Alexandre Caron 
  
Nathalie Redon 
email: nathalie.redon@imt-lille-douai.fr
  
Patrice Coddeville 
  
Benjamin Hanoune 
  
  
Identification of indoor air quality events using a K-means clustering analysis of gas sensors data

Keywords: (indoor) air pollution, electronic gas sensors, unsupervised classification, k-means clustering 1. Introduction

diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Indoor environments, where people in developed countries spend up to 90% of their time, present high specific pollutant concentrations [START_REF] Ayoko | Volatile Organic Compounds in Indoor Environments[END_REF][START_REF] Buonanno | Particle emission factors during cooking activies[END_REF], inducing a risk for human health [START_REF] Tham | Indoor air quality and its effects on humans-A review of challenges and developments in the last 30 years[END_REF][START_REF] Buonanno | Individual exposure of women to fine and coarse PM[END_REF]. Indoor pollutants, especially volatile organic compounds (VOCs), are emitted from building materials, furniture, consumer products, from the occupants themselves and their activities. The air transferred from outdoors also has a significant impact on the pollutants breathed indoors [START_REF] Verriele | The Mermaid Study: Indoor and Outdoor Average Pollutant Concentrations in 10 Low-Energy School Buildings in France[END_REF]. There is a need for large scale and continuous measurements of the indoor air quality (IAQ) in various domains: (i) for research purposes, in order to increase the understanding of the determinants of indoor air pollution, such as the identification of pollution sources and of the pollutants trends and temporal and spatial evolution, (ii) to allow mandatory or voluntary IAQ assessments of buildings, (iii) to communicate helpful information to the occupants on the relationships between their daily activities and the induced pollution levels, and also to alert them and implement corrective actions when critical thresholds are exceeded, (iv) to control the operation of ventilation or air treatment systems in order to reach the best compromise between health and energy consumption considerations. The conventional gas analyzers used for laboratory research and regulatory outdoor air monitoring can be deployed during research oriented measurement campaigns but not for real-time monitoring of occupied indoor environments. These bulky analyzers generate many nuisances, such as noise or vibrations, induce a considerable electrical consumption, and are too expensive to be simultaneously deployed in many places.

