
HAL Id: hal-02178934
https://hal.univ-lille.fr/hal-02178934v2

Submitted on 21 Aug 2019 (v2), last revised 26 Nov 2020 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Motor Preparation of Step Initiation: Error-related
Cortical Oscillations

Arnaud Delval, Aurore Braquet, Nauaman Dirhoussi, Madli Bayot, Philippe
Derambure, Luc Defebvre, Celine Tard, Kathy Dujardin

To cite this version:
Arnaud Delval, Aurore Braquet, Nauaman Dirhoussi, Madli Bayot, Philippe Derambure, et al.. Motor
Preparation of Step Initiation: Error-related Cortical Oscillations. Neuroscience, 2018, Neuroscience,
393, pp.12-23. �10.1016/j.neuroscience.2018.09.046�. �hal-02178934v2�

https://hal.univ-lille.fr/hal-02178934v2
https://hal.archives-ouvertes.fr


1

23

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

NEUROSCIENCE

NSC 18674 No. of Pages 12

13 October 2018
RESEARCH ARTICLE
A. Delval et al. / Neuroscience xxx (2018) xxx–xxx
Motor Preparation of Step Initiation: Error-related Cortical Oscillations
Arnaud Delval, a,b* Aurore Braquet, a,b Nauaman Dirhoussi, a,b Madli Bayot, a,b Philippe Derambure, a,b Luc Defebvre, a,b
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Abstract—Gait initiation can vary as a function of the available and engaged attentional resources. Conflict res-
olution can disrupt movement preparation and lead to ‘‘errors” in motor programming. These ‘‘errors” are phys-
iologically useful by enabling us to adapt our motor behavior to situations with conflicting information. The 
objective of the present study was to analyze the patterns of cortical activation associated with motor program-
ming errors and the corresponding error corrections. Incongruent flankers around a target arrow were used to 
trigger errors in anticipatory postural adjustments (APAs) prior to gait initiation; i.e. perturbed motor program-
ming but normal execution. Thirty healthy adults performed a gait initiation task. The event-related potentials 
(ERPs) and event-related desynchronization (ERD) after target presentation were analyzed according to the pres-
ence or absence of an APA error. The ERP was similar in both conditions, except that the Ne and P300 peak 
latencies were longer for APA errors. Motor programming errors during gait initiation were characterized by 
longer, less intense low-beta-band ERD over the sensorimotor cortex and alpha ERS followed by stronger alpha 
ERD during errors. APA errors were associated with a specific alpha/beta oscillation profile over the sensorimo-
tor cortex; these beta oscillations might be sensitive markers of non-conscious motor error and correction mon-
itoring. 
Key words: cortical activation, gait initiation, posture, inhibition, attention.
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INTRODUCTION

Gait initiation is a motor program characterized by the

transition from a static stable stance to a continuously

unstable posture during locomotion. The characteristics

of gait initiation can vary as a function of the available

attentional resources. Indeed, gait initiation can be

modulated when the subject is obliged to deal with

conflicting information (Uemura et al., 2012). Gait is initi-

ated in two phases: a motor preparation phase (corre-

sponding to anticipatory postural adjustments, APAs)

and then an execution phase (corresponding to the time

interval between ‘‘toe-off” and ‘‘heel strike” for the swing

leg). During standard gait initiation (i.e. in the absence

of external or internal stimuli requiring modulation of the

motor program), healthy subjects display a stereotypical

APA pattern. Foot-off of the swing leg is preceded by a

shift in body weight that displaces the center of pressure
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(CoP) backward and toward the swing leg. Next, the CoP

is displaced forward and toward the stance leg. Hence,

APAs create the conditions required for progression

(Brenière and Do, 1991). Furthermore, APAs along the

mediolateral axis are predictive of postural stability

(McIlroy and Maki, 1999). However, it is known that self-

triggered gait initiation is not always preceded by an

APA (Delval et al., 2014; Lu et al., 2017). The lack of a lat-

eral or posterior APA was nevertheless infrequent (in 2%

of the trials) in healthy elderly controls during externally

triggered rapid stepping (Delval et al., 2014). Conversely,

the absence of APAs can be frequently observed in

patients with freezing of gait and an increased risk of falls

(Delval et al., 2014). The occurrence of APA errors can

also perturb the gait initiation program by delaying the

onset of movement execution (Cohen et al., 2011). This

corresponds to the correction of an APA when the initial

direction of postural adjustment is not appropriate (for

example, when the CoP moves inappropriately toward

the stance leg and is then appropriately moved first

toward the swing leg and only then toward the stance

leg). This APA error corresponds to a motor program

error, which is efficiently corrected and prevents incorrect

step initiation from taking place. It is known that APA

errors are more frequent in conditions modulated by

attention (especially in the presence of incongruent stimuli
ations. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.09.046
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(Uemura et al., 2013) or with invalid cues (Tard et al.,

2013)) than in conditions with congruent step initiation

stimuli. However, it is not known if and how these APA

errors are modulated in the cortex.

