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Abstract: 14 

Commercial miniature gas sensors, because they are smaller and cheaper than conventional 15 

instruments, can be deployed in large numbers to investigate indoor air quality, for research and 16 

operational purposes. To compensate for their limited metrological performances, it is necessary to 17 

develop relevant data treatment procedures. We applied an unsupervised classification approach 18 

based on the bisecting K-means algorithm to data acquired by online gas analyzers and by miniature 19 

sensors during a measurement campaign in a low energy school building. This procedure, applied to 20 

the analyzers measurements, was able to distinguish the ventilation status and the specific air 21 

quality events taking place in the classroom. The same procedure applied to the data from the 22 

sensors, even though they were not calibrated beforehand, was also able to identify the same events. 23 

The good agreement between the two sets of results validates the methodology and opens up new 24 

perspectives for a massive deployment of sensors inside buildings. 25 

 26 

Key words: (indoor) air pollution, electronic gas sensors, unsupervised classification, k-means 27 

clustering 28 

1. Introduction 29 

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0925400519309104
Manuscript_131cf68401413540294f65b8c6532ced

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0925400519309104
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0925400519309104


Indoor environments, where people in developed countries spend up to 90% of their time, present 30 

high specific pollutant concentrations [1,2], inducing a risk for human health [3,4]. Indoor 31 

pollutants, especially volatile organic compounds (VOCs), are emitted from building materials, 32 

furniture, consumer products, from the occupants themselves and their activities. The air transferred 33 

from outdoors also has a significant impact on the pollutants breathed indoors [5]. There is a need 34 

for large scale and continuous measurements of the indoor air quality (IAQ) in various domains: (i) 35 

for research purposes, in order to increase the understanding of the determinants of indoor air 36 

pollution, such as the identification of pollution sources and of the pollutants trends and temporal 37 

and spatial evolution, (ii) to allow mandatory or voluntary IAQ assessments of buildings, (iii) to 38 

communicate helpful information to the occupants on the relationships between their daily activities 39 

and the induced pollution levels, and also to alert them and implement corrective actions when 40 

critical thresholds are exceeded, (iv) to control the operation of ventilation or air treatment systems 41 

in order to reach the best compromise between health and energy consumption considerations. The 42 

conventional gas analyzers used for laboratory research and regulatory outdoor air monitoring can 43 

be deployed during research oriented measurement campaigns but not for real-time monitoring of 44 

occupied indoor environments. These bulky analyzers generate many nuisances, such as noise or 45 

vibrations, induce a considerable electrical consumption, and are too expensive to be 46 

simultaneously deployed in many places. 47 

In recent years, gas micro-sensors emerged as alternative relevant tools for air quality monitoring 48 

[6–9]. New sensitive materials are constantly being developed in order to achieve better sensitivity, 49 

selectivity and stability [10,11]. More and more micro-sensors are commercially available [12,13], 50 

prompting many recent studies where their performances are investigated [14–17]. Among these 51 

sensors, a distinction must be made between intrinsically non-selective sensors and selective or 52 

nearly-selective sensors. Non-selective sensors are commonly based on metal oxide semiconductive 53 

materials which respond to multiple compounds in the air, and are generally used in combinations 54 



or arrays of sensors, also known as e-noses. Selective sensors include the electrochemical sensors 55 

targeting compounds such as carbon monoxide, ozone, nitrogen monoxide or dioxide, sulfur 56 

dioxide, hydrogen sulfide, the NDIR sensors used for carbon dioxide, as well as the PID sensors for 57 

total volatile organic compounds measurements. In spite of the technological progresses, the 58 

currently available sensors still require a complete metrological characterization [18], with in 59 

particular the assessment of their reliability over time. Even if they are very sensitive, the response 60 

of most sensors shows interferences with other compounds than the targeted one, depends upon the 61 

temperature and humidity, and drifts with time [19–21]. Such a preliminary step of characterization 62 