In recent years, gas micro-sensors emerged as alternative relevant tools for air quality monitoring [START_REF] Castell | Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?[END_REF][START_REF] Lewis | Evaluating the performance of low cost chemical sensors for air pollution research[END_REF][START_REF] Kumar | Realtime sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings[END_REF][START_REF] Caron | Gas sensor networks: relevant tools for realtime indoor air quality indicators in low energy buildings[END_REF]. New sensitive materials are constantly being developed in order to achieve better sensitivity, selectivity and stability [START_REF] Röck | Electronic nose: current status and future trends[END_REF][START_REF] Neri | First Fifty Years of Chemoresistive Gas Sensors[END_REF]. More and more micro-sensors are commercially available [START_REF] Aleixandre | Review of small commercial sensors for indicative monitoring of ambient gas[END_REF][START_REF] Szulczyński | Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air[END_REF], prompting many recent studies where their performances are investigated [START_REF] Caron | Performances and limitations of electronic gas sensors to investigate an indoor air quality event[END_REF][START_REF] Pang | Electrochemical ozone sensors: A miniaturised alternative for ozone measurements in laboratory experiments and airquality monitoring[END_REF][START_REF] Spinelle | Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring[END_REF][START_REF] Jiao | Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States[END_REF]. Among these sensors, a distinction must be made between intrinsically non-selective sensors and selective or nearly-selective sensors. Non-selective sensors are commonly based on metal oxide semiconductive materials which respond to multiple compounds in the air, and are generally used in combinations or arrays of sensors, also known as e-noses. Selective sensors include the electrochemical sensors targeting compounds such as carbon monoxide, ozone, nitrogen monoxide or dioxide, sulfur dioxide, hydrogen sulfide, the NDIR sensors used for carbon dioxide, as well as the PID sensors for total volatile organic compounds measurements. In spite of the technological progresses, the currently available sensors still require a complete metrological characterization [START_REF] Spinelle | Protocol of Evaluation and Calibration of Low-Cos Gas Sensors for the Monitoring of Air Pollution[END_REF], with in particular the assessment of their reliability over time. Even if they are very sensitive, the response of most sensors shows interferences with other compounds than the targeted one, depends upon the temperature and humidity, and drifts with time [START_REF] Van Geloven | The influence of relative humidity on the response of tin oxide gas sensors to carbon monoxide[END_REF][START_REF] Sohn | Characterisation of humidity dependence of a metal oxide semiconductor sensor array using partial least squares[END_REF][START_REF] Haugen | A calibration method for handling the temporal drift of solid state gas-sensors[END_REF]. Such a preliminary step of characterization and calibration is not necessary for arrays of MOS sensors when used in association with pattern recognition algorithms [START_REF] Fernández | Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors[END_REF][START_REF] Szczurek | Recognition of benzene, toluene and xylene using TGS array integrated with linear and non-linear classifier[END_REF][START_REF] Bur | Selectivity enhancement of SIC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics[END_REF][START_REF] González Martı Ń | Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterisation of vegetable oils[END_REF][START_REF] Vito | Calibrating chemical mutlisensory devices for real world applications: An in-depth comparison of quantitative machine learning approaches[END_REF][START_REF] Hong | Gas identification using micro gas sensor array and neural-network pattern recognition[END_REF], which are methods used in data mining for the extraction of useful information and the exploration of data correlation. Supervised classification approaches [START_REF] Kotsiantis | Machine learning: a review of classification and combining techniques[END_REF] are based on a classifier built from a training set with a collection of labeled data, and then used to assign new unlabeled data instances. Unsupervised classification [START_REF] Olaode | Unsupervised classification of images: A review[END_REF] refers to algorithms that require no training set (blind partitioning), no a priori knowledge of the structure of the dataset, and automatically define the different classes. However, the physical meaning of these classes needs to be a posteriori interpreted or verified by the expert.

In the present study, we investigate the potential of unsupervised classification, or clustering, to analyze the output of selective gas sensors. The dataset used for the analysis has been acquired during a field campaign aiming to investigate the drivers and dynamics of IAQ in a low energy building [START_REF] Verriele | The Mermaid Study: Indoor and Outdoor Average Pollutant Concentrations in 10 Low-Energy School Buildings in France[END_REF].

Many clustering algorithms have been developed for data mining, such as reviewed in [START_REF] Olaode | Unsupervised classification of images: A review[END_REF].

Different clustering algorithms, or even different ways to use them on the same dataset, can lead to different partition results. None of them have proved to be the best technique in a large amount of configurations. Some of these algorithms have been applied to electronic nose data clustering [START_REF] Marco | Signal and data processing for machine olfaction and chemical sensing:A review[END_REF], each with its respective possibilities and limitations [START_REF] González Martı Ń | Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterisation of vegetable oils[END_REF][START_REF] Hierlemann | Higher-order chemical sensing[END_REF][START_REF] Bicego | A comparative analysis of basic pattern recognition techniques for the development of small size electronic nose[END_REF], depending on the application. For electronic nose data, hierarchical clustering is commonly used [START_REF] Alizadeh | Chemiresistor sensors array optimization by using the method of coupled statistical techniques and its application as an electronic nose for some organic vapors recognition[END_REF][START_REF] Yan | Feature selection and analysis on correlated gas sensor data with recursive feature elimination[END_REF][START_REF] Lei | Detection of ammonia based on a novel fluorescent artificial nose and pattern recognition[END_REF][START_REF] Haddi | E-Nose and e-Tongue combination for improved recognition of fruit juice samples[END_REF][START_REF] Hou | A portable embedded toxic gas detection device based on a cross-responsive sensor array[END_REF]. It results in a hierarchical structure of the dataset that is more informative about the link between each group of data than the unstructured clusters provided by other techniques. In addition, its representation (dendrograms) allows the selection of the number of clusters. Centroid-based algorithms such as K-means [START_REF] Jain | Data Clustering: 50 Years Beyond K-Means[END_REF] are less considered in the micro gas sensor field [START_REF] Falasconi | Cluster validation for electronic nose data[END_REF][START_REF] Wu | Sensor array optimization and discrimination of apple juices according to variety by an electronic nose[END_REF] and especially for air quality investigation, though K-means is a simple partitional algorithm and one of the most widely used techniques in data mining thanks to its performances [START_REF] Verma | A comparative study of various clustering algorithms in data mining[END_REF]. K-means algorithms combine simplicity, ease of implementation and of use, speed of convergence, even with a large number of variables and clusters, and ability to process datasets with missing values. For these reasons, we have chosen this method to analyze the data from gas sensors in the investigation of indoor air quality.

