R. J. Ward, F. A. Zucca, J. H. Duyn, R. R. Crichton, and L. Zecca, The role of iron in brain ageing and neurodegenerative disorders, Lancet Neurol, vol.13, pp.1045-60, 2014.

A. A. Belaidi and A. I. Bush, Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics, J Neurochem, vol.139, pp.179-197, 2016.

P. Matak, A. Matak, and S. Moustafa, Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice, which low dopaminergic iron status was associated with development of Parkinsons in a mouse model, vol.113, pp.3428-3435, 2016.
DOI : 10.1073/pnas.1519473113

URL : http://europepmc.org/articles/pmc4822577?pdf=render

D. J. Hare and K. L. Double, Iron and dopamine: a toxic couple, Brain, vol.139, pp.1026-1061, 2016.
DOI : 10.1093/brain/aww022

URL : https://academic.oup.com/brain/article-pdf/139/4/1026/7461989/aww022.pdf

G. Holmes-hampton, M. Chakrabarti, A. L. Cockrell, S. P. Mccormick, L. C. Abbott et al.,

. Ls and P. A. Lindahl, Changing iron content of the mouse brain during development, Metallomics, vol.4, pp.761-70, 2012.

J. N. Guzman, J. Sanchez-padilla, D. Wokosin, J. Kondapalli, E. Ilijic et al., Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1, Nature, vol.468, pp.696-700, 2010.

S. Ayton, P. Lei, J. A. Duce, B. X. Wong, A. Sedjahtera et al.,

, Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease, Ann Neurol, vol.73, pp.554-559, 2013.

S. Ayton, P. Lei, D. J. Hare, J. A. Duce, J. L. George et al., Parkinson's disease iron deposition caused by nitric oxideinduced loss of ?-amyloid precursor protein, J Neurosci, vol.35, pp.3591-3598, 2015.

D. Devos, C. Moreau, J. C. Devedjian, J. Kluza, M. Petrault et al., Targeting chelatable iron as a therapeutic modality in Parkinson's disease, Antioxid Redox Signal, vol.21, pp.195-210, 2014.

P. Lei, S. Ayton, A. T. Appukuttan, I. Volitakis, P. A. Adlard et al.,

, Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse, Neurobiol Dis, vol.81, pp.168-75, 2015.

M. Ulla, J. M. Bonny, L. Ouchchane, I. Rieu, B. Claise et al., Is R2* a new MRI biomarker for the progression of Parkinson's disease? A longitudinal follow-up, PLoS One, vol.8, p.57904, 2013.

L. Hopes, G. Grolez, C. Moreau, R. Lopes, G. Ryckewaert et al., Magnetic Resonance Imaging Features of the Nigrostriatal System: Biomarkers of Parkinson's Disease Stages?, PLoS One, vol.11, p.147947, 2016.

J. Y. Wang, Q. Q. Zhuang, L. B. Zhu, H. Zhu, T. Li et al., Meta-analysis of brain iron levels of Parkinson's disease patients determined by postmortem and MRI measurements, Sci Rep, vol.6, p.36669, 2016.

P. Mahlknecht, F. Krismer, W. Poewe, and K. Seppi, Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson's disease. Mov Disord, 2017.

N. Bunzeck, V. Singh-curry, C. Eckart, N. Weiskopf, R. J. Perry et al., Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease, Parkinsonism Relat Disord, vol.19, pp.1136-1142, 2013.

J. Acosta-cabronero, A. Cardenas-blanco, M. J. Betts, M. Butryn, and J. P. Valdes-herrera,

I. Galazky and P. J. Nestor, The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease, Brain, vol.140, pp.118-131, 2017.

W. Chen, W. Zhu, S. Chang, M. Lou, B. H. Kopell et al.,

Y. Korogi, A. Shtilbans, G. H. Jahng, D. Pelletier, S. A. Gauthier et al., Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care, J Magn Reson Imaging, 2017.

D. E. Huddleston, J. Langley, J. Sedlacik, K. Boelmans, S. A. Factor et al., In vivo detection of lateral-ventral tier nigral degeneration in Parkinson's disease. Hum Brain Mapp, 2017.

D. Berg, W. Roggendorf, U. Schröder, R. Klein, T. Tatschner et al., Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury, Arch Neurol, vol.59, pp.999-1005, 2002.