and calibration is not necessary for arrays of MOS sensors when used in association with pattern 63 

recognition algorithms [22–27], which are methods used in data mining for the extraction of useful 64 

information and the exploration of data correlation. Supervised classification approaches [28] are 65 

based on a classifier built from a training set with a collection of labeled data, and then used to 66 

assign new unlabeled data instances. Unsupervised classification [29] refers to algorithms that 67 

require no training set (blind partitioning), no a priori knowledge of the structure of the dataset, and 68 

automatically define the different classes. However, the physical meaning of these classes needs to 69 

be a posteriori interpreted or verified by the expert. 70 

In the present study, we investigate the potential of unsupervised classification, or clustering, to 71 

analyze the output of selective gas sensors. The dataset used for the analysis has been acquired 72 

during a field campaign aiming to investigate the drivers and dynamics of IAQ in a low energy 73 

building [5]. 74 

Many clustering algorithms have been developed for data mining, such as reviewed in [29]. 75 

Different clustering algorithms, or even different ways to use them on the same dataset, can lead to 76 

different partition results. None of them have proved to be the best technique in a large amount of 77 

configurations. Some of these algorithms have been applied to electronic nose data clustering [30], 78 

each with its respective possibilities and limitations [25,31,32], depending on the application. For 79 



electronic nose data, hierarchical clustering is commonly used [33–37]. It results in a hierarchical 80 

structure of the dataset that is more informative about the link between each group of data than the 81 

unstructured clusters provided by other techniques. In addition, its representation (dendrograms) 82 

allows the selection of the number of clusters. Centroid-based algorithms such as K-means [38] are 83 

less considered in the micro gas sensor field [39,40] and especially for air quality investigation, 84 

though K-means is a simple partitional algorithm and one of the most widely used techniques in 85 

data mining thanks to its performances [41]. K-means algorithms combine simplicity, ease of 86 

implementation and of use, speed of convergence, even with a large number of variables and 87 

clusters, and ability to process datasets with missing values. For these reasons, we have chosen this 88 

method to analyze the data from gas sensors in the investigation of indoor air quality. 89 

 90 

2. Materials and methods 91 

2.1. Instruments and measurements settings 92 

Measurements used for this work were performed during the Mermaid study [5]. This field 93 

campaign has been carried out in February and March 2015 in a 51 m² (139 m3) classroom of an 94 

energy efficient junior high school building in Northern France. Details on the analytical 95 

instruments used for this study can be found in [5]. Only the data from the pollutants from outdoors 96 

(NOx and O3), measured with online analyzers (Thermo 42i and Thermo 49i), and of CO2, measured 97 

with Testo 480 probe located at the center of the room are considered here. In addition to these 98 

instruments, miniature sensors were installed in the center of the classroom, 90 cm above the floor. 99 

They monitor nitrogen oxide (electrochemical, Alphasense NO-B4), nitrogen dioxide 100 

(electrochemical, Alphasense NO2-B4), ozone (electrochemical, Alphasense O3-B4) and carbon 101 

dioxide (NDIR, Alphasense CO2-IRC A1). A Raspberry Pi B+ and an Arduino board are used to 102 

collect, store and transmit the data. No correction or calibration of the sensors has been performed 103 



prior to their installation in the room, and the raw output (voltage) is analyzed with the bisecting K-104 

means procedure.  105 

 106 

2.2. Experimental datasets 107 

The data used for this work corresponds to a 6-day continuous measurement (28 February 2015 to 6 108 

March 2015). Fig. 1 presents the ventilation status and specific events taking place in the room 109 

during this period. These events include three CO2 injections with ventilation ON, one CO2 110 

injection with ventilation OFF, for the determination of the air exchange rate of the room, two 111 

periods with people in the room, one NO2 injection, and an accidental release of both NO and NO2. 112 