Materials and methods

Instruments and measurements settings

Measurements used for this work were performed during the Mermaid study [START_REF] Verriele | The Mermaid Study: Indoor and Outdoor Average Pollutant Concentrations in 10 Low-Energy School Buildings in France[END_REF]. This field campaign has been carried out in February and March 2015 in a 51 m² (139 m 3 ) classroom of an energy efficient junior high school building in Northern France. Details on the analytical instruments used for this study can be found in [START_REF] Verriele | The Mermaid Study: Indoor and Outdoor Average Pollutant Concentrations in 10 Low-Energy School Buildings in France[END_REF]. Only the data from the pollutants from outdoors (NOx and O3), measured with online analyzers (Thermo 42i and Thermo 49i), and of CO2, measured with Testo 480 probe located at the center of the room are considered here. In addition to these instruments, miniature sensors were installed in the center of the classroom, 90 cm above the floor.

They monitor nitrogen oxide (electrochemical, Alphasense NO-B4), nitrogen dioxide (electrochemical, Alphasense NO2-B4), ozone (electrochemical, Alphasense O3-B4) and carbon dioxide (NDIR, Alphasense CO2-IRC A1). A Raspberry Pi B+ and an Arduino board are used to collect, store and transmit the data. No correction or calibration of the sensors has been performed prior to their installation in the room, and the raw output (voltage) is analyzed with the bisecting Kmeans procedure.

Experimental datasets

The data used for this work corresponds to a 6-day continuous measurement (28 February 2015 to 6 March 2015). Fig. 1 presents the ventilation status and specific events taking place in the room during this period. These events include three CO2 injections with ventilation ON, one CO2 injection with ventilation OFF, for the determination of the air exchange rate of the room, two periods with people in the room, one NO2 injection, and an accidental release of both NO and NO2. provided by the NDIR sensor, with a 1 min resolution. As previously mentioned, no correction or calibration of the sensors signals was performed.

K-means implementation

Numerous extensions of the basic K-means algorithm have been developed in order to improve its partitioning abilities for dedicated applications. Classical K-means performs a direct classification of the full dataset into a number of K clusters, whereas other methods, such as the bisecting Kmeans method [START_REF] Jain | Data Clustering: 50 Years Beyond K-Means[END_REF], use a hierarchical method and split the data by iteration. In 2000, Steinbach et al. have shown that bisecting K-means, computed as an hybrid approach between the run-time efficiency of conventionnal K-means and the quality efficiency of an agglomerative hierarchical clustering, has higher performances than the conventional algorithm [START_REF] Shen | Determination of cluster number in clustering microarray data[END_REF]. It as also been demonstrated that bisecting K-means is relatively insensitive to the initialisation of the clusters centers and has a higher computational efficiency than the conventional K-means algorithm [START_REF] Yu | An automatic method to determine the number of clusters using decision-theoretic rough set[END_REF]. In spite of its simplicity, and of its wide use, the reasons behind the efficiency of the K-means algorithm still need to be fully understood. The only required input from the user is the number of clusters into which the dataset must be split. In the present work, we used the K-means procedure with a program written in Julia 0.4.0.