L. Zecca, D. Berg, T. Arzberger, P. Ruprecht, W. D. Rausch et al.,

P. Riederer, M. Gerlach, and G. Becker, In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage, Mov Disord, vol.20, pp.1278-85, 2005.

P. Lei, S. Ayton, D. I. Finkelstein, L. Spoerri, G. D. Ciccotosto et al., Tau deficiency induces parkinsonism with dementia by impairing APPmediated iron export, Nat Med, vol.18, pp.291-295, 2012.

H. Hochstrasser, J. Tomiuk, U. Walter, S. Behnke, J. Spiegel et al., Functional relevance of ceruloplasmin mutations in Parkinson's disease, FASEB J, vol.19, pp.1851-1854, 2005.

K. C. Wu, H. H. Liou, Y. H. Kao, C. Y. Lee, and C. J. Lin, The critical role of Nramp1 in degrading ?-synuclein oligomers in microglia under iron overload condition, Neurobiol Dis, vol.104, pp.61-72, 2017.

S. L. Rhodes, D. D. Buchanan, A. I. Taylor, K. D. Loriot, M. A. Sinsheimer et al., Pooled analysis of iron-related genes in
URL : https://hal.archives-ouvertes.fr/inserm-01160048

, Parkinson's disease: association with transferrin, Neurobiol Dis, vol.62, pp.172-180, 2014.

B. A. Faucheux, N. Nillesse, P. Damier, G. Spik, A. Mouatt-prigent et al., Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease, Proc Natl Acad Sci U S A, vol.92, pp.9603-9610, 1995.

J. Salazar, N. Mena, S. Hunot, A. Prigent, D. Alvarez-fischer et al.,

, Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease, Proc Natl Acad Sci U S A, vol.105, pp.18578-83, 2008.

J. Duce, B. Wong, H. Durham, J. C. Devedjian, D. Smith et al., Post translational changes to ?-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease, Mol Neurodegener, vol.12, p.45, 2017.

D. I. Finkelstein, D. J. Hare, J. L. Billings, A. Sedjahtera, M. Nurjono et al., Clioquinol Improves Cognitive, Motor Function, and Microanatomy of the Alpha-Synuclein hA53T Transgenic Mice, ACS Chem Neurosci, vol.7, pp.119-148, 2016.

E. Carboni, L. Tatenhorst, L. Tönges, E. Barski, V. Dambeck et al., Deferiprone Rescues Behavioral Deficits Induced by Mild Iron Exposure in a Mouse Model of AlphaSynuclein Aggregation, 2017.

S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M. Zaitsev et al., Ferroptosis: an irondependent form of nonapoptotic cell death, Cell, vol.149, pp.1060-72, 2012.

F. Angeli, J. P. Schneider, M. Proneth, B. Tyurina, Y. Y. Tyurin et al.,

J. A. and C. M. , Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice, Nat Cell Biol, vol.16, pp.1180-91, 2014.

D. Van, B. Gouel, F. Jonneaux, A. Timmerman, K. Gele et al.,

C. Moreau, C. Bordet, R. Devos, D. Devedjian, and J. C. , Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC, Neurobiol Dis, vol.94, pp.169-178, 2016.

O. Weinreb, S. Mandel, M. B. Youdim, and T. Amit, Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators, Free Radic Biol Med, vol.62, pp.52-64, 2013.

D. G. Workman, A. Tsatsanis, F. W. Lewis, J. P. Boyle, M. Mousadoust et al., Protection from neurodegeneration in the 6-hydroxydopamine (6-OHDA) model of Parkinson's with novel 1-hydroxypyridin-2-one metal chelators, Metallomics, vol.7, pp.867-76, 2015.

Z. I. Cabantchik, A. Munnich, M. B. Youdim, and D. Devos, Regional siderosis: a new challenge for iron chelation therapy, Front Pharmacol, vol.4, p.167, 2013.

A. Martin-bastida, R. Ward, R. Newbould, P. Piccini, D. Sharp et al., Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease, Sci Rep, vol.7, p.1398, 2017.

S. Ayton, A. Fazlollahi, P. Bourgeat, P. Raniga, A. Ng et al., Australian Imaging Biomarkers and Lifestyle