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Introduction  

An urgent need for efficacious disease modifying therapies is required to slow down 

Parkinson’s disease (PD) progression. Iron is required as a cofactor in metabolic processes 

throughout the body and specifically in tissues of high oxygen consumption, such as the 

central nervous system. The redox chemistry of iron is critical for neurotransmitter regulation 

as well as mitochondrial oxidative phosphorylation, nitric oxide metabolism and oxygen 

transport.
1
 Iron homeostasis involves the orchestration of systemic and cellular networks for 

the acquisition, internal distribution and utilization of iron.
2
 Disruption of links can lead to 

abnormal redistribution of iron, causing deleterious consequences (siderosis) either by 

localized accumulation and/or deficits in specific cellular compartments or tissues. Excessive 

labile iron in the substantia nigra pars compacta (SNc) has become a pathognomonic hallmark 

of PD and leads to increased production of noxious reactive oxygen species (ROS), which is 

also prevalent in PD. Conversely, a deficiency in iron impairs energy production
2
 and can also 

cause dopaminergic neurodegeneration in mice.
3
 In mammalian models, chelators that 

scavenge intracellular iron protect against oxidative neuronal damage. However, these strong 

iron chelation regimens are designed to treat systemic siderosis and are not suitable for PD 

patients, as iatrogenic iron depletion and anaemia may ensue. Moderate iron chelation 

modality that conserves systemic iron offers a novel therapeutic strategy for neuroprotection.  
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Iron in dopaminergic neurons  

Iron is particularly abundant in SNc dopaminergic neurons as an integral component of 

tyrosine hydroxylase (TH)-dependent dopamine synthesis as well as other enzymatic and non-

enzymatic reactions associated with dopamine metabolism.
4
 The identification of substantial 

brain labile non-heme high-spin complexes, which increase with age,
5
 might explain the iron 

catalytic role in the generation of noxious ROS by Fenton chemistry involving hydrogen 

peroxide. In part, this results from the oxidative deamination of dopamine by monoamine 

oxidase and the formation of metastable iron-dopamine complexes that in turn lead to 

dopamine auto-oxidation and quinone formation.  

The sequestration of various potentially toxic products sequestered by neuromelanin confer a 

distinctive pigmentation upon the SNc. However, as the neuromelanin sanctuary for toxins is 

lost during PD,
4
 the labile endogenous autooxidation products of dopamine can strongly 

impair respiration by the mitochondrial complexes I and IV. A high-energy demand, due to 

autonomous pace-making activity, might also render the SNc more susceptible to imbalances 

in labile iron levels and ensuing ROS production.
6
  

Iron deposits measured in the SNc in PD 

Iron accumulation has been identified in the SNc of post mortem brains of patients
1,2,7,11 

as 

well as all Parkinsonian animal models.
1,2,7-11

 This has been confirmed in patients by iron-

sensitive high field MRI (3 and 7 Tesla) with a quantitative weighted T2* sequence showing a 

higher R2* value (Fig. 1).
9,12,13

 Longitudinal studies as well as a meta-analysis have identified 

a progressive iron accumulation in the SNc through the course of disease.
12,13,14

 Visual 

assessment of dorsolateral SN hyperintensity by Susceptibility Weighted Imaging can 

differentiate PD versus controls
15

 and these observations have been corroborated by reduced 

transverse relaxation;
16

 another measurement of rate sequence. More recently, a novel MRI 

approach with Quantitative Susceptibility Mapping (QSM) has demonstrated superior 
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sensitivity for mapping changes in non-heme iron levels
17,18

 and a new sequence of 

magnetization transfer contrast has identified a local neuromelanin density reduction in the 

SNc.
19

 Transcranial ultrasound that visualizes hyperechogenicity of SNc tissue has also 

identified increased iron levels relating to alterations in iron metabolism genes.
20,21

  

What could be the cellular mechanisms implicated in iron accumulation? 