Cortical areas involved in gait initiation include the

sensorimotor cortex, premotor cortex, basal ganglia and

brainstem structures. It was initially suggested that the

motor programs underlying the elicitation of gait initiation

were stored in subcortical structures, and could be

elicited by a startling stimulus or a decision for action

(Takakusaki, 2008; Queralt et al., 2010; Delval et al.,

2012; Watanabe et al., 2016a). However, studies in

patients with focal lesions of the supplementary motor

area and studies in patients with Parkinson’s disease

(Viallet et al., 1992; Gantchev et al., 1996) have shown

that APAs can be modulated at the supraspinal level,

since the supplementary motor area, the basal ganglia

and the pontomedullary reticular formation are linked by

neural networks. Moreover, inhibitory repetitive transcra-

nial magnetic stimulation over the supplementary motor

area shortens the APA duration for a brief period, i.e.

for the first stepping trial after stimulation (Jacobs et al.,

2009). The output of this pathway is located in the mid-

brain locomotor region (which may correspond in part to

the cuneiform nucleus and the dorsal part of the peduncu-

lopontine nucleus), which is connected to limbic struc-

tures and the basal ganglia (Pahapill and Lozano, 2000).

Attentional control can modulate gait initiation – either

directly by involving brainstem structures (for example,

the alert process induced by a loud stimulus can

product a start-react effect) or indirectly via a cortical

loop that includes more complex attentional networks

(Delval et al., 2012; Tard et al., 2013). Cortical movement

preparation can be measured through electroencephalo-

gram (EEG) features like event-related potentials (ERPs)

and event-related (de)synchronization (ERD/S). In the

frequency domain, ERD (mainly in the alpha- and beta-

bands) is the cortical marker of movement intention. It

has been demonstrated that gait initiation is associated

with desynchronization of sensorimotor rhythms related

to sensorimotor cortex activation (Pfurtscheller and

Andrew, 1999). If the EEG is response-locked (i.e. locked

to the motor response), a movement-related cortical

potential (MRCP) is present before gait initiation or when

imagining gait initiation (Vidailhet et al., 1993, 1995). For

the gait initiation task, if the EEG is target-locked, the

early ERP components are probably influenced by the dif-

ferent physical characteristics of the stimuli (Rektor et al.,

2006) and a posterior P300 can be found, higher in case

of stimulus driven attention for example (Tard et al.,

2013), whereas late components reflect motor prepara-

tion (Hamano et al., 1997). More recently, combined

ERP and ERD/S recordings via an EEG brain–computer

interface were used to detect gait initiation (Jiang et al.,

2015; Sburlea et al., 2015).

ERPs are also used to monitor cognitive control of

action. During error recognition, a negativity (named the

‘‘Error-Related Negativity” (ERN or Ne)) and then a

‘‘Positive error-related wave” (Pe) can be observed (for

a review, see Wessel and Aron (2017)). The functional

significance of ERN was associated with error detection
Please cite this article in press as: Delval A et al. Motor Preparation of Step Initiation: Error-related Cortical Osc
(Falkenstein et al., 1991). Alternatively, the ERN was pro-

posed to reflect conflict resolution due to a finding of the

‘‘Correct-Related-Negativity” (CRN) (Vidal et al., 2000;

Meckler et al., 2011). However, errors during gait initiation

are mostly non-conscious and the presence of an ERN or

Pe during an APA error in healthy subjects remains uncer-

tain. For example, Watanabe found similar frontal ERN

and CRN in trials with or without APA errors during gait

initiation (Watanabe et al., 2016b). The significance of

these potentials remains discussed. Indeed, it has been

demonstrated that the ERN occurs also after ‘‘partial

errors”, i.e., incorrect activities that are not sufficient to

produce overt errors (Carbonnell and Falkenstein,

2006), which is observed during spontaneous correction

of APA errors. To date, the cortical areas involved in gait

initiation errors have not been extensively studied and the

focus was only on Fz, FCz, and Cz (Watanabe et al.,

2016b). Indeed, the human sensorimotor system needs

to be able to rapidly correct for errors in an ongoing motor

command brought about by sudden, unexpected changes

in the movement environment (such as conflicting infor-

mation, for example) (Krigolson et al., 2008). The present

study was designed to evaluate the cortical changes

induced by these adaptive reactions called APA errors.

The study’s primary objective was to use a combined

ERP and time–frequency analysis to evaluate cortical

activation during correct gait initiation (i.e. with no APA

errors) and during disturbed step initiation (i.e. with APA

errors). Our starting hypothesis was that APA errors

would be associated with ERP modulations featuring

error-related potentials (for example, error-related nega-

tivity/positivity (Ne/Pe) (Falkenstein et al., 2000)) and/or

changes in beta-band ERS, for example increased beta

ERS, as observed in stop-signal paradigms for move-

ments requiring motor inhibition (Duque et al., 2017).