 113 

Fig. 1. Specific conditions and events occurring in the classroom 114 

 115 

Dataset 1 (reference instruments) is a 4 x 8160 matrix consisting of 4 variables which are the 116 

concentrations of ozone, nitrogen oxide and nitrogen dioxide (in ppb) measured by the online 117 

analyzers and of carbon dioxide concentration (in ppm) measured by the Testo 480 probe, with a 118 

one minute resolution. The analyzers and CO2 probe were calibrated at the beginning of the 119 

campaign. 120 

Dataset 2 (electrochemical and NDIR sensors) is also a 4 x 8160 matrix, consisting of the voltage 121 

(mV) outputs of the 3 electrochemical sensors and of the carbon dioxide concentration (in ppm) 122 



provided by the NDIR sensor, with a 1 min resolution. As previously mentioned, no correction or 123 

calibration of the sensors signals was performed.  124 

 125 

2.3 K-means implementation 126 

Numerous extensions of the basic K-means algorithm have been developed in order to improve its 127 

partitioning abilities for dedicated applications. Classical K-means performs a direct classification 128 

of the full dataset into a number of K clusters, whereas other methods, such as the bisecting K-129 

means method [38], use a hierarchical method and split the data by iteration. In 2000, Steinbach et 130 

al. have shown that bisecting K-means, computed as an hybrid approach between the run-time 131 

efficiency of conventionnal K-means and the quality efficiency of an agglomerative hierarchical 132 

clustering, has higher performances than the conventional algorithm [44]. It as also been 133 

demonstrated that bisecting K-means is relatively insensitive to the initialisation of the clusters 134 

centers and has a higher computational efficiency than the conventional K-means algorithm [45]. In 135 

spite of its simplicity, and of its wide use, the reasons behind the efficiency of the K-means 136 

algorithm still need to be fully understood. The only required input from the user is the number of 137 

clusters into which the dataset must be split. In the present work, we used the K-means procedure 138 

with a program written in Julia 0.4.0.  139 

The raw time series data of each dataset is used for input, except for the carbon dioxide 140 

concentration, measured either by the Testo probe or the NDIR sensor, for which the logarithm 141 

(base 10) is used, because of the much wider range over which this concentration can vary. 142 

Preliminary calculations, not reported here, with the direct CO2 concentration, were performed but 143 

the clustering was less efficient than with the log values.  144 

The only other parameter for input is the number K of clusters. Values of K ranging from 2 to 10 145 

have been investigated for each dataset. Some mathematical criteria to determine the optimal 146 



number of clusters have been proposed [44–46], but these may have no physical meanings, and we 147 

have chosen to leave this determination to the judgment of the expert a posteriori. 148 

The program first normalizes all the observations in the dataset, in order to standardize their 149 

respective weight on the cluster partition. The clustering process is then initialized by splitting the 150 

normalized dataset into two subsets. Then, each datapoint is assigned to its nearest cluster center 151 

(centroid) according to the euclidian distance. The process is repeated until the association of all the 152 

observations of the dataset to its respective cluster does not change anymore and the sum of the 153 

squared errors of the distance is minimized. The process is iterated by splitting into two new 154 

clusters the cluster with the highest sum of squared residuals, following the same procedure, until 155 

the required number of clustersis reached. Tests have shown that changing the initial partition does 156 

not influence the final results. The output file of the bisecting K-means clustering consists of the 157 

raw data tagged with their respective cluster, and of the coordinates of the centroids of each of the K 158 

clusters. 159 

To compare the outputs of the K-means procedure applied to the two dataset (reference dataset and 160 

sensors dataset), we will consider the overlap ratio between a cluster from dataset 2 and its 161 

equivalent cluster from the reference dataset 1. It is expressed as the number of correct matches 162 

between each datapoint in a defined cluster of each dataset normalized by the number of data points 163 

in the reference cluster. Thus, a value of 1 indicates a perfect overlap, while a value of 0 means no 164 

overlap between the two clusters. 165 

 166 

 167 

 168 

3 Results and discussion 169 

3.1 Clustering of the reference online analyzers measurements (dataset 1) 170 



Dataset 1 (concentrations of NO, NO2, O3 and CO2 measured by the reference instruments) are 171 

presented on Fig. 2, together with the ventilation status (ON/OFF) which has been found to be the 172 

main driver of the chemistry in the room [5]. The specific events described on Fig.1 are clearly 173 

distinguished on the concentration time chart of Fig. 2.. 174 

 175 

 176 

Fig. 2. Concentration time series measured by the reference analyzers. The ventilation status is 177 

indicated by the background color, white for ventilation OFF, grey for ventilation ON. 178 