Impaired iron release 

Ferroportin is depleted in parkinsonian models including intoxication with 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA).
1 

Depletion of 

either amyloid precursor protein (APP) or tau function causes neuronal iron retention as well 

as iron-dependent nigral cell loss, and both proteins are decreased in the SNc in PD.
7,22

 

Cellular iron egress by ferroportin may also be assisted by ceruloplasmin and mice deficient 

of this enzyme develop deferiprone (DFP) rescuable age-dependent iron elevation and 

parkinsonism.
7
 In PD patients a low ceruloplasmin activity has been identified in the SN, 

cerebrospinal fluid (CSF) and serum.
1
 Point mutations in the ceruloplasmin gene also 

associate with parkinsonism
11

 and SN hyperechogenicity in PD.
7,23

 

Altered iron storage  

The limited capacity of neurons to sequester surplus iron into ferritin molecules
1,2

 is 

complemented by expressing neuromelanin as an alternative “iron sink”.
4
 However, such 

capacities might be exceeded in PD,
2
 potentially leading to increased ferritin-

immunoreactivity in microglia in the SN.
24

 Elevated levels of iron loaded ferritin may, over 

time, contribute to age-related neurodegeneration by acting as a metastable reservoir for 

iron.
1,2,4

 

Increased iron uptake 
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Single nucleotide polymorphisms in transferrin (Tf) and its receptor (TfR) identified from PD 

case-control studies may have a protective role via changes to Tf bound iron transport into the 

cell.
25

 Lactoferrin and its receptor may also play a similar role.
26

 Finally, iron accumulation in 

the SNc of patients and MPTP mice correlate with elevation of the iron importer, divalent 

metal transporter 1 (DMT1).
27

  

Is there interplay between iron and αααα-synuclein?  

Iron markedly induces aggregation of α-synuclein into intracellular inclusions (i.e. Lewy 

bodies).
28

 Consistent with iron deposition, QSM measurements follow a pattern with the 

distributions of α-synuclein in PD pathology.
17

 Since the identification that iron can 

translationally increase protein levels of α-synuclein through its promoter region,
28

 more 

recent evidence has suggested a role for α-synuclein in modulating iron homeostasis. 

Depletion of α-synuclein in a functional location impairs the capacity for TfR to import iron 

and indicates that α-synuclein could modulate clatherin-mediated endocytosis.
28

 Neonatal 

iron-feeding of a transgenic mouse model overexpressing human α-synuclein bearing the 

A53T mutation exacerbates both PD-related motor and non-motor phenotypes.
29

 Accordingly, 

iron chelation reduces the amount of insoluble α-synuclein aggregates
29

 and rescues 

behavioural deficits
30

 in murine models of genetic PD. 

 

Ferroptosis – a new iron-dependent cell death pathway in PD that may yield further 

therapeutic options 

A new iron dependent cell death pathway that has recently come to light has strong 

implications in PD neuropathology. Ferroptosis appears to be selectively triggered by an iron 

dependent mechanism with key features including lipid peroxidation, specific depletion of 

glutathione peroxidases-4 to alter glutathione protection, mitochondriopathy and distinct 
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morphological modifications that are independent from other cell death pathways (e.g. 

apoptosis, necrosis and autophagy).
31,32 

Inhibition of the xCT cystine/glutamate antiporter 

during ferroptosis consequentially prevents cystine uptake into the cell and leads to lower 

levels of glutathione synthesis and increases cellular availability of labile iron to catalyse lipid 

peroxidation (Fig. 2).
31

 Ferroptosis is associated with pathogenic changes observed in PD, as 

well as the classical in vitro and in vivo pro-oxidant models.
33

 This includes nigral iron 

elevation, mitochondriopathy, glutathione depletion, lipid peroxidation, elevated ROS 

generation and oxidation of dopamine.
33

 Ferroptosis can be rescued by iron chelation (e.g. 

with DFP),
31,33

 supporting the requirement for iron in the initiation of this cell death pathway. 

Importantly, a range of inhibitors with greater specificity to ferroptosis (e.g. liproxstatin-1) 

have recently been designed with promising future implications in disease modification. 

 

A new therapeutic strategy of conservative chelation based on iron scavenging and 

redeployment  

The implication of siderosis and iron toxicity has largely been based on the protective effects 

of iron chelation in cell and animal models.
1-3,7-11,34,35 

However, for any chelator to be of 

clinical value in disorders of regional siderosis they ought to be endowed with a requisite 

accessibility to the relevant sites and differential specificity so as to spare unaffected areas of 

the organism from scavenging an essential element.
36

 Different agents with iron chelating 

features (e.g. deferoxamine, clioquinol, VK28, M30 and natural plant-derived polyphenol 

flavonoids) have been assessed but not progressed to clinical trial. 

DFP is exceptional among iron chelators in its ability to cross membranes, including the 

blood brain barrier (BBB), and to chelate components of the cellular labile iron pool in brain 

tissue.
36

 DFP has the remarkable ability of rescuing transfusional hemosiderosis in the heart 
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of β-thalassemia patients without inducing anemia, largely attributable to the redeployment of 

captured iron to extracellular iron free Tf and subsequent distribution (Fig. 3).
36

  

The conservative repositioning strategy has been applied to PD using DFP at the relatively 

low oral dose of 30 mg/kg/day.
9
 An early-stage PD patient pilot study using a delayed start 

paradigm (6 months DFP or placebo pretreatment followed by 12 months DFP for all) yielded 

a significant reduction in SNc siderosis, particularly in the group that started early with DFP. 

