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The antiferromagnetic mixed valence ternary oxide α-CoV3O8 displays disorder on the Co2+ site
that is inherent to the Ibam space group resulting in a local selection rule requiring one Co2+ and
one V4+ reside next to each other, thus giving rise to an intrinsically disordered magnet without
the need for any external influences such as chemical dopants or porous media. The zero field
structural and dynamic properties of α-CoV3O8 have been investigated using a combination of
neutron and x-ray diffraction, DC susceptibility, and neutron spectroscopy. The low temperature
magnetic and structural properties are consistent with a random macroscopic distribution of Co2+

over the 16k metal sites. However, by applying the sum rules of neutron scattering we observe the
collective magnetic excitations are parameterized with an ordered Co2+ arrangement and critical
scattering consistent with a three dimensional Ising universality class. The low energy spectrum
is well-described by Co2+ cations coupled via a three dimensional network composed of competing
ferromagnetic and stronger antiferromagnetic superexchange within the ab plane and along c, re-
spectively. While the extrapolated Weiss temperature is near zero, the 3D dimensionality results
in long range antiferromagnetic order at TN ∼ 19 K. A crystal field analysis finds two bands of
excitations separated in energy at ~ω ∼ 5 meV and 25 meV, consistent with a jeff = 1

2
ground

state with little mixing between spin-orbit split Kramers doublets. A comparison of our results to
the random 3D Ising magnets and other compounds where spin-orbit coupling is present indicate
that the presence of an orbital degree of freedom, in combination with strong crystal field effects
and well-separated jeff manifolds may play a key role in making the dynamics largely insensitive to
disorder.

I. INTRODUCTION

Introducing disorder into condensed matter systems of-
ten suppresses common mean-field phases and transitions
in favor of states that exhibit unusual critical proper-
ties1–12. Examples of such exotic behavior in insulating
systems include the study of quenched disorder through
doping in both model magnets13,14 and liquid crystal sys-
tems15–17. While the presence of strong disorder dis-
rupts translational symmetry, often resulting in a glassy
phase18 with long range order destroyed for all length
scales, the presence of weak disorder can give rise to
phases displaying distinct responses for differing length
scales. For example, in model random field systems near
a phase transition, critical thermal fluctuations domi-
nate until the length scale of the order parameter be-
comes large enough where static terms originating from
the induced disorder dominate19,20. Examples of new
disordered-induced phases include the concept of “Bragg
glass”21–25 that were first postulated in the context of flux
lattices in superconductors26–28 where Bragg peaks exist,
however other properties reflect a glass type response. A
further example of unusual phases in the presence of dis-
order is the Griffiths phase29–31 that was first suggested
in the context of Ising ferromagnets, where an ordered
local region co-exists within a globally disordered phase.
So far, the search for new disordered-induced phases have
been limited to introducing disorder by doping in the case
of solid state materials, or porous media for liquid crys-
tals16,32–34 and quantum fluids35–39.

One example of theoretical efforts to understand the

effects of quenched disorder on the order parameter near
a phase transition is random field theory which relates
disorder to the lowering of the dimensionality of the
underlying universality class40,41. Model random mag-
nets13,14,42,43 have played a significant role in the de-
velopment and validation of such theories with an im-
portant example being the dilute Ising antiferromagnets
such as FexZn1−xF2

6,44–46 (Fe2+, L = 2 and S = 2) and
MnxZn1−xF2

47,48 (Mn2+, L = 0 and S = 5
2 ). In these

magnets, the random occupancy introduced through dop-
ing combined with a magnetic field results in a tunable
random field. While these systems show a competition
between static and thermal fluctuations driving magnetic
order, the dynamics are largely unaltered by the intro-
duction of weak disorder49,50 and therefore the magnets
with weak quenched disorder have collective dynamics
very similar to the parent compounds. Despite significant
interest in the community51, the amount of systems that
have been shown to host such exotic phases as described
above have been limited, in particular, there are few ex-
amples of definitive Bragg glass and Griffiths phases. In
this paper, we discuss a system where disorder is not
introduced through doping, but rather is inherit to the
crystallographic symmetry and therefore is a situation
where magnetic disorder is present despite the presence
of structural order.