 179 

The results of the clustering process, applied considering a number of clusters ranging from 2 to 10, 180 

are displayed on Fig. 3. This chart clearly illustrates the hierarchical structure of the bisecting K-181 

means process.  182 



 183 

Fig. 3. Dataset 1 clustering process output, for K values from 2 to 10 184 

 185 

Data are successively grouped into new clusters, with the 2 clusters divided into smaller sub-186 

clusters when K increases. For the initial partition (K=2), the bisecting K-means separates the 187 

dataset according to the ozone concentration, with cluster 1 corresponding to the periods with no 188 

ozone, i.e. when the ventilation is OFF, while cluster 2 refers to the periods where the ozone 189 

concentration is significant, i.e. when the ventilation is ON. This result agrees with the result of the 190 

MERMAID campaign [5], where the main driver of the IAQ within the room was found to be the 191 

ventilation status. When K increases from 3 to 5, the newly defined clusters can be related to the 192 

specific known events occurring in the room presented in Fig. 1. Cluster 3 corresponds to the 193 

accidental release of NO and NO2 in the classroom, cluster 4 corresponds to the injection of carbon 194 

dioxide when the ventilation system is OFF, and cluster 5 corresponds to the moments when the 195 

ventilation system is ON and with CO2 concentration higher than the background, due to either 196 

controlled injection of CO2 in the room or to human presence. 197 

Interestingly, the results for K=6 differ drastically from the previous cases. The new cluster (#6) 198 

corresponds to the injection of NO2, the previously found cluster 4 (injection of CO2 during 199 

ventilation OFF conditions) disappears, and cluster 2 (ventilation ON) is divided into two sub-200 



clusters. However, cluster 4 reappears when considering the K=7 partitioning, with no change on 201 

the previously determined clusters. This indicates that a criterion of stability of the clusters when 202 

increasing their number must be considered to correctly interpret the results of unsupervised 203 

classification. Higher values of K up to 10 induce a refinement in the previously determined 204 

clusters, according to different levels of ozone. Cluster 8 corresponds to the transition period when 205 

the pollutants from outdoor air slowly decrease due to their reactivity, with no compensation from 206 

the ventilation, cluster 9 represents the transient periods with elevated ozone and CO2 207 

concentration, and cluster 10 corresponds to a moderate CO2 concentration with no ozone. These 208 

transitions periods, and in particular the mixing between indoor and outdoor pollutants, are 209 

generally overlooked during standard analysis. 210 

While clusters 8 to 10 correspond to actual, well-defined conditions in the room, their interpretation 211 

is less forward than the previous 7 clusters, and we will consider henceforth that K=7 provides the 212 

best description of the air quality events in the room. A lower K value will miss some events, and a 213 

higher K value will only split classes with physical meaning according to the levels of 214 

concentration. K=7 leads to the best compromise between the lowest numbers of cluster and the 215 

correct and separate description of every known event.  216 

 217 



Table 1 Summary of clusters size and coordinates of centroids for K=7 clustering (dataset 1) 218 