The raw time series data of each dataset is used for input, except for the carbon dioxide concentration, measured either by the Testo probe or the NDIR sensor, for which the logarithm (base 10) is used, because of the much wider range over which this concentration can vary. Preliminary calculations, not reported here, with the direct CO2 concentration, were performed but the clustering was less efficient than with the log values.

The only other parameter for input is the number K of clusters. Values of K ranging from 2 to 10 have been investigated for each dataset. Some mathematical criteria to determine the optimal number of clusters have been proposed [START_REF] Shen | Determination of cluster number in clustering microarray data[END_REF][START_REF] Yu | An automatic method to determine the number of clusters using decision-theoretic rough set[END_REF][START_REF] Chiang | Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads[END_REF], but these may have no physical meanings, and we have chosen to leave this determination to the judgment of the expert a posteriori.

The program first normalizes all the observations in the dataset, in order to standardize their respective weight on the cluster partition. The clustering process is then initialized by splitting the normalized dataset into two subsets. Then, each datapoint is assigned to its nearest cluster center (centroid) according to the euclidian distance. The process is repeated until the association of all the observations of the dataset to its respective cluster does not change anymore and the sum of the squared errors of the distance is minimized. The process is iterated by splitting into two new clusters the cluster with the highest sum of squared residuals, following the same procedure, until the required number of clustersis reached. Tests have shown that changing the initial partition does not influence the final results. The output file of the bisecting K-means clustering consists of the raw data tagged with their respective cluster, and of the coordinates of the centroids of each of the K clusters.

To compare the outputs of the K-means procedure applied to the two dataset (reference dataset and sensors dataset), we will consider the overlap ratio between a cluster from dataset 2 and its equivalent cluster from the reference dataset 1. It is expressed as the number of correct matches between each datapoint in a defined cluster of each dataset normalized by the number of data points in the reference cluster. Thus, a value of 1 indicates a perfect overlap, while a value of 0 means no overlap between the two clusters.

Results and discussion

Clustering of the reference online analyzers measurements (dataset 1)

main driver of the chemistry in the room [START_REF] Verriele | The Mermaid Study: Indoor and Outdoor Average Pollutant Concentrations in 10 Low-Energy School Buildings in France[END_REF]. The specific events described on Fig. 1 Data are successively grouped into new clusters, with the 2 clusters divided into smaller subclusters when K increases. For the initial partition (K=2), the bisecting K-means separates the dataset according to the ozone concentration, with cluster 1 corresponding to the periods with no ozone, i.e. when the ventilation is OFF, while cluster 2 refers to the periods where the ozone concentration is significant, i.e. when the ventilation is ON. This result agrees with the result of the MERMAID campaign [START_REF] Verriele | The Mermaid Study: Indoor and Outdoor Average Pollutant Concentrations in 10 Low-Energy School Buildings in France[END_REF], where the main driver of the IAQ within the room was found to be the ventilation status. When K increases from 3 to 5, the newly defined clusters can be related to the specific known events occurring in the room presented in Fig. 1. Cluster 3 corresponds to the accidental release of NO and NO2 in the classroom, cluster 4 corresponds to the injection of carbon dioxide when the ventilation system is OFF, and cluster 5 corresponds to the moments when the ventilation system is ON and with CO2 concentration higher than the background, due to either controlled injection of CO2 in the room or to human presence.

Interestingly, the results for K=6 differ drastically from the previous cases. The new cluster (#6) corresponds to the injection of NO2, the previously found cluster 4 (injection of CO2 during ventilation OFF conditions) disappears, and cluster 2 (ventilation ON) is divided into two sub-clusters. However, cluster 4 reappears when considering the K=7 partitioning, with no change on the previously determined clusters. This indicates that a criterion of stability of the clusters when increasing their number must be considered to correctly interpret the results of unsupervised classification. Higher values of K up to 10 induce a refinement in the previously determined clusters, according to different levels of ozone. Cluster 8 corresponds to the transition period when the pollutants from outdoor air slowly decrease due to their reactivity, with no compensation from the ventilation, cluster 9 represents the transient periods with elevated ozone and CO2 concentration, and cluster 10 corresponds to a moderate CO2 concentration with no ozone. These transitions periods, and in particular the mixing between indoor and outdoor pollutants, are generally overlooked during standard analysis.