Modulations in lower bands (delta–theta) have also been

attributed to error monitoring in children, young and

elderly adults (Kolev et al., 2001, 2005; Albrecht et al.,

2009).
EXPERIMENTAL PROCEDURES

Participants

Thirty healthy adult volunteers (16 females, 14 males; 29

right-handed; mean ± standard deviation (SD) age: 39.4

± 14.2 years) participated in the study after providing

written, informed consent. None of the participants had

a history of medication use (neuroleptics,

benzodiazepines, etc.) or disease (neurological,

orthopedic or psychiatric) that could have interfered with

gait. The mean ± SD Montreal Cognitive Assessment

score (Nasreddine et al., 2005) was 28.5 ± 2. Partici-

pants with a score of less than 26 out of 30 were

excluded. The study was approved by the local indepen-

dent ethics committee (CPP Nord-Ouest, Lille, France;

reference: 2015-A00013-46).
170
The experimental setting

The participant was told to stand in a stable, comfortable,

natural posture on a force platform, with his/her feet
illations. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.09.046
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parallel and with a gap of a few centimeters between the

feet. A computer display screen was placed at head

height 1 meter in front of the participant. The attentional

task was an adaptation of the attentional network test

(Fan et al., 2002) (Fig. 1). The participant was instructed

to initiate a forward step after presentation of the visual

target (an arrow pointing to the right or to the left, which

was visible for 1500 ms). If the arrow pointed to the left,

the participant had to initiate gait with the left foot; con-

versely, if the arrow pointed to the right, the participant

had to initiate gait with the right foot. The balance weight

shift between the 2 feet was controlled online (position of

the CoP between the 2 feet visualized by the Nexus soft-

ware). The present study only assessed the condition with

incongruent flankers (i.e. flankers pointing in the opposite

direction to the target arrow), in which the frequency of

APA errors is reportedly higher (Uemura et al., 2013).

Indeed, differences in ERP amplitudes have been

reported between congruent and incongruent conditions

in a similar study design in seated condition (Neuhaus

et al., 2010). A total of 144 incongruent trials (out of a total

of 300) were available for each participant.
Motion analysis

Data were collected with a three-dimensional motion

analysis system (VICON 370�, Oxford Biometrics,

Oxford, UK), using eight infrared cameras and a

sampling frequency of 100 Hz. The CoP was measured

with two force platforms (the ORG-5 model from

AMTI�, Watertown, MA, USA) at a sampling frequency

of 1000 Hz. Reflective markers were placed on precise,

reproducible, anatomic landmarks on each foot: the toe
Fig. 1. Attentional Network test. A schematic diagram of the

attentional task. S1: cue; S2: target. The target appeared for

1500 ms and was surrounded by flankers (four arrows: two on each

side) that were either congruent or incongruent. The targets could be

preceded by valid or invalid spatial cues, i.e. asterisks indicating (or

not) the direction of the arrow. Four blocks of 75 trials were

administered. The blocks were separated by short breaks of variable

duration. The cue and target conditions were presented in a pseudo-

random order: 156 congruent trials, 144 incongruent trials, 49 trials

with no cue, 61 trials with a central cue, and 190 trials with a spatial

cue (142 valid and 48 invalid cues). Only incongruent trials were

analyzed in the present study. The proportion of no cue trials was

16.3%, the proportion of neutral cue trials was 20.3%, the proportion

of valid cue trials was 47.3%, and the proportion of invalid cue trials

was 16%.

Please cite this article in press as: Delval A et al. Motor Preparation of Step Initiation: Error-related Cortical Oscill
(the head of the second metatarsal), the lateral

malleolus, and the heel. The data were then computed

by the same operator using an in-house MATLAB�
routine (The MathWorks, Natick, MA, USA).

The direction of the APA was considered to be normal

if the CoP moved backward and sideways toward the

swing foot. Conversely, the direction of the APA was

considered to be abnormal (i.e. an APA error) if the CoP

moved first toward the stance foot and only then toward

the swing foot (see Fig. 2). The reaction time (RT) was

defined as the time interval between the appearance of

the target (S2) and the beginning of the APA or T0. An

RT< 100 ms was classified as a false start and was

excluded from further analyses. Incorrect starts (i.e.

starts with the wrong foot) were also excluded. An in-

house MATLAB� routine detected changes in CoP

velocity > mean + 3 SD of the baseline period (�1500

to 1000 ms before target stimulus), the experimenter

then chose the start of the APAs according to the

curves in X and Y axis. Toe-off was detected visually
Fig. 2. Normal Anticipatory Postural Adjustments (APA) and APA

error. Step initiation with the right foot by a study participant. Top

panel: a normal APA, where the center of pressure (CoP) shifts to the

swing leg (right) and then to the stance leg (left) (lateral CoP: red

line). Bottom panel: an APA error: the CoP shifts toward the stance

leg (left) but the trajectory is corrected. (For interpretation of the

references to color in this figure legend, the reader is referred to the

web version of this article.)
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(from the toe marker trajectory in the sagittal plane) and

then reported on the CoP curve. It corresponded to the

time the CoP shifted forward. The APA duration was

assessed by subtracting T0 from the toe-off time. For

APA errors, the correction time was defined as the time

interval between T0 and the sideways corrective shift

(i.e. the beginning of the APA in the correct direction).

Acquisition of electroencephalographic data

The electroencephalogram (EEG) was recorded with an

Ag/AgCl 128-scalp-electrode cap (Waveguard�, ANT

Neuro, Enschede, The Netherlands), positioned

according to the 10/05 international system (Oostenveld

and Praamstra, 2001). Data were acquired with ASATM

software (ANT Neuro), using a 0.01- to 100-Hz band-

pass filter, a sampling frequency of 512 Hz, and impe-

dances below 20 kX. The data were pre-processed with

ASATM software in order to reject ocular artifacts and apply

a 50-Hz notch filter to the recordings. Next, interpolation

was performed for artifact-affected electrodes, with a

maximum interpolation rate of 10% (n= 13) for the whole

set of 128 scalp electrodes.