Compared to placebo this remained stable until completion (month 18). A concomitant 

clinical benefit was noted at 6 months with a 3-point improvement in the motor-unified 

Parkinson's disease rating scale (UPDRS) in the early start group (21.6±8) versus the delayed 

start group (24±6). Importantly, at 12 months these ‘early start’ patients retained a 

significantly lower motor handicap (1 point on the motor UPDRS: 21.3±8) compared to the 

delayed start group (22.8±6), signifying a disease modifying effect.
9
 The conservative mode 

of chelation was reflected by an absence of systemic iron loss with patients showing normal 

iron indices that were unaltered after 18 or 24 months DFP treatment (except a mild ferritin 

reduction in blood and cerebro-spinal fluid). Positive clinical outcomes were recently 

confirmed by another randomised double-blind, placebo controlled trial. In this smaller sized 

trial, DFP reduced dentate and caudate nucleus iron content and indicated a trend for 

improvement in motor-UPDRS scores and quality of life.
37

 In both trials DFP had a good 

safety profile; despite the requirement of weekly blood counts during the first 6 months to 

monitor reversible neutropenia that may occur in 1-3% of patients treated with DFP.    

These promising results have now led to a large phase II, European multicentre, parallel-

group, placebo-controlled, randomized clinical trial, of which the aim is to evaluate whether 

DFP can slow progressive impairment in PD patients (www.fairpark2.eu). 338 patients with 

de novo PD are planned for randomization to either DFP (30 mg/kg/day in two doses a day) 

or placebo for 9 months. All will then participate in a 1-month post-treatment monitoring 
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period. To assess the hypothesized disease-modifying effect of DFP the primary efficacy 

criterion will be the total score on the UPDRS, encompassing motor and non-motor symptoms 

as well as activities of daily living. Secondary criteria include cognition, quality of life, 

quantitative continuous motor activity in the home environment and a health economics 

questionnaire. Potential surrogate and theranostic biomarkers of efficacy and safety will also 

be analysed (i.e. wide range of iron, dopamine and α-synuclein markers). These include the 

imaging measurement of iron content (MRI R2*/QSM and transcranial ultrasound) and 

dopamine content (dopamine transporter SPECT imaging). Since the initiation of the FAIR-

PARK-II trial a further phase II trial at sites in both Europe and Canada has begun to analyse 

different DFP doses ranging from 10 to 40 mg/kg/day to evaluate clinical outcome over the 

same treatment period.  

Conclusions and future directions  

Cell iron dyshomeostasis has been implicated in a wide range of neurodegenerative disorders 

other that PD, such as Alzheimer’s disease (AD; cortical iron elevation),
38

 Amyotrophic 

lateral sclerosis (ALS; elevated iron in motor neuron pathways)
39

 and the less prevalent Brain 

Iron Accumulation (NBIA) neurodegenerative disorders. This maldistribution of iron might 

represent a pathological form of regional siderosis that could be treated by a conservative 

mode of chelation based on drug-mediated iron redistribution, as currently under clinical 

evaluation in PD, Pantothenate Kinase-Associated Neurodegeneration type 2, ALS and AD. 

The aim is to slowdown disease progression, but complementary strategies may also block 

iron-dependent death pathways such as ferroptosis or stimulate cell repair pathways that 

promote glutathione formation or inhibit iron dependent prolyl hydroxylases.
9,33,40,

 It is hoped 

that with new biomarker developments in iron sensitive MRI sequencing, clinical trials such 

as the one presented here for conservative iron chelation may change the future clinical 

practice of PD. 
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LEGENDS  

Figure 1: Iron overload in the Substantia Nigra  

Post mortem mesencephalon analysis reveals that the dopaminergic neurons, naturally 

stained in black by auto-oxidation of dopamine in control (upper left), have disappeared in PD 

(upper right). Perls staining with a pink colour enhancement shows that SN is normally rich in 

iron (2
nd

 line left) but is iron overloaded in PD (2
nd

 line right). Brain magnetic resonance 

imaging of the mesencephalon The quantitative weighted T2* sequence shows a higher 

intensity (R2* = 1/T2*) in PD (bottom right) than in control (bottom left). The quantitative 

susceptibility mapping (3 Tesla) distinguishes the iron in the normal SN (3
rd

 line left) but the 

same nuclei in the iron overloaded PD case exhibits hyperintensity (3
rd

 line right). Above the 

SN, the red nucleus can be identified.  