While clusters 8 to 10 correspond to actual, well-defined conditions in the room, their interpretation is less forward than the previous 7 clusters, and we will consider henceforth that K=7 provides the best description of the air quality events in the room. A lower K value will miss some events, and a higher K value will only split classes with physical meaning according to the levels of concentration. K=7 leads to the best compromise between the lowest numbers of cluster and the correct and separate description of every known event. The output results from the partition of dataset 1 into 7 clusters are presented in Table 1, which summarizes the size (number of data points in the cluster) and centroid coordinates of each cluster, together with their assignment. Cluster 1 groups the majority of the datapoints, with 4480 observations, and is characterized by low levels of every pollutant, as it corresponds to the periods with no ventilation, i.e. no intake of outdoor pollutants. A high ozone level is the dominant parameter that influences cluster 2 (1180 obs.) and cluster 3 (1467 obs.). These two clusters correspond to periods when the ozone concentration increases in the classroom due to the activation of the ventilation system. Cluster 4 (228 obs.) data are characterized by background CO2 (416 ppm) and O3 (4.3 ppb) level, together with higher NO and NO2 levels (> 20 ppb). This partition corresponds to the short event that takes place at the end of the measurement period (Fig. 1, Fig. 2)

which is an accidental release of NO and NO2. Cluster 5 (128 obs.) data are characterized by low level of pollutants in the classroom, except for NO2 (112.3 ppb), and corresponds to a voluntary injection of nitrogen dioxide in the classroom. Cluster 6 represents the CO2 injection when the ventilation is off, with low O3, NO and NO2 concentrations. Cluster 7 represents the moments with high O3 concentration, that is during ventilation ON, together with high CO2 concentration, due to either a CO2 injection or the presence of people in the room.

Clustering of the electrochemical and NDIR sensors measurements (dataset 2)

The time series evolution of dataset 2 is presented on Fig. 4. The direct interpretation of the signals from the sensors must be done with caution, because of possible chemical interferences, such as the cross response of NO2 and O3 on electrochemical sensors [START_REF] Spinelle | Field calibration of a cluster of low-cost available sensors for air quality monitoring[END_REF] and because the sensors were not calibrated before taking the measurements. This is where unsupervised classification algorithms can really help analyzing the data. The results of the process for each K value between 2 and 10 are displayed on Fig. 5, illustrating, as for dataset 1, the hierarchical structure induced by the bisecting K-means process. However, the different clusters do not appear in the same order as for dataset 1. K=2 separates the datapoints with high CO2 concentration. For K=3, the new cluster can be related to the injection of NO2 in the classroom. The accidental release of NO and NO2 is identified in dataset 2 at K=5. The efficiency of the ventilation, impacting the O3 concentrations (oxydants coming from outdoor), is identified by clusters built from K=4 and K=6. At K=6, every known event can be related to a specific cluster, except the distinction between the CO2 injections during the ventilation period or without ventilation, which appears only for the classification into 7 clusters. The clusters obtained for dataset 2 when increasing the value of K up to 10 are difficult to put in regard to the actual events taking place in the room. For instance, cluster 8 cannot be related to any event in the room. Also, cluster 9 is not stable, and partly disappears for K=10. Still, as the clusters do not appear in the same order when considering the reference dataset or the sensor dataset, it is necessary to explore the analysis with high K values, in order not to miss a specific event. This analysis demonstrates that the bisecting K-means procedure can also be used for sensors, when the activities in the room are known, even when the sensors are not calibrated before the experiment. This comes from the fact that the information does not lie in the absolute value of the measurements, but in the evolution of the intensity of the signals. This holds true also in spite of the poor selectivity, as in the case of the NO2 and O3 sensors. However, the K-means processing of dataset 2 also points to the difficulty of determining the optimal number of clusters, which in the present case could be 7 or 8, depending if we consider the physical meaning of the classes, that is if we use contextual information to supplement the measured data, or 8 if we consider the stability of the clusters, without contextual information.