Cluster Events n. obs O3/ ppb NO / ppb NO2 /ppb CO2 /ppm 

C1 Vent. OFF 4480 7.7 0.5 2.8 396 

C2 Vent. ON 1180 24.4 0.4 5.6 369 

C3 Vent. ON 1467 32.4 0.2 3.1 367 

C4 NO+NO2 228 4.3 23.8 20.5 416 

C5 NO2 128 4.7 1.9 122.3 435 

C6 CO2 (vent. OFF) 277 9.4 0.1 1.8 965 

C7 CO2 (vent. ON) 400 31.1 0.2 4.0 666 

 219 

The output results from the partition of dataset 1 into 7 clusters are presented in Table 1, which 220 

summarizes the size (number of data points in the cluster) and centroid coordinates of each cluster, 221 

together with their assignment. Cluster 1 groups the majority of the datapoints, with 4480 222 

observations, and is characterized by low levels of every pollutant, as it corresponds to the periods 223 

with no ventilation, i.e. no intake of outdoor pollutants. A high ozone level is the dominant 224 

parameter that influences cluster 2 (1180 obs.) and cluster 3 (1467 obs.). These two clusters 225 

correspond to periods when the ozone concentration increases in the classroom due to the activation 226 

of the ventilation system. Cluster 4 (228 obs.) data are characterized by background CO2 (416 ppm) 227 

and O3 (4.3 ppb) level, together with higher NO and NO2 levels (> 20 ppb). This partition 228 

corresponds to the short event that takes place at the end of the measurement period (Fig. 1, Fig. 2) 229 

which is an accidental release of NO and NO2. Cluster 5 (128 obs.) data are characterized by low 230 

level of pollutants in the classroom, except for NO2 (112.3 ppb), and corresponds to a voluntary 231 

injection of nitrogen dioxide in the classroom. Cluster 6 represents the CO2 injection when the 232 

ventilation is off, with low O3, NO and NO2 concentrations. Cluster 7 represents the moments with 233 



high O3 concentration, that is during ventilation ON, together with high CO2 concentration, due to 234 

either a CO2 injection or the presence of people in the room.  235 

 236 

3.2 Clustering of the electrochemical and NDIR sensors measurements (dataset 2) 237 

The time series evolution of dataset 2 is presented on Fig. 4. The direct interpretation of the signals 238 

from the sensors must be done with caution, because of possible chemical interferences, such as the 239 

cross response of NO2 and O3 on electrochemical sensors [47] and because the sensors were not 240 

calibrated before taking the measurements. This is where unsupervised classification algorithms can 241 

really help analyzing the data.  242 

 243 

 244 

Fig. 4. Time series of the sensors signals. The ventilation status is indicated by the background 245 

color, white for ventilation OFF, grey for ventilation ON. 246 

 247 

The results of the process for each K value between 2 and 10 are displayed on Fig. 5, illustrating, as 248 

for dataset 1, the hierarchical structure induced by the bisecting K-means process. However, the 249 

different clusters do not appear in the same order as for dataset 1. K=2 separates the datapoints with 250 

high CO2 concentration. For K=3, the new cluster can be related to the injection of NO2 in the 251 

classroom. The accidental release of NO and NO2 is identified in dataset 2 at K=5. The efficiency of 252 



the ventilation, impacting the O3 concentrations (oxydants coming from outdoor), is identified by 253 

clusters built from K=4 and K=6. At K=6, every known event can be related to a specific cluster, 254 

except the distinction between the CO2 injections during the ventilation period or without 255 

ventilation, which appears only for the classification into 7 clusters. The clusters obtained for 256 

dataset 2 when increasing the value of K up to 10 are difficult to put in regard to the actual events 257 

taking place in the room. For instance, cluster 8 cannot be related to any event in the room. Also, 258 

cluster 9 is not stable, and partly disappears for K=10. Still, as the clusters do not appear in the same 259 

order when considering the reference dataset or the sensor dataset, it is necessary to explore the 260 

analysis with high K values, in order not to miss a specific event.  261 

 262 

 263 

 264 

 265 

Fig. 5. Dataset 2 (sensors) clustering process output for K values up to 10. To help the comparison 266 

with the results of dataset 1, the cluster numbering and color coding does not follow the increasing 267 