Figure 2. Ferroptosis as a therapeutic target in Parkinson’s disease. Alterations in the 

iron regulatory pathway and phospholipid oxidation are implicated in Parkinson’s disease 

pathology. Increased intracellular iron occurs by enhanced import of iron within transferrin 

(Tf) through Transferrin receptor (TfR) endocytosis that is promoted by α-synuclein (α-syn), 

and increased import of Fe
2+

 through the divalent metal transporter 1 (DMT1). In addition, 

Page 20 of 27

John Wiley & Sons

Movement Disorders

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 21

iron export is impaired through the destabilization of ferroportin (Fpn) on the cell surface by 

β-amyloid precursor protein (APP) or ceruloplasmin (CP). When the storage protein 

neuromelanin (Nm) and ferritin (Ft) are no longer able to safely store intracellular iron, the 

labile pool of iron is elevated and catalyzes the formation of phospholipid hydroperoxides. 

Cystine uptake through the Xc- antiporter (in oxidative conditions) or the alanine, serine, 

cysteine – preferring (ASC) system (in reducing conditions) is required for biosynthesis of 

glutathione (GSH). Glutathione peroxidase 4 (Gpx4) uses 2 GSH molecules to safely reduce 

phospholipid hydroperoxides to their corresponding lipid-alcohols, producing H2O and 

glutathione disulphide (GSSG) as byproducts. Elevated levels of intracellular iron with 

depletion of Gpx4, as evidenced in models of PD, promotes the accumulation of phospholipid 

hydroperoxides leading to a disruption in membrane integrity through a ferroptotic pathway. 

Reducing the labile iron pool (i.e deferiprone) or depleting the phospholipid hydroperoxides 

(i.e. liproxstatin-1 or ferrostatin-1) are thus promising targets for inhibiting ferroptosis in PD 

pathology. 

Figure 3: A conservative mode of chelation based on: a. the scavenging of iron that 

accumulated intracellularly (organelle, cell, or tissue), and b. its redeployment to another cell 

or tissue compartment, either by the chelator or via iron transferred to circulating transferrin. 

The presence of apo-transferrin in circulating fluids ensures that iron scavenged from cells is 

conserved and redeployed primarily to areas of iron deficiency. 

 

Table summarizing main points of interest to a broad readership of general neurologists 

PD: Parkinson’s disease; SNc: Substantia nigra pars compacta; SNr: Substantia nigra pars 

reticulate; VTA: Ventral Tegmental Area MRI: Magnetic resonance Imaging; SWI: 

susceptibility weighted imaging; ROS: reactive oxygen species; 6-OHDA: 6-

hydroxydopamine; ALS: amyotrophic lateral sclerosis; PKAN-2: Pantothenate Kinase-

Page 21 of 27

John Wiley & Sons

Movement Disorders

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 22

Associated Neurodegeneration type 2; AD: Alzheimer’s disease. The table does not contain 

the exhaustive list of references on each topic. Reviews are frequently quoted due to space 

and references limitation. 
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Figure 1 high resolution  
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Figure 2  
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Figure 3  
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Table: Frequent asked questions, main findings and clinical implications  

 

Frequent asked 

questions 

What is demonstrated? Need to be demonstrated Clinical implications 

Iron overload in the 

SNc? 

- First described in 1924, a similar period as Lewy bodies  

- In models and patients brain analysis,9-21 MRI and 

ultrasounds
49,53-68

  

- Association with motor handicap
9,12,13

 

Biomarker for diagnosis and 

prognosis?  

 

- Identification of iron overload: Hyperintensity of the dorsolateral 

SNc by MRI (SWI)
15

 and hyperechogenicity
20,21 

 

- Quantification of iron by MRI (R2*, QSM)
 9,12-19

 for follow up
12,13  

Why SNc is 

vulnerable? 

- Naturally rich in iron1,2 as required for dopamine (synthesis, 

metabolism)
1,2,4 

and higher pace making activity in SNc > 

VTA
6
 

- Death by iron related to oxidative stress
1,2,5-10,40,43

 

Cell types and factors involved 

in the excess of oxidative stress 

and iron redistribution? 

 

- High iron content render SNc vulnerable to oxidative stress 

without adequate protective measures
1,2,3,4,7-11 

- Motor and non motor automatic activity requires high energy 

demands
6
  

What is the role of 

neuromelanin? 