The EEG data were then analyzed with Brain Vision

Analyzer 2.0 software (BrainProducts). Muscle artifacts

were manually removed from the EEG layout;

thereafter, we segmented the EEG data into 2500-ms

epochs that were time-locked with respect to target

onset (1500 ms before and 1000 ms afterward). The

median (min–max) number of epochs selected (after

artifact rejection) per participant was 49 (20–98) for APA

errors and 69 (38–107) for normal APAs.

ERP analyses. ERP were analyzed with the EEGLAB

toolbox (Delorme and Makeig, 2004), using a baseline

from 1500 ms before the target onset to 1000 ms for

target-locked ERP and from 1500 ms before the APA

onset to 650 ms for response-locked ERP. The time win-

dow analysis was from S2 to 1000 ms after target onset.

We first analyzed ERP scalp distribution maps. Next,

the ERP wave’s characteristics were assessed and col-

lected by grand-averaging over the main central elec-

trodes (Fz, Cz, Pz).

For target-locked ERP, we focused on P300 over Pz.

For response-locked ERP, we analyzed ERN/CRN over

Fz and P300/Pe over Pz. The amplitude of potentials

was measured as the difference between the maximum

peak of the ERP waveform and the mean baseline

voltage (which occurs prior to the stimulus). Latency

was defined as the interval between target presentation

and the point of highest positive amplitude in the time

window of the potential. For target-locked ERP, time

window of P300 ranged from 250 to 500 ms after target

presentation. For response-locked ERP, the time

window of the ERN/CRN ranged from �50 to 200 ms

after APA start and from 0 to 400 ms for the posterior

component.

ERD/ERS analyses. Time–frequency analysis

requires computing the power spectrum over a sliding

latency window. ERD data were analyzed using

EEGLAB software (Delorme and Makeig, 2004) with a
Please cite this article in press as: Delval A et al. Motor Preparation of Step Initiation: Error-related Cortical Osc
500-ms baseline (between 1500 and 1000 ms before

the target’s appearance, target-locked and response-

locked). To characterize event-related EEG oscillations

like ERD and ERS, we applied a time–frequency analysis

based on a continuous wavelet transform. We used a ver-

sion of sinusoidal wavelets in which the number of cycles

increases slowly with frequency (e.g. 1.5 cycles at 4 Hz,

and 5.6 cycles at 30 Hz) with a window width of 213 sam-

ples (416 ms). This procedure has been described in

(Delorme and Makeig, 2004), and similar approaches for

time windows of around 2500 ms have been described

in (Fan et al., 2007). Time–frequency analyses were per-

formed between 4–7 Hz (the theta-band), 8–12 Hz (the

alpha-band), and 13–30 Hz (the beta-band, divided in a

low-beta-band (13–20 Hz) and a high-beta-band (20–

30 Hz)).

Cortical sources. A realistic head model was built by

segmenting a template MRI data with Freesurfer

software (Dale et al., 1999). The lead field matrix was

then computed for a cortical mesh with 15,000 vertices,

using Brainstorm software (Tadel et al., 2011) and Open-

MEEG software (Gramfort et al., 2010). The weighted

minimum-norm estimate was then used to reconstruct

the cortical sources (using Brainstorm toolbox (Tadel

et al., 2011)) in the time window corresponding to motor

preparation.
Statistical analyses

Characteristics of APAs were compared using a one-way

ANOVA after checking normality of the distributions. To

evaluate differences in cortical activation (ERPs, ERD/S

and source localization) in trials with an APA error vs.

trials with a normal APA, we used a non-parametric

permutation (randomization) test to obtain the p-value

for each electrode and each time point (for ERP and

ERD/S) and for each source reconstruction. The false

discovery rate (FDR) method was used to correct for

multiple comparisons (Genovese et al., 2002), and

enabled us to determine which electrodes differed

between the two conditions at the different time points

(scalp maps) and to compare ERD/ERS maps between

both conditions. These analyses were performed with

the EEGLAB toolbox (Delorme and Makeig, 2004), which

includes MATLAB statistical routines at this purpose. For

comparisons between source localizations, we used the

scripts included in the Brainstorm toolbox (Tadel et al.,

2011)). Peak amplitudes and latencies (for P300 on Pz,

for example) were compared in a t-test (in SPSS 17 for

Windows) after checking the normality of distribution in

a Kolmogorov–Smirnov test. The threshold for statistical

significance was set to p< 0.05 for all analyses.
RESULTS

Behavioral data

In trials with incongruent flankers, the APA error rate was

41.0%.

The false start rate. The false start rate (i.e.

RTs < 100 ms) was 11.9%. These trials were excluded
illations. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.09.046
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from further analysis, since they did not correspond to

APA errors.

The error step rate. A start with the wrong foot was

rare, since it occurred in only 0.56% of the trials. These

trials were excluded from the analysis because they did

not correspond to correct error monitoring. The low

number of these events prevented us from analyzing

them separately.

The mean ± SD RT was 0.27 ± 0.08 s for normal

APAs and 0.23 ± 0.06 s for APA errors (p< 0.001).