As discussed when treating previously dataset 1, and considering our goal of comparing the results obtained from the two datasets, we will restrict hereafter our discussion to K=7. The results from the partition of dataset 2 into 7 clusters are presented in Table 2, summarizing the size and centroid coordinates of each cluster. Cluster 1 (4394 obs.) is characterized by a background level of the O3-B4 and NO-B4 response, of respectively 21.2 and 29.54 mV, a background (uncorrected) CO2 concentration value of 614 ppm, and a low NO2-B4 value of 5.8 mV. This partition matches well with the period when the ventilation is turned off. Cluster 2 (1246 obs.) is characterized by a higher response from the NO-B4 sensor (37.20 mV) and from the NO2-B4 sensor (13.90 mV). Cluster 3 (1515 obs.) is characterized by a higher response from the three electrochemical sensors. Both cluster 2 and cluster 3 describe the period where the outdoor pollutant contribution is significant, and can be related to the ventilation ON status. The two clusters differ by the higher values of O3 in 

Comparison of both clustering results

Fig. 6 depicts graphically the clusters obtained from the two datasets. The overlap between the two sets of clusters is summarized in Table 3 (percentage of datapoints from each cluster from the sensors dataset that are assigned to the cluster from the analyzers dataset). There is a general agreement between the clusters from the analyzers and the ones from the sensors. Each cluster pair contains roughly the same number of points (Table 1 and Table 2). This 1-to-1 correspondence allows a direct comparison of the two sets of results. For instance, cluster 1 (vent. OFF), cluster 4 (NO+NO2) and cluster 5 (NO2) match very well each other, with only a few mismatched points. These clusters are associated to a well defined event, respectively ventilation OFF, NO+NO2 release, and NO2 injection, that is perfectly singled out by the K-means procedure, leading to an overlap ratio between dataset 2 and dataset 1 higher than 91 % for cluster 1, and of 98% for clusters 4 and 5. Only about 8% of the datapoints of sensors cluster 1 are associated to the reference cluster 2 (ventilation ON), though no explanation can be advanced.

The agreement between the two datasets is slightly poorer for cluster 2 and 3 (vent. ON). The data are split between their respective reference clusters. This might be explained by the relatively low NO2 and O3 concentration amplitudes and the cross sensitivity of the NO-B4, NO2-B4 and O3-B4 sensors [START_REF] Spinelle | Field calibration of a cluster of low-cost available sensors for air quality monitoring[END_REF]. 393 observations are mismatched and associated to the period without ventilation (cluster 1). Cluster 6 (CO2 vent. OFF) and cluster 7 (CO2 vent. ON) from the sensors dataset are also mainly divided through the two clusters of dataset 1 that describe the high CO2 concentration periods (analyzers clusters 6 and 7), leading to overlaps of 66% at most. We assigned this weaker agreement to the low NO2 and O3 concentration, which do not allow for a good differentiation between the ON and OFF ventilation conditions. Because of this similarities and links between clusters 2 and 3 and clusters 6 and 7 respectively, it is natural to simplify the data distribution into 5 different classes by grouping some clusters together.

Thus, class 1 describes the indoor condition when the ventilation is off, with only the data from cluster 1. Class 2 is composed of cluster 2 and cluster 3, corresponding to the ventilated periods.

