T. Hirai, S. Panayotis, V. Barabash, C. Amzallag, F. Escourbiac et al., Use of tungsten material for the ITER divertor, Nucl. Mater. Energy, vol.9, pp.616-622, 2017.

R. A. Causet and T. J. Venhaus, The Use of Tungsten in Fusion Reactors: A Review of the Hydrogen Retention and Migration Properties, Phys. Scr, vol.94, p.9, 2001.

J. B. Condon and T. Schober, Hydrogen bubbles in metals, J. Nucl. Mater, vol.207, pp.1-24, 1993.

O. V. Ogorodnikova, J. Roth, and M. Mayer, Ion-driven deuterium retention in tungsten, J. Appl. Phys, vol.103, 2008.

O. Ogorodnikova, B. Tyburska, V. K. Alimov, and K. Ertl, The influence of radiation damage on the plasma-induced deuterium retention in self-implanted tungsten, J. Nucl. Mater, vol.415, pp.661-666, 2011.

S. Qin, S. Jin, L. Sun, H. Zhou, Y. Zhang et al., Hydrogen assisted vacancy formation in tungsten : A first-principles investigation, J. Nucl. Mater, vol.465, pp.135-141, 2015.

Y. L. Liu, Y. Zhang, H. B. Zhou, G. H. Lu, F. Liu et al., Vacancy trapping mechanism for hydrogen bubble formation in metal, Phys. Rev. B -Condens. Matter Mater. Phys, vol.79, pp.1-4, 2009.

L. Sun, S. Jin, X. C. Li, Y. Zhang, and G. H. Lu, Hydrogen behaviors in molybdenum and tungsten and a generic vacancy trapping mechanism for H bubble formation, J. Nucl. Mater

G. Valles, M. Panizo-laiz, C. González, I. Martin-bragado, R. González-arrabal et al., Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten, Acta Mater, vol.122, pp.277-286, 2017.

L. Wang, X. Shu, G. Lu, and F. Gao, Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten, J. Phys. Condens. Matter, 2017.

L. Wang, X. Shu, G. Lu, and F. Gao, Energetics and structures of hydrogen-vacancy clusters in tungsten based on genetic algorithm6, Sci. China Physics, Mech. Astron, vol.61, p.107022, 2018.

Y. L. Liu, H. B. Zhou, and Y. Zhang, Investigating behaviors of H in a W single crystal by first-principles: From solubility to interaction with vacancy, J. Alloys Compd, vol.509, pp.8277-8282, 2011.

X. Yang and A. Hassanein, Kinetic Monte Carlo simulation of hydrogen diffusion on tungsten reconstructed (0 0 1) surface, Fusion Eng. Des, vol.89, pp.2545-2549, 2014.

X. Yang and W. O. Oyeniyi, Kinetic Monte Carlo simulation of hydrogen diffusion in tungsten, Fusion Eng. Des, vol.114, pp.113-117, 2017.

T. Oda, D. Zhu, and Y. Watanabe, Kinetic Monte Carlo simulation on influence of vacancy on hydrogen diffusivity in tungsten, J. Nucl. Mater, vol.467, pp.439-447, 2015.

N. Castin, A. Bakaev, G. Bonny, A. E. Sand, L. Malerba et al., On the onset of void swelling in pure tungsten under neutron irradiation: An object kinetic Monte Carlo approach, J. Nucl. Mater, vol.493, pp.280-293, 2017.

N. Castin, G. Bonny, A. Bakaev, C. J. Ortiz, A. E. Sand et al., Object kinetic

, Monte Carlo model for neutron and ion irradiation in tungsten : Impact of transmutation and carbon impurities, J. Nucl. Mater, vol.500, pp.15-25, 2018.

C. Meng, J. Hao, K. Xu, L. Wang, X. Shu et al., Kinetic Monte Carlo codedevelopment and application on the formation of hydrogen-vacancy clusters in tungsten, Sci. China Physics, Mech. Astron, vol.62, p.17111, 2019.

C. S. Becquart, C. Domain, U. Sarkar, A. Debacker, and M. Hou, Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model, J. Nucl. Mater, vol.403, pp.75-88, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01828108

G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids, vol.3, pp.121-127, 1957.

M. Rao, M. H. Kalos, J. L. Lebowitz, and J. Marro, Time evolution of a quenched binary alloy

, Computer simulation of a two-dimensional model system, Phys. Rev. B, vol.13, 1976.

C. S. Becquart and C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nucl, Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.255, pp.23-26, 2007.

K. Heinola, F. Djurabekova, and T. Ahlgren, On the stability and mobility of di-vacancies in tungsten, Nucl. Fusion, vol.58, 2018.

D. Kato, H. Iwakiri, and K. Morishita, Formation of vacancy clusters in tungsten crystals under hydrogen-rich condition, J. Nucl. Mater, vol.417, pp.1115-1118, 2011.