The mean ± SD APA duration was longer for APA

errors (0.64 ± 0.13 s) than for normal APAs (0.47

± 0.10 s) (p< 0.001). The mean ± SD correction time

for APA errors was 0.20 ± 0.07 s (i.e. 0.43 ± 0.07 s

after target presentation, on average).
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Erp

Target-locked ERP: as shown in Fig. 3, the ERP scalp

distribution maps revealed an early anterior component

(N2, see discussion), a late central negative component

(corresponding to preparation of movement) and a

posterior positive component (at the same scalp sites as

the P300). There were no differences in the ERP maps

between the ‘‘APA error” and ‘‘normal APA” conditions

except for P300 component (see Figs. 3 and 4).

The mean ± SD P300 peak latency (Pz electrode)

was longer for the APA error condition than the normal

APA condition (0.50 ± 0.08 s vs. 0.47 ± 0.08 s,

respectively; p< 0.01). No differences in P300 peak

amplitude were observed.

Response-locked: in both APA conditions, early

negativity (in the time window of ERN or CRN)

occurred, later in case of APA error. Late positivity

(P300 or Pe, see discussion) also occurred in both

conditions, later in case of APA error on posterior

regions. The mean ± SD ERN/CRN peak latency (Fz

electrode) was longer for the APA error condition than

the normal APA condition (0.12 ± 0.05 s vs. 0.08

± 0.05 s, respectively; p< 0.001). No differences in

peak amplitude were observed. The mean ± SD Pe/

P300 peak latency (Pz electrode) was longer for the

APA error condition than the normal APA condition

(0.26 ± 0.07 s vs. 0.19 ± 0.06 s, respectively;

p< 0.001). No differences in peak amplitude were

observed.
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ERD data

As shown in Figs. 5 and 6, we observed similar theta-

band ERS (between 200 and 600 ms, target-locked;

starting at T0, response-locked) in both conditions.

Alpha ERS was significantly more pronounced in trials

with an APA error (starting around 300 ms after S2,

target-locked; during APA, response-locked) and was

followed by a stronger alpha ERD (response-locked).

Central beta ERD was observed, starting 200 ms after

S2 (target-locked); or just before T0 (response-locked).

This feature lasted significantly longer over Cz in trials

with an APA error (Fig. 6). Moreover, beta ERD over

the sensorimotor cortex was more attenuated in the low-

beta-band (i.e. 13–20 Hz) than in the high-beta-band
Please cite this article in press as: Delval A et al. Motor Preparation of Step Initiation: Error-related Cortical Oscill
(20–30 Hz) in trials with an APA error (relative to trials

with a normal APA) in target-locked analysis (Figs. 5

and 6). We can observe that this beta ERD was present

during both normal APAs and APA errors but was more

prolonged (response-locked and target-locked) in case

of error.
Cortical sources of changes in the EEG signal during
motor programming

Cortical sources in the 0- to 600-ms time interval (target-

locked) are shown in Fig. 7. Occipital and temporoparietal

regions were activated at 200 ms, and then the

sensorimotor cortex and the frontal dorsolateral cortex

were activated during both normal APAs and APA errors.
DISCUSSION

Our present results showed that an error in motor

programming during gait initiation in healthy subjects

was not associated with obvious differences in ERPs.

We only observed a longer P300 peak latency in trials

with an APA error. However, we observed extended

beta ERD over the sensorimotor cortex, and more

pronounced alpha ERS followed by an ERD in trials with

an APA error.
Are APA errors low-level errors?

It is known that the motor program can be adjusted during

APAs. This process might involve rapid, direct

sensorimotor loops via visual afferences for stimulus

detection and proprioceptive afferences for the ongoing

APA. Hence, healthy subjects are able to adjust the

motor program after it has started by delaying foot lift

until the correct motor program has been selected.

Response inhibition – the ability to rapidly cancel an

action – is a critical component of executive function. In

gait initiation, response inhibition quickly corrected APAs

initiated in the wrong direction (around 200 ms after the

start of the APA error (Tard et al., 2015)). This means that

subjects can react to the perception of conflicting informa-

tion and quickly reorient ongoing actions. Many research-

ers have investigated the neural substrates of behavioral

inhibition by applying laboratory tasks based on the stop-

signal paradigm and that require a planned action to be

stopped (Duque et al., 2017); however, these tasks

require complete inhibition of the motor program, rather

than just correction (as in APA errors).

Moreover, the different types of errors described in the

literature appear to have different neural bases: Hill and

Raab (Hill and Raab, 2005) first distinguished the correc-

tion of errors induced externally and internal errors gener-

ated by the subject itself. Another distinction has been

made between low-level errors (i.e. non-conscious,

quickly corrected errors) involving posterior regions of

the brain, and high-level errors (i.e. conscious errors that

are not always corrected) involving the medial frontal lobe

(Krigolson and Holroyd, 2007). The errors in our study

would be classified as internal, low-level, since the partic-

ipants were not aware of them; although some partici-
ations. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.09.046
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Fig. 3. Event-related potentials in normal Anticipatory Postural Adjustments (APA) and APA error.

Top view of topographic voltage maps for each condition (i.e. a normal APA-N- or an APA error-E-).
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pants described ‘‘start hesitation” in a few trials, most

were unaware of the quickly corrected motor program.