K order, but is taken at the K=7 level. 268 

 269 

This analysis demonstrates that the bisecting K-means procedure can also be used for sensors, when 270 

the activities in the room are known, even when the sensors are not calibrated before the 271 



experiment. This comes from the fact that the information does not lie in the absolute value of the 272 

measurements, but in the evolution of the intensity of the signals. This holds true also in spite of the 273 

poor selectivity, as in the case of the NO2 and O3 sensors. However, the K-means processing of 274 

dataset 2 also points to the difficulty of determining the optimal number of clusters, which in the 275 

present case could be 7 or 8, depending if we consider the physical meaning of the classes, that is if 276 

we use contextual information to supplement the measured data, or 8 if we consider the stability of 277 

the clusters, without contextual information. 278 

As discussed when treating previously dataset 1, and considering our goal of comparing the results 279 

obtained from the two datasets, we will restrict hereafter our discussion to K=7. The results from 280 

the partition of dataset 2 into 7 clusters are presented in Table 2, summarizing the size and centroid 281 

coordinates of each cluster. Cluster 1 (4394 obs.) is characterized by a background level of the O3-282 

B4 and NO-B4 response, of respectively 21.2 and 29.54 mV, a background (uncorrected) CO2 283 

concentration value of 614 ppm, and a low NO2-B4 value of 5.8 mV. This partition matches well 284 

with the period when the ventilation is turned off. Cluster 2 (1246 obs.) is characterized by a higher 285 

response from the NO-B4 sensor (37.20 mV) and from the NO2-B4 sensor (13.90 mV). Cluster 3 286 

(1515 obs.) is characterized by a higher response from the three electrochemical sensors. Both 287 

cluster 2 and cluster 3 describe the period where the outdoor pollutant contribution is significant, 288 

and can be related to the ventilation ON status. The two clusters differ by the higher values of O3 in 289 

cluster 3. Cluster 4 (225 obs.) mainly appears at the end of the measurement period and is 290 

characterized by a significant increase of NO-B4 sensor response (51.49 mV). It corresponds to the 291 

simultaneous increase of NO and NO2 concentration. Cluster 5 (129 obs.) corresponds to the 292 

maximal values from the O3-B4 and NO2-B4 sensors, respectively of 95.6 mV and 49.3 mV. This 293 

data partition can be linked to the injection of nitrogen dioxide into the room. Clusters 6 (208 obs.) 294 

and 7 (443 obs.) data match with the high CO2 concentration periods, with (uncorrected) 295 

concentrations of 1658 and 1035 ppm respectively. 296 



 297 

Table 2 Summary of clusters size and coordinates of centroids for K=7 clustering (dataset 2) 298 

Cluste

r 
Events n. obs O3-B4/ mV NO-B4 / mV NO2-B4 /mV 

CO2 IRC-

A1/ppm 

C1 Vent. OFF 4394 21.20 29.54 5.80 614 

C2 Vent. ON 1246 19.19 37.20 13.90 601 

C3 Vent. ON 1515 28.32 28.82 16.53 592 

C4 NO+NO2 225 22.13 51.49 7.34 642 

C5 NO2 129 95.63 22.23 49.28 650 

C6 CO2 (vent. OFF) 208 14.22 31.09 9.39 1658 

C7 CO2 (vent. ON) 443 21.26 32.48 13.65 1035 

 299 

3.3 Comparison of both clustering results 300 

Fig. 6 depicts graphically the clusters obtained from the two datasets. The overlap between the two 301 

sets of clusters is summarized in Table 3 (percentage of datapoints from each cluster from the 302 

sensors dataset that are assigned to the cluster from the analyzers dataset). There is a general 303 

agreement between the clusters from the analyzers and the ones from the sensors. Each cluster pair 304 

contains roughly the same number of points (Table 1 and Table 2). This 1-to-1 correspondence 305 

allows a direct comparison of the two sets of results. 306 



 307 

Fig. 6. Graphical comparison of clustering results (K=7) between dataset 1 (analyzers) and dataset 2 308 