Class 3 describes the combined increase of NO and NO2 concentration of cluster 4. Class 4 describes the injection of NO2 inside the room (cluster 5). Finally, class 5 (cluster 6 + cluster 7)

describes the period with high CO2 concentration, either from controlled CO2 injection or from the presence of people in the room. Table 4 summarizes the overlap ratio calculated between the 5 classes defined by the clustering results on reference analyzers (dataset 1) and sensor measurements (dataset 2). The overlap ratios are at least 87.6% for class 2, and up to 98.4% for class 4. Only class 1 and 2 still are slightly mingled, with up to 11% of mismatched data. Class 5 also presents about 6% of mismatched data, principally falling on class 2. This illustrates that the K-means procedure, while allowing to identify the events, is not able to pick up correctly the transition between the two baseline cases (ventilation ON and ventilation OFF), probably because this transition actually could or should be represented by an additional cluster, as already discussed in the analysis of dataset 1, nor the difference between the end of the CO2 injection events, with only residual concentration that are also not clearly distinguished from the baseline case. The present work demonstrates that low-cost sensors are able to detect specific air quality events occurring inside a room, and that these events can be classified without supervision using a Kmeans clustering procedure. The identification of these events requires some outside knowledge, as provided by the log of the experiments, or by the expertise of the user. When applying the K-means classification procedure to the data from the reference online gas analyzers, we were able to discriminate the normal ventilation pattern ON/OFF inside the room, and the artificial events such as CO2 or NO2 voluntary injections, as well as a NO and NO2 unintentional spill. Applying the Kmeans procedure to the signals from the sensors as input leads to the same results, with a really good agreement with the analyzers, as shown by the overlap analysis. Based on the measured components (CO2, NO, NO2 and O3), two sets of two clusters were not so well determined, possibly because of low NO2 and O3 concentration. Merging these two groups of clusters into two classes provides a much better agreement between the reference data (analyzers) and the sensors, with an overlap ratio higher than 88%.

The unsupervised classification does not require that the sensors be calibrated before the experiment, or that the chemical interferences be studied beforehand. This is a definite advantage towards a generalized deployment of sensors in buildings for the operative management of the ventilation and filtration systems, when quantitative measurements are not critical. Should absolute quantitative measurements be needed, the present methodology would still be applicable, but would require that the metrological performances of the sensors be established prior to the deployment.

The current efforts from manufacturers and research groups to improve the performances of the sensors, both on the short and on the long term, will be determinant to reach this objective.

The mathematical procedure we have developed could certainly be improved, in particular with respect to the automatic determination of the optimal number of classes, which so far needs to be defined beforehand or to be adjusted by the expert, using either criteria about the stability of the clusters when their number is increased, or contextual information to supplement the signals from the sensors. In addition, using this unsupervised analysis of the signals from the sensors in different real or realistic conditions, it could be possible to construct a set of classes representative of various IAQ events. The resulting database would be used as a guide for the interpretation of the monitored events, and as input for a supervised classification model, which would render easy and efficient the management of IAQ with sensors installed in buildings. Measurements in real conditions in various buildings are currently underway, and will be used to further validate the classification methodology proposed here, and to establish such a database of "chemical signature" associated with specific IAQ events.
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 1 Fig. 1. Specific conditions and events occurring in the classroom

  are clearly distinguished on the concentration time chart of Fig. 2..
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 2 Fig. 2. Concentration time series measured by the reference analyzers. The ventilation status is indicated by the background color, white for ventilation OFF, grey for ventilation ON.
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 3 Fig. 3. Dataset 1 clustering process output, for K values from 2 to 10
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 4 Fig. 4. Time series of the sensors signals. The ventilation status is indicated by the background color, white for ventilation OFF, grey for ventilation ON.
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 5 Fig. 5. Dataset 2 (sensors) clustering process output for K values up to 10.To help the comparison with the results of dataset 1, the cluster numbering and color coding does not follow the increasing K order, but is taken at the K=7 level.
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 3 Cluster 4 (225 obs.) mainly appears at the end of the measurement period and is characterized by a significant increase of NO-B4 sensor response (51.49 mV). It corresponds to the simultaneous increase of NO and NO2 concentration. Cluster 5 (129 obs.) corresponds to the maximal values from the O3-B4 and NO2-B4 sensors, respectively of 95.6 mV and 49.3 mV. This data partition can be linked to the injection of nitrogen dioxide into the room. Clusters 6 (208 obs.) and 7 (443 obs.) data match with the high CO2 concentration periods, with (uncorrected) concentrations of 1658 and 1035 ppm respectively.