Cortical activations during unexpected events have

recently been reviewed (Wessel and Aron, 2017). Most

of the relevant studies were based on the use of stop-

signal paradigms and fMRI to identify the underlying

motor inhibition system. The right inferior frontal cortex,

pre-supplementary motor area and subthalamic nucleus

(STN) of the basal ganglia are all involved, with down-

stream effects on the pallidum, thalamus, and primary

motor cortex. Indeed, the STN’s role has been empha-
Please cite this article in press as: Delval A et al. Motor Preparation of Step Initiation: Error-related Cortical Oscillations. Neuroscience (2018), https://do
sized by several fMRI studies

(Aron and Poldrack, 2006; Li

et al., 2008); activity in the STN is

greater during both stop successes

and stop errors than in ‘‘go” trials,

and greater for stop errors than

for stop successes (Li et al.,

2008). These findings suggest that

the STN has a role in suppressing

thalamocortical output, which

thereby blocks motor response

execution via a hyperdirect path-

way (Aron and Poldrack, 2006).

The mechanisms in our paradigm

were less clear, since error correc-

tion re-oriented a movement rather

than stopping it completely as in

stop-signal paradigms. Subjects

were able to shift their weight

toward the swing leg to correct

the error. This could correspond

to ‘‘partial errors”, i.e., incorrect

activities which are not sufficient

to produce overt errors

(Carbonnell and Falkenstein,

2006). These latter could produce

both ERN and CRN. However, we

would have expected more ample

negativity over frontal regions in

case of APA errors.

Cortical markers of error
monitoring

Evaluating the precise timing of

cortical activations requires

electrophysiological recordings

based on local field potentials or

EEG. It is generally thought that

an anterior component (ERN/Ne)

reflects error inhibition (Kopp

et al., 1996), conflict detection

(Carter et al., 1998) or the

comparison (response checking)

of the neural representation of the

actual (erroneous) response and

the representation of the required

(i.e. correct) response. In our

paradigm, however, successful

error inhibition was followed by a

motor programming correction
519
and then appropriate movement execution. With regard

to response checking, the participant had to recognize

the engaged motor program (the left or right foot) –

usually a non-conscious process – and determine

whether or not it corresponded to the appropriate

response. This process is much the same in APA errors

and normal APAs.

We did not observe any differences in the ERN/CRN

amplitudes. The amplitudes of CRN and ERN were also

similar for the stepping task in (Watanabe et al., 2016b)

that used a Simon task to elicit APA errors. They pro-
i.org/10.1016/j.neuroscience.2018.09.046
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posed different interpretations: the more convincing one

in our opinion is that APA errors are brief, covert, and

are likely corrected by initiating a step with the appropriate

leg. As a consequence, ERN amplitude may have

become smaller because APA errors were not recognized

as definite errors. Once again, this error is not conscious.

The late, posterior, positive ERP component observed

after presentation of the target is more difficult to interpret.

Considering target-locked responses, the ERP peaked in

the parietal cortex at about 400 ms (target-locked) and

100–200 ms (response-locked). It might therefore be a

P300 component. It is very similar to the response-

locked posterior component. The latency (but not the

amplitude) differed according to the presence or not of

an APA error. The absence of a difference in amplitude

was not very surprising because P300’s amplitude is pri-

marily modulated by the stimulus’s rarity (as in the oddball

paradigm). Here, only incongruent targets were consid-

ered. They elicited a large P300, regardless of the forth-

coming motor preparation (Neuhaus et al., 2010; Deiber

et al., 2013). Alternatively, the ERP component might cor-

respond to Pe. The latter is thought to reflect (i) error cor-

rection, (ii) a delayed parietal P300 (since it is present in

correct trials) or (iii) additional error processing or post-

error processing (for a review, see Falkenstein, 2010).

Here, the distribution is posterior and not anterior. More-

over, in our paradigm, there were no amplitude differ-

ences between trials with and without APA errors. It

must be borne in mind that the variability in Pe depends

on error detectability: the larger the difference between

the representations (i.e. the easier the error is to detect),

the larger and/or earlier the Pe. There are several possi-
Please cite this article in press as: Delval A et al. Motor Preparation of Step Initiation: Error-related Cortical Oscillations. Neuroscience (2018), https://doi.o
ble explanations for the lack of dif-

ference in the amplitude of Pe. The

participant was not given any infor-

mation about APA error monitor-

ing. Indeed, both Ne and Pe are

closely related to conscious per-

ception of the error (Nieuwenhuis

et al., 2001; Charles et al., 2013).

In fact, in the work by Charles

et al., the ERN was absent only

when subjects reported that they

did not see the target. That was

not the case in our study since sub-

jects well identified the target (no

error of step side).

