

N. Cenac, C. N. Andrews, M. Holzhausen, K. Chapman, G. Cottrell et al., Role for protease activity in visceral pain in irritable bowel syndrome, J Clin Invest, vol.117, pp.636-647, 2007.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods San Diego Calif, vol.25, pp.402-408, 2001.