In contrast to the disordered systems described above,
where the disorder is a consequence of an addition exter-
nal to the original system (e.g. doping6,44–48, porous me-
dia32,37,38, etc.), and thus can be finely tuned54, the dis-
order in α-CoV3O8 is simply inherent to its Ibam crystal
structure. As illustrated in Figs. 1(a) and (b), the pro-
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FIG. 1. Proposed52 crystal structure of α-CoV3O8 (Ibam, #72) along the (a) bc and (b) ac planes, consisting of zigzag chains of
edge-sharing MO6 (M = Co2+, V4+) octahedra running parallel to c that are interspaced with non-magnetic V5+ in tetrahedral
(V5+(2)) and trigonal bipyramidal (V5+(3)) coordination. (c) Local constraint of the Ibam structure. Metal sites opposite
of the bridging O(5) must be occupied by one Co2+ and one V4+, with the O(5) situated closer to the V4+ site. (d) Crystal
structure of α-ZnV3O8 (Iba2, #45). In contrast to Ibam, the Iba2 structure consists of an ordered alternating distribution of
Zn2+ and V4+ along the zigzag chains53.

posed52 crystal structure of α-CoV3O8 consists of zigzag
chains of edge-sharing MO6 octahedra (M = Co2+ and
V4+) running along c. With the exception of a single
crystallographic constraint corresponding to a local se-
lection rule requiring that one Co2+ and one V4+ reside
on opposite sides of the O(5) bridging oxygen (Fig. 1(c)),
the Ibam structure of α-CoV3O8 consists of a random
distribution of metal cations along the zigzag chains. A
combination of the proposed random metal cation distri-
bution with both evidence52 for dominant antiferromag-
netic exchange coupling from DC susceptibility and Ising
anisotropy due to local axial octahedral distortions and
spin-orbit coupling, suggests that α-CoV3O8 may repre-
sent a potential alternative route for the investigation of
disordered-induced physics. Indeed the study of disorder
on electronic structures has found that by introducing
correlations, localization55 can be suppressed.56,57

In this paper, we characterize both the crystal-
magnetic structure and fluctuations of α-CoV3O8. This
paper consists of five sections discussing our results in-
cluding this introduction and a subsequent section on

experimental details. We first present the characteriza-
tion of the static nuclear-magnetic structure. High res-
olution single crystal x-ray and neutron diffraction data
confirmed both the disordered Ibam crystal structure and
the presence of local octahedral distortions. A combina-
tion of single crystal magnetic neutron diffraction and
single crystal DC susceptibility identified the presence of
ferromagnetic correlations between Co2+ cations within
the ab plane, in addition to a dominant antiferromagnetic
coupling along c. Low energy critical scattering is consis-
tent with 3D Ising behavior attributable to the jeff = 1

2

Co2+ ions. However, in contrast to the intrinsically dis-
ordered Ibam crystal structure, by applying the first mo-
ment sum rule of neutron scattering, we find the excita-
tions are well described by an ordered Co2+ arrangement.
We conclude the paper with a section discussing our re-
sults in the context of models for disordered magnets and
discuss the role of spin-orbit coupling through a compar-
ison of model magnets in a random field.
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II. EXPERIMENTAL DETAILS

Sample Preparation: Single crystals of α-CoV3O8 were
grown using a modified “self-flux” heating routine for
α-CoV2O6

58. Precursor polycrystalline samples of α-
CoV2O6 were first synthesized by a standard solid-state
reaction consisting of heating a stoichiometric mixture of
Co(CH3CO2)2 · 4 H2O (Sigma-Aldrich, 98%) and V2O5

(Alfa Aesar, 99.6%) in air for 12 h at 650◦C, then for 48 h
at 725◦C, followed by quenching in liquid nitrogen59,60.
A mixture of the α-CoV2O6 polycrystalline precursor
and V2O5 in a 3:2 ratio in the presence of approximately
0.01% (w/w) of B2O3 (Alfa Aesar, 98.5%) was heated
in a vacuum sealed quartz tube at 780◦C for 24 h and
subsequently cooled to 700◦C at a rate of 1◦C hr−1.
After 24 h of heating at 700◦C, the sample was cooled to
600◦C at a rate of 1◦C hr−1 and subsequently quenched
to room temperature.

Polycrystalline samples of α-CoV3O8 and α-ZnV3O8

were synthesized by a standard solid-state reaction
consisting of heating a stoichiometric mixture of CoO
(Alfa Aesar, 95%) or ZnO (Alfa Aesar, 99.99%), VO2

(Alfa Aesar, 99%) and V2O5 for 96 h at 650◦C under
static vacuum in a sealed quartz tube with intermittent
grindings until laboratory powder x-ray diffraction con-
firmed no discernable impurities53,61. All stoichiometric
mixtures of polycrystalline precursors were first mixed
thoroughly together and finely ground to homogeneity
with acetone using an agate mortar and pestle. The
mixtures were pressed into ∼ 2 g pellets using a uniaxial
press and subsequently placed in alumina crucibles or
directly in quartz ampoules for reactions performed in
air and in vacuum, respectively. Unless otherwise stated,
all heating routines involved a ramping rate of 5◦C
min−1 and samples were furnace cooled back to room
temperature.