Instructing the participant to

pay attention (or not) to the error

stimulus (Ramautar et al., 2006)

can also amplify the ERP. In

Ramautar et al.’s study, Pe was

much more pronounced for per-

ceived errors than for unperceived

errors. We suggest that these

ERPs reflect cognitive processing

of the stimulus (i.e. incongruent

flankers surrounding the arrow)

more than perception of the APA

error. These scalp ERPs did not

seem to be relevant for studying

the non-conscious monitoring of
611
an ongoing action, when the error was corrected online

before the possible erroneous outcome (i.e. initiation with

the wrong foot). According to Krigolson and Holroyd, the

P300 component has a role in the online control process

for low-level errors (Krigolson and Holroyd, 2007). In a

corrective limb adjustment task using a joystick (in which

the target’s location changed unexpectedly following

movement onset, in order to elicit errors), the researchers

concluded that if P300 arises after behavioral changes

associated with the online control of movement, then it

cannot be involved in the evaluation of target errors

(Krigolson et al., 2008). Indeed, the P300 started after

the participants had begun to adjust their motor output

to accommodate the target perturbation. Moreover,

Krigolson and Holroyd did not observe a difference in

amplitude according to the presence or absence of cor-

rection. As suggested by Krigolson et al. (Krigolson

et al., 2008), we hypothesize that P300 reflects the updat-

ing of an internal model of the movement environment –

processing of flankers, for example (Donchin and Coles,

1988).

Time–frequency analysis and motor programming

Non-phase-locked (induced) changes can be studied in a

time–frequency analysis, which highlights the cortical

oscillations related to an external or internal event

(Rektor et al., 2006). Indeed, motor-related cortical oscil-

lations are generally assessed by quantifying increases or

suppressions in spectral power. For example, increases

in amplitude of the cortical oscillations in the delta-band

(2–4 Hz) and the gamma (bands 60–200 Hz) are
rg/10.1016/j.neuroscience.2018.09.046
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Fig. 5. Event-related desynchronization/synchronization (ERD/ERS) in normal Anticipatory Postural Adjustments (APA) and APA error. Top view of

spectral maps (in dB) in the 4–7 Hz, 8–12 Hz, 13–20 Hz and 20–30 Hz bands for normal APAs (N) and APA errors (E). Target-locked (T) and

response-locked (R) are shown. 0 ms correspond either to the target presentation or to T0 (start of the APAs). The color at each image pixel

indicates the power (in dB) of a given frequency band. Hot colors correspond to an increase in power relative to the baseline, and cold colors

correspond to a decrease in power. Theta, alpha ERS were observed in both conditions after target presentation. Beta ERD was observed in both

conditions but was more prolonged for APA errors. The low-beta ERD was less intense for APA errors (target-locked only). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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observed during both the planning and execution of

movement (Combrisson et al., 2017). The initiation of vol-

untary movements has also been linked to desynchro-

nization of cortical activity in the alpha-band (8–12 Hz)

and the beta-band (13–30 Hz) in electrocorticography

and scalp EEG recordings (and then decrease of ampli-

tude of oscillations in the corresponding frequency band)

over the motor and premotor cortex (Pfurtscheller, 1981;

Neuper et al., 2006).

Firstly, we observed theta synchronization and a more

pronounced alpha synchronization in case of error.

Secondly, beta ERD was observed over sensorimotor

cortex.

Theta-band ERS is linked to an alert effect (Luu et al.,

2004) and to stimuli monitoring and discrimination (Wang

et al., 2005) engaged in attentional processes (Luu et al.,

2004; Fan et al., 2007; Song et al., 2014). Alpha ERS

(coupled with theta ERS) at the start of APAs was fol-

lowed by stronger posterior alpha ERD in case of APA

error. This particular pattern has been previously

described during different variants of the Simon task dur-

ing errors in an upper limb task (van Driel et al., 2012) and

seems consistent. These patterns according to the vari-

ants of the attentional task (in terms of amplitude, loca-

tion, coupling between different cortical regions) were
Please cite this article in press as: Delval A et al. Motor Preparation of Step Initiation: Error-related Cortical Oscillations. Neuroscience (2018), https://doi.o
influenced by performance moni-

toring (theta ERS), error speed

processing (posterior alpha ERD)

(van Driel et al., 2012). Increasing

alpha ERS is supposed to facilitate

the goal-directed behavior

(Dockree et al., 2007) by reflecting

active mechanisms of sensory

suppression for irrelevant-task

stimulus (Foxe and Snyder, 2011)

which could be particularly useful

for proper motor execution in case

of APA errors triggered by incon-

gruent stimuli. Then, alpha ERD

(response-locked) is strongly asso-

ciated to visual perception and

involved in task anticipation to

modulate the excitability in human

parieto-occipital cortex (Capotosto

et al., 2017). Alpha ERD is there-

fore stronger in trials with APA

errors in order to facilitate the mod-

ulation of the sensorimotor cortex

with stimulus’ perception. It signs

the further orientation and mainte-

nance of visual attention (posterior

predominant, engagement of

parieto-occipital areas (Foxe

et al., 1998)).

Beta ERD is thought to reflect

the activation of regions engaged

in visuospatial attention or motor

execution (Pfurtscheller and

Lopes da Silva, 1999). During

tasks requiring attention, signifi-

cant increases in the delta-, theta-

and gamma-bands have been
reported during the planning phase and especially during

execution. In contrast, alpha, beta and low-gamma power

falls after an execution cue (Combrisson et al., 2017). In

our paradigm, the occurrence of beta ERD following the

appearance of the target was consistent with this pattern.