(sensors) 309 

 310 

For instance, cluster 1 (vent. OFF), cluster 4 (NO+NO2) and cluster 5 (NO2) match very well each 311 

other, with only a few mismatched points. These clusters are associated to a well defined event, 312 

respectively ventilation OFF, NO+NO2 release, and NO2 injection, that is perfectly singled out by 313 

the K-means procedure, leading to an overlap ratio between dataset 2 and dataset 1 higher than 91 314 

% for cluster 1, and of 98% for clusters 4 and 5. Only about 8% of the datapoints of sensors cluster 315 

1 are associated to the reference cluster 2 (ventilation ON), though no explanation can be advanced. 316 

The agreement between the two datasets is slightly poorer for cluster 2 and 3 (vent. ON). The data 317 

are split between their respective reference clusters. This might be explained by the relatively low 318 

NO2 and O3 concentration amplitudes and the cross sensitivity of the NO-B4, NO2-B4 and O3-B4 319 

sensors [47]. 393 observations are mismatched and associated to the period without ventilation 320 

(cluster 1). Cluster 6 (CO2 vent. OFF) and cluster 7 (CO2 vent. ON) from the sensors dataset are 321 

also mainly divided through the two clusters of dataset 1 that describe the high CO2 concentration 322 

periods (analyzers clusters 6 and 7), leading to overlaps of 66% at most. We assigned this weaker 323 



agreement to the low NO2 and O3 concentration, which do not allow for a good differentiation 324 

between the ON and OFF ventilation conditions. 325 

 326 

Table 3 Overlap between the two sets of clusters 327 

Reference 

Sensors 

Cluster 1 

(vent. OFF) 

Cluster 2 

(vent. ON) 

Cluster 3 

(vent. ON) 

Cluster 4 

(NO+NO2

) 

Cluster 5 

(NO2) 

Cluster 6 

(CO2 

OFF) 

Cluster 7 

(CO2 ON) 

Cluster 1 

(vent. OFF) 
91.1% 23.0% 1.5% 0.0% 0.0% 0.4% 5.0% 

Cluster 2 

(vent. ON) 
7.9% 37.1% 30.4% 2.2% 0.0% 0.0% 1.3% 

Cluster 3 

(vent. ON) 
0.9% 39.4% 66.1% 0.0% 1.6% 0.0% 9.3% 

Cluster 4 

(NO+NO2) 
0.0% 0.0% 0.0% 97.8% 0.0% 0.0% 0.0% 

Cluster 5 

(NO2) 
0.0% 0.0% 0.1% 0.0% 98.4% 0.0% 0.0% 

Cluster 6 

(CO2 OFF) 
0.0% 0.1% 0.0% 0.0% 0.0% 48.4% 18.3% 

Cluster 7 

(CO2 ON) 
0.1% 0.4% 1.9% 0.0% 0.0% 51.3% 66.3% 

 328 

Because of this similarities and links between clusters 2 and 3 and clusters 6 and 7 respectively, it is 329 

natural to simplify the data distribution into 5 different classes by grouping some clusters together. 330 

Thus, class 1 describes the indoor condition when the ventilation is off, with only the data from 331 

cluster 1. Class 2 is composed of cluster 2 and cluster 3, corresponding to the ventilated periods. 332 

Class 3 describes the combined increase of NO and NO2 concentration of cluster 4. Class 4 333 

describes the injection of NO2 inside the room (cluster 5). Finally, class 5 (cluster 6 + cluster 7) 334 



describes the period with high CO2 concentration, either from controlled CO2 injection or from the 335 

presence of people in the room. Table 4 summarizes the overlap ratio calculated between the 5 336 

classes defined by the clustering results on reference analyzers (dataset 1) and sensor measurements 337 

(dataset 2). The overlap ratios are at least 87.6% for class 2, and up to 98.4% for class 4. Only class 338 

