D. Spriestersbach, P. Grad, and E. Kerscher, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, Int. J. Fatigue, vol.64, pp.114-120, 2014.

C. Ruffing, Y. Ivanisenko, and E. Kerscher, A comparison of the fatigue and fracture behavior of high strength ultrafine grained medium carbon steel SAE 1045 with high strength bearing steel SAE 52100, Procedia Struct. Integr, vol.2, pp.3240-3247, 2016.

K. Lambrighs, I. Verpoest, B. Verlinden, and M. Wevers, Influence of non-metallic inclusions on the fatigue properties of heavily cold drawn steel wires, Procedia Eng, vol.2, pp.173-181, 2010.

W. Yan, H. C. Xu, and W. Q. Chen, Study on inclusions in wire rod of tire cord steel by means of electrolysis of wire rod, Steel Res. Int, vol.85, pp.53-59, 2014.

P. Schade, Wire drawing failures and tungsten fracture phenomena, Int. J. Refract. Met. Hard Mater, vol.24, pp.332-337, 2006.

S. B. Son, Y. K. Lee, S. H. Kang, H. S. Chung, J. S. Cho et al., A numerical approach on the inclusion effects in ultrafine gold wire drawing process, Eng. Fail. Anal, vol.18, pp.1272-1278, 2011.

S. Norasethasopon and K. Yoshida, Finite element analysis on drawing of copper wire containing an inclusion and a cavity, Kejuruteraan, vol.15, pp.83-95, 2003.

S. Norasethasopon and K. Yoshida, Influence of an inclusion on multi-pass copper shaped-wire drawing by 2D finite element analysis, IJE Trans, vol.16, pp.279-292, 2003.

S. Norasethasopon and K. Yoshida, Influences of inclusion shape and size in drawing of copper shaped-wire, J. Mater. Process. Technol, vol.172, pp.400-406, 2006.

M. Yilmaz, Failures during the production and usage of steel wires, J. Mater. Process. Technol, vol.171, pp.232-239, 2006.

S. Ji, K. Lee, and Y. Yang, The effects of non-metallic inclusions on ductile damage of high carbon steel wire in multi-pass dry drawing process, Key Eng. Mater, pp.155-161, 2014.

L. Zhang, B. G. Thomas, X. Wang, and K. Cai, Evaluation and control of steel cleanliness: Review, 85th Steelmak. Conf. ISS-AIME, pp.431-452, 2002.

L. F. Zhang and B. G. Thomas, State of the art in evaluation and control of steel cleanliness, ISIJ Int, vol.43, pp.271-291, 2003.

R. Dekkers, , 2002.

S. Feichtinger, S. Michelic, and Y. Kang, In situ observation of the dissolution of SiO 2 particles in CaO-Al 2 O 3 -SiO 2 slags and mathematical analysis of its dissolution pattern, J. Am. Ceram. Soc, vol.97, pp.316-325, 2014.

Y. Hu, W. Chen, C. Wan, F. Wang, and H. Han, Effect of deoxidation process on inclusion and fatigue performance of spring steel for automobile suspension, Metall. Mater. Trans. B, vol.49, issue.2, pp.569-580, 2018.

H. Yu, X. Liu, and H. Bi, Deformation behavior of inclusions in stainless steel strips during multi-pass cold rolling, J. Mater. Process. Technol, vol.209, pp.4274-4280, 2009.

Y. Zeng, H. Fan, and X. Xie, Effects of the shape and size of rectangular inclusions on the fatigue cracking behavior of ultra-high strength steels, Int. J. Miner. Metall. Mater, vol.20, pp.360-364, 2013.

J. Godon, P. Antoine, J. B. Vogt, and J. Bouquerel, Influence of steel cleanliness on drawability of fine filaments with high tensile strength, Metall. Res. Technol, vol.116, p.513, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02279798

, Different inclusion morphology after dissolution. a) SiO 2 ; b) SiO 2 -CaO; c) SiO 2 -MgO

J. Godon, Metall. Res. Technol, vol.116, p.7, 2019.