Oscillations in the beta- and gamma-bands during motor

preparation have been studied in paradigms that compare

successful stops with unsuccessful stops (Swann et al.,

2009, 2012). Overall, brief beta ERS is followed by longer

beta ERD. The latter is more pronounced in successful

stop trials. These findings provide insight into our results

– even though our study did not feature successful vs.

unsuccessful stops. In trials with APA errors, we observed

prolonged beta ERD over the sensorimotor cortex; this

probably reflected the fact that movement preparation

was longer when an APA error occurred (Cohen et al.,

2011). We also observed less intense low-beta ERD dur-

ing APA errors. In a study evaluating a shifting cognitive

task during gait (Wagner et al., 2016), two different beta

oscillations were noted: beta ERD (expressing motor exe-

cution and motor readiness related to gait movements)

and a frontal beta ERS (related to cognitive top-down con-

trol on gait). The less intense ERD in the APA error con-

dition might be due to the summation of concomitant ERD
rg/10.1016/j.neuroscience.2018.09.046
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(for movement preparation) and ERS (for the cognitive

load, with a complicated process for conflict resolution

and correction of the engaged motor program). Further-

more, beta frequency oscillations are associated with

the maintenance of the ‘‘status quo”, such as holding a

fixed position. In the event of an APA error, the status

quo is disrupted. For example, stabilized gait on treadmill

is characterized by beta-band desynchronization that

lasts for at least 15 steps (Wagner et al., 2016). Here,

the presence of differences in low-beta ERD during an

APA error suggested that the status quo had been dis-

rupted (Engel and Fries, 2010). However, low-beta mod-

ulations have been studied more frequently in cognitive

tasks (including memory tasks) than in motor tasks. Other

spectral properties (such as phase and phase-amplitude

coupling) have also been shown to carry information with

regard to the oscillatory dynamics underlying motor pro-

cesses, and an analysis of these variables might be of

value in studying network dynamics during low-level

errors (Combrisson et al., 2017). There was a contradic-

tion between the findings of ERN and theta/alpha ERD/

S. Contrary to ERP, alpha synchronization appeared in

this study to be more sensitive, probably because of its
Please cite this article in press as: Delval A et al. Motor Preparation of Step Initiation: Error-related Cortical Oscillations. Neuroscience (2018), https://do
time resolution and the relative

specificity of the different fre-

quency bands to monitor brief cov-

ert errors such as APA errors.

Indeed, previous studies (Kolev

et al., 2005, 2005; Albrecht et al.,

2009) found modulations in low-fre-

quency band (delta, theta) and

ERN in different paradigms (choice

reaction task, flankers. . .) provok-

ing overt errors in different popula-

tions but once again, APA errors

are of different nature.

Limitations

There is a strong relationship

between the ERP and ERD/ERS.

However, ERD and ERS are not

systematically time-locked to the

target ERP. Theta- and delta-

band ERSs correspond most

closely to N200 and P300,

respectively (Huster et al., 2013).

In fact, an increase in the ampli-

tude of P300 is invariably associ-

ated with an increase in power in

the low-frequency bands – as

observed in the present study.

Removing or not the ERP signal

of the time–frequency analysis is

still subject to debate. In a non-

presented analysis, we removed

the ERP signal from the EEG

before performing event-related

spectral analysis in the beta-band;

this enabled us to study the

induced response alone and not

the evoked response: no clear dif-
780
ferences (topographical or statistical maps) were

observed after the removal.

The attention network task enabled the study of

different components of attention (Fan et al., 2002). How-

ever, trials with cues might influence the RTs or the pro-

portion of pre-APAs (i.e. APAs occurring between the

cue and the target presentation but not followed by a step,

with a return to the baseline posture at the moment of tar-

get presentation (Tard et al., 2015)); however, the propor-

tions of valid, invalid cued and uncued trials did not differ

after removal of trials with artifacts. The proportion of no

cue trials was 17.8% (normal APA) vs. 16.7% (APA error)

vs 16.3% (before removal of trials with artifacts), the pro-

portion of neutral cue trials was 19.3% (normal APA) vs.

18.2% (APA error) vs. 20.3% (before removal of trials with

artifacts), the proportion of valid cue trials was 47.5%

(normal APA) vs. 47.4% (APA error) vs. 47.3% (before

removal of trials with artifacts), the proportion of invalid

cue trials was 15.4% (normal APA) vs 17.6% (APA error)

vs. 16% (before removal of trials with artifacts). Further-

more, we excluded false start trials (i.e. those with an

RT < 100 ms). The median number of trials by subject /

condition after removal of artifacts was 49 (20–98) for
i.org/10.1016/j.neuroscience.2018.09.046
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APA errors and 69 (38–107) for normal APAs. One sub-

ject has a very low number of trials taken into account

but the ERP was clearly identifiable in this particular case.

The subject was thus not excluded.

Our present results highlighted a cortical marker of

gait initiation APA errors in healthy subjects. Differences

in sensorimotor activation (reflected by differing alpha/

beta-band ERS/ERD patterns) were observed during

APA errors. It remains to be seen how these cortical

oscillations are influenced by cortical-subcortical loops.

Future research should consider the role of the basal

ganglia (and specifically the STN) in movement

inhibition. In contrast to ERP analysis, time–frequency

methods are useful for monitoring non-conscious errors.

These methods could also be used to monitor motor

programming errors (in patients with dysexecutive

syndrome, for example), and could be implemented in

brain–computer interface algorithms.
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