Fig. 6 .

 6 Fig. 6. Graphical comparison of clustering results (K=7) between dataset 1 (analyzers) and dataset 2 (sensors)

Table 1

 1 Summary of clusters size and coordinates of centroids for K=7 clustering (dataset 1)

	Cluster	Events	n. obs	O3/ ppb	NO / ppb	NO2 /ppb	CO2 /ppm
	C1	Vent. OFF	4480	7.7	0.5	2.8	396
	C2	Vent. ON	1180	24.4	0.4	5.6	369
	C3	Vent. ON	1467	32.4	0.2	3.1	367
	C4	NO+NO2	228	4.3	23.8	20.5	416
	C5	NO2	128	4.7	1.9	122.3	435
	C6	CO2 (vent. OFF)	277	9.4	0.1	1.8	965
	C7	CO2 (vent. ON)	400	31.1	0.2	4.0	666

Table 2

 2 Summary of clusters size and coordinates of centroids for K=7 clustering (dataset 2)

	Cluste r	Events	n. obs O3-B4/ mV NO-B4 / mV NO2-B4 /mV	CO2 IRC-A1/ppm
	C1	Vent. OFF	4394	21.20	29.54	5.80	614
	C2	Vent. ON	1246	19.19	37.20	13.90	601
	C3	Vent. ON	1515	28.32	28.82	16.53	592
	C4	NO+NO2	225	22.13	51.49	7.34	642
	C5	NO2	129	95.63	22.23	49.28	650
	C6	CO2 (vent. OFF)	208	14.22	31.09	9.39	1658
	C7	CO2 (vent. ON)	443	21.26	32.48	13.65	1035

Table 3

 3 Overlap between the two sets of clusters

	Reference Sensors	Cluster 1 (vent. OFF)	Cluster 2 (vent. ON)	Cluster 3 (vent. ON)	Cluster 4 (NO+NO2 )	Cluster 5 (NO2)	Cluster 6 (CO2 OFF)	Cluster 7 (CO2 ON)
	Cluster 1							
		91.1%	23.0%	1.5%	0.0%	0.0%	0.4%	5.0%
	(vent. OFF)							
	Cluster 2							
		7.9%	37.1%	30.4%	2.2%	0.0%	0.0%	1.3%
	(vent. ON)							
	Cluster 3							
		0.9%	39.4%	66.1%	0.0%	1.6%	0.0%	9.3%
	(vent. ON)							
	Cluster 4							
		0.0%	0.0%	0.0%	97.8%	0.0%	0.0%	0.0%
	(NO+NO2)							
	Cluster 5							
		0.0%	0.0%	0.1%	0.0%	98.4%	0.0%	0.0%
	(NO2)							
	Cluster 6							
		0.0%	0.1%	0.0%	0.0%	0.0%	48.4%	18.3%
	(CO2 OFF)							
	Cluster 7							
		0.1%	0.4%	1.9%	0.0%	0.0%	51.3%	66.3%
	(CO2 ON)							

Table 4

 4 Overlap ratio between 5 classes of dataset 2 and dataset 1

	Reference	Class 1	Class 2	Class 3	Class 4	Class 5
	Sensors	(vent. OFF)	(vent ON)	(NO+NO2)	(NO2)	(CO2)
	Class 1					
		91.1%	11.1%	0.0%	0.0%	3.1%
	(vent. OFF)					
	Class 2					
		8.8%	87.6%	2.2%	1.6%	6.2%
	(vent ON)					
	Class 3					
		0.0%	0.0%	97.8%	0.0%	0.0%
	(NO+NO2)					
	Class 4					
		0.0%	0.0%	0.0%	98.4%	0.0%
	(NO2)					
	Class 5					
		0.1%	1.3%	0.0%	0.0%	90.7%
	(CO2)					
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