S. Jin, Y. L. Liu, H. B. Zhou, Y. Zhang, and G. H. Lu, First-principles investigation on the effect of carbon on hydrogen trapping in tungsten, J. Nucl. Mater, vol.415, pp.709-712, 2011.

Y. L. Liu, Y. Zhang, G. N. Luo, and G. H. Lu, Structure, stability and diffusion of hydrogen in tungsten: A first-principles study, J. Nucl. Mater, pp.1032-1034, 2009.

R. Frauenfelder, Solution and Diffusion of Hydrogen in Tungsten, J. Vac. Sci. Technol, vol.388, p.3, 1969.

Y. Liu, T. Wu, Y. Yu, X. Li, X. Shu et al., Hydrogen diffusion in tungsten: A molecular dynamics study, J. Nucl. Mater, vol.455, pp.676-680, 2014.

D. F. Johnson and E. A. Carter, Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion, J. Mater. Res, vol.25, pp.315-327, 2010.

T. Hirai, S. Carpentier-chouchana, F. Escourbiac, S. Panayotis, A. Durocher et al., Design optimization of the ITER tungsten divertor vertical targets, Fusion Eng. Des, vol.127, pp.66-72, 2018.

J. H. You, E. Visca, T. Barrett, B. Böswirth, F. Crescenzi et al.,

. Vorpahl, European divertor target concepts for DEMO: Design rationales and high heat flux performance, Nucl. Mater. Energy, vol.16, pp.1-11, 2018.

F. Maviglia, G. Federici, G. Strohmayer, R. Wenninger, C. Bachmann et al., Limitations of transient power loads on DEMO and analysis of mitigation techniques, Fusion Eng. Des, pp.1067-1071, 2016.

D. Kato, H. Iwakiri, and K. Morishita, First-principle Study on Binding Energy of VacancyHydrogen Cluster in Tungsten First-principle Study on Binding Energy of Vacancy-Hydrogen Cluster in Tungsten, J. Plasma Fusion Res, 2014.

N. Fernandez, Y. Ferro, and D. Kato, Hydrogen diffusion and vacancies formation in tungsten: Density Functional Theory calculations and statistical models, Acta Mater, vol.94, pp.307-318, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01455202

X. Hu, T. Koyanagi, M. Fukuda, Y. Katoh, L. L. Snead et al., Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation, J. Nucl. Mater, vol.470, pp.278-289, 2016.

B. Fu, M. Qiu, J. Cui, M. Li, and Q. Hou, The trapping and dissociation process of hydrogen in tungsten vacancy: A molecular dynamics study, J. Nucl. Mater, vol.508, pp.278-285, 2018.

H. Eleveld and A. Van-veen, Void growth and thermal desorption of deuterium from voids in tungsten, J. Nucl. Mater, pp.1421-1425, 1994.

F. Ferroni, X. Yi, K. Arakawa, S. P. Fitzgerald, P. D. Edmondson et al., High temperature annealing of ion irradiated tungsten, Acta Mater, vol.90, pp.380-393, 2015.

T. Tanabe, Review of hydrogen retention in tungsten, Phys. Scr, p.159, 2014.

V. K. Alimov, B. Tyburska-püschel, S. Lindig, Y. Hatano, M. Balden et al., Temperature dependence of surface morphology and deuterium retention in polycrystalline ITER-grade tungsten exposed to low-energy, high-flux D plasma, J. Nucl. Mater, vol.420, pp.519-524, 2012.

H. T. Lee, A. A. Haasz, J. W. Davis, R. G. Macaulay-newcombe, D. G. Whyte et al.,

. Wright, Hydrogen and helium trapping in tungsten under simultaneous irradiations, J. Nucl. Mater, pp.898-903, 2007.

W. R. Wampler, D. L. Rudakov, J. G. Watkins, and C. J. Lasnier, The influence of displacement damage on deuterium retention in tungsten exposed to divertor plasma in DIII-D, J. Nucl. Mater, p.415, 2011.

M. Fukumoto, H. Kashiwagi, Y. Ohtsuka, Y. Ueda, M. Taniguchi et al., Deuterium trapping in tungsten damaged by high-energy hydrogen ion irradiation, J. Nucl. Mater, pp.572-575, 2009.

R. Frauenfelder, Permeation of Hydrogen through Tungsten and Molybdenum, J. Chem. Phys, vol.48, pp.3955-3965, 1968.

T. Ikeda, T. Otsuka, and T. Tanabe, Application of tritium tracer technique to determination of hydrogen diffusion coefficients and permeation rate near room temperature for tungsten, Fusion Sci. Technol, vol.60, pp.1463-1466, 2011.

T. Otsuka, M. Shimada, R. Kolasinski, P. Calderoni, J. P. Sharpe et al.,

. Tanabe, Application of tritium imaging plate technique to examine tritium behaviors on the surface and in the bulk of plasma-exposed materials, J. Nucl. Mater, vol.415, pp.769-772, 2011.