1 and 2 still are slightly mingled, with up to 11% of mismatched data. Class 5 also presents about 339 

6% of mismatched data, principally falling on class 2. This illustrates that the K-means procedure, 340 

while allowing to identify the events, is not able to pick up correctly the transition between the two 341 

baseline cases (ventilation ON and ventilation OFF), probably because this transition actually could 342 

or should be represented by an additional cluster, as already discussed in the analysis of dataset 1, 343 

nor the difference between the end of the CO2 injection events, with only residual concentration that 344 

are also not clearly distinguished from the baseline case. 345 

 346 

Table 4 Overlap ratio between 5 classes of dataset 2 and dataset 1 347 

Reference 

Sensors 

Class 1 

(vent. OFF) 

Class 2 

(vent ON) 

Class 3 

(NO+NO2) 

Class 4 

(NO2) 

Class 5 

(CO2) 

Class 1 

(vent. OFF) 
91.1% 11.1% 0.0% 0.0% 3.1% 

Class 2 

(vent ON) 
8.8% 87.6% 2.2% 1.6% 6.2% 

Class 3 

(NO+NO2) 
0.0% 0.0% 97.8% 0.0% 0.0% 

Class 4 

(NO2) 
0.0% 0.0% 0.0% 98.4% 0.0% 

Class 5  

(CO2) 
0.1% 1.3% 0.0% 0.0% 90.7% 

 348 

 349 



4 Conclusions 350 

The present work demonstrates that low-cost sensors are able to detect specific air quality events 351 

occurring inside a room, and that these events can be classified without supervision using a K-352 

means clustering procedure. The identification of these events requires some outside knowledge, as 353 

provided by the log of the experiments, or by the expertise of the user.  When applying the K-means 354 

classification procedure to the data from the reference online gas analyzers, we were able to 355 

discriminate the normal ventilation pattern ON/OFF inside the room, and the artificial events such 356 

as CO2 or NO2 voluntary injections, as well as a NO and NO2 unintentional spill. Applying the K-357 

means procedure to the signals from the sensors as input leads to the same results, with a really 358 

good agreement with the analyzers, as shown by the overlap analysis. Based on the measured 359 

components (CO2, NO, NO2 and O3), two sets of two clusters were not so well determined, possibly 360 

because of low NO2 and O3 concentration. Merging these two groups of clusters into two classes 361 

provides a much better agreement between the reference data (analyzers) and the sensors, with an 362 

overlap ratio higher than 88%. 363 

The unsupervised classification does not require that the sensors be calibrated before the 364 

experiment, or that the chemical interferences be studied beforehand. This is a definite advantage 365 

towards a generalized deployment of sensors in buildings for the operative management of the 366 

ventilation and filtration systems, when quantitative measurements are not critical. Should absolute 367 

quantitative measurements be needed, the present methodology would still be applicable, but would 368 

require that the metrological performances of the sensors be established prior to the deployment. 369 

The current efforts from manufacturers and research groups to improve the performances of the 370 

sensors, both on the short and on the long term, will be determinant to reach this objective. 371 

The mathematical procedure we have developed could certainly be improved, in particular with 372 

respect to the automatic determination of the optimal number of classes, which so far needs to be 373 

defined beforehand or to be adjusted by the expert, using either criteria about the stability of the 374 



clusters when their number is increased, or contextual information to supplement the signals from 375 

the sensors. In addition, using this unsupervised analysis of the signals from the sensors in different 376 

real or realistic conditions, it could be possible to construct a set of classes representative of various 377 

IAQ events. The resulting database would be used as a guide for the interpretation of the monitored 378 

events, and as input for a supervised classification model, which would render easy and efficient the 379 

management of IAQ with sensors installed in buildings. Measurements in real conditions in various 380 

buildings are currently underway, and will be used to further validate the classification methodology 381 

proposed here, and to establish such a database of “chemical signature” associated with specific 382 

IAQ events. 383 

 384 
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