- Sequestration of harmful dopamine quinones (i.e. iron 

related dopamine auto-oxidation).1,2,4   

- Neuromelanin lost in PD
 4 

frees 6-OHDA to impair 

mitochondrial function.  

Cellular and brain mechanisms 

of iron regulation?  

- Neuroprotection of neuromelanin by chelating metals (iron) and 

xenobiotics?1,2,4  

- Neuromelanin measured with specific MRI sequence 

Other brain regions 

overloaded by iron?  

- Iron overload is complex, variable and dynamic in the other 

regions  

- The main other overloaded region is putamen9,12,13  

(identified by brain analysis and MRI)  

The status of the other regions 

remains to be determined: 

Nucleus caudatus, red nucleus 

and globus pallidus, putamen? 

- Concept of progressive and extensive brain iron redistribution  

- Specific correlations between regions, phenotypes and stages of 

the disease to be determined  

Are there different 

types of iron? 

- 1% of ferrous labile iron (Fe
2+

) required for normal 

metabolism; harmful in excess (oxidative stress) 

- 99% of ferric iron (Fe
3+

) safely stored in equilibrium
1,2,4,36

 

In vivo measures of the labile 

iron (Fe
2+

) available for 

patients? 

 

- MRI is an indirect measure of ferric iron 

- Iron-sensitive MRI evaluation depends on specific situations: 

safely stored vs. pathological vs. non-active consequence  

Is high dietary iron 

exposure a risk factor 

of PD? 

 

No demonstration but reported: 
- In adult: no relation or weak association in males 

- In early life: increase PD mortality rate in Western 

countries? (Policy of iron fortified food). 

Need prospective data  - Iron overload of SNc is not a consequence of adult diet  

- Policy (after the second world war) of systematic iron fortified 

food could no longer be necessary or a worsening factor? (To 

demonstrate) 

Is there iron 

deficiency in PD? 

 

No demonstration but reported: 
- Association between low peripheral iron levels (anaemia, 

low haemoglobin) and PD risk remains a matter of debate  

- Requires meta-analytical confirmation 

- Need prospective data  

- Mechanisms of abnormal iron 

redistribution?  

- Abnormal regional iron redistribution; cellular, brain and body 

overload and deficiency
2
 

- Care required in iron supplementation for anaemia in PD 

(Efficiency? Risk?) 

What is the 

relationship between 

iron and αααα-synuclein? 

No demonstration but reported: 

- Iron induces aggregation of α-synuclein into intracellular 

inclusions (i.e. Lewy bodies).
28

  

- Pattern tightly concordant between brain iron deposit and α-

synuclein pathology
17

 

Pivotal interplay between iron, 

dopamine and α-synuclein 

pathology to influence 

dopaminergic neurotransmission 

and disease progression? 

 

-Therapeutic targets for neuroprotection and dopasensibility?  
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- α-Synuclein pathology involved in iron homeostasis
28 

and 

reduced by iron chelation
29,30

 

What is the 

therapeutic concept of 

“conservative” iron 

chelation 

- Neuroprotection in PD models by iron chelation
1-3,7-11,34,35

 

- Dopaminergic neuronal death by iron deficiency
3 

- Concept: low dose of deferiprone redeploys captured iron to 

extracellular apo-transferrin, and subsequent distribution 

avoids iron deficit: preclinical efficacy and clinical safety
9,36,37 

 

Efficacy to be confirmed with 

large trial in progress? 

(FAIRPARK-II) 

- Trials also in progress for 

PKAN-2, ALS, AD? 

Careful therapeutic iron redistribution by conservative chelation 

based on iron scavenging and redeployment (Fig. 3) may afford 

neuroprotection without anaemia (risk of reversible neutropenia in 

1-3%) 

Are there several 

types of cell deaths in 

PD? 

- Apoptosis (mainly with oncogenic cell line): negative trials  

- Mitophagy in models and genetic causes (Pink-1, Parkin,..) 

- Ferroptosis in models31-33 (Fig.2) 

- Mitophagic modulator  

- Antiferroptotic drug (both iron 

chelators and specific inhibitors)  

New upcoming therapeutic targets for a combined therapy? 

IN TOTAL: Is iron 

the cause of PD? 

NO but a worsening factor if present 1) in excess and 2) 

associated with PD physiopathology 

The interplay between iron 

and the pathological causes 

(e.g. synucleinopathy, 

mitochondriopathy): “double 

hit theory”? 

- In specific situations iron overload could be a marker of 

degeneration and a risk factor for degeneration
1,2,7-21,31-37 

 

- A therapeutic strategy?
 9,36,37
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