Laboratory X-ray Diffraction: Single crystal x-ray
diffraction was performed at 120 K on a 0.011 mg
single crystal of α-CoV3O8 with dimensions of
0.40 × 0.11 × 0.09 mm3 using monochromated Mo
Kα radiation on an Oxford Diffraction SuperNova
dual wavelength diffractometer equipped with an Atlas
CCD detector and an Oxford Cryostream-Plus low-
temperature device. Data collection, integration, scaling,
multiscan absorption corrections and indexing were per-
formed using the CrysAlisPro v1.171.37.35e software
package62. The structure solution was performed using
a direct approach method with the SHELXS-97 program
in Olex263.

Room temperature powder diffraction patterns of
α-CoV2O6, α-CoV3O8 and α-ZnV3O8 were collected
over 2θ = [5, 70]◦ in 0.0365◦ steps on a Bruker D2 Phaser
laboratory x-ray diffractometer using monochromated
Cu Kα radiation.

All structural refinements for single crystal and
polycrystalline measurements were performed using the
JANA200664 and GSAS65 Rietveld refinement program
packages, respectively, and are summarized in Ap-
pendix A. For the single-crystal refinement, the solved
structure was refined by a full-matrix least squares
against F 2 using only data I > 3σ(I).

DC Magnetic Susceptibility : A 7.7 mg single crystal of
α-CoV3O8 with dimensions of 2 × 1 × 1 mm3 was aligned
along the three principal axes. All crystal alignments
were performed with polychromatic Laue backscattering
diffraction employing adapted photostimulable plates
using the Fujifilm FCR Capsula XL II system66. The
temperature dependence of ZFC magnetization for all
three principal axes was measured on a Quantum Design
MPMS in an external DC field µoHext = 0.5 T applied
parallel to the particular axis of interest. Measurements
were performed in 2 K steps spaced linearly from 2 K to
300 K.

Neutron Single Crystal Diffraction: Neutron sin-
gle crystal diffraction experiments were performed
on the SXD67,68 time-of-flight instrument at the ISIS
spallation source. The SXD diffractometer employs the
time-of-flight Laue technique. The combination of a
polychromatic incident beam falling on a stationary
sample surrounded by 11 ZnS scintillator PSDs covering
Ω ∼ 2π sr enables quick access to a large amount
of reciprocal space with minimal sample movement
during data collection. A 0.4312 g single crystal of
α-CoV3O8 with dimensions of 13.2 × 4.1 × 2.1 mm3 as
illustrated in Fig. 2(d) was mounted on the end of a
6 mm aluminum pin with aluminum tape, vertically
suspended from a liquid helium 50 mm bore Orange
cryostat providing ω-motion in an accessible temperature
range of 1.5 to 300 K. Diffraction data was collected
at both 5 K and 50 K for three different single crystal
frames with an accumulated charge of 1300 µA·h (∼ 8 h).
After each temperature change, the sample was allowed
to thermalize for 15 minutes. Reflection intensities were
extracted, reduced and integrated to structure factors
using standard SXD procedures, as implemented in
SXD200167–69.

Inelastic Neutron Time-of-Flight Scattering Spec-
troscopy : All inelastic neutron scattering experiments
were performed on the direct geometry MARI70,71 and
indirect geometry IRIS72 time-of-flight spectrometers
located at ISIS. Neutron spectroscopic measurements
were performed on powders as preliminary measure-
ments found the signal from single crystals to be weak.
High-energy measurements (> 2 meV) on 32.6 g of
α-CoV3O8 and 31.9 g of α-ZnV3O8 were performed on
the direct geometry MARI spectrometer. The to chopper
was operated at 50 Hz in parallel with a Gd chopper
spun at 350, 300 and 250 Hz with incident energies
Ei = 150, 60 and 15 meV, respectively, providing an elas-
tic resolution of 5.87, 1.82 and 0.321 meV, respectively.
A thick disk chopper spun at f = 50 Hz reduced the
background from high-energy neutrons. A top loading
Displex CCR provided an accessible temperature range
of 5 to 600 K.

For lower energies, measurements on 15.1 g of α-
CoV3O8 were performed on the indirect geometry IRIS
spectrometer. As an indirect geometry spectrometer, the
final energy Ef was fixed at 1.84 meV by cooled PG002
analyzer crystals in near backscattering geometry. The
graphite analyzers were cooled to reduce thermal diffuse
scattering73, providing an elastic resolution of 17.5 µeV.
A top loading Displex CCR provided an accessible
temperature range of 5 to 580 K.
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Neutron Powder Diffraction: Neutron diffraction
measurements on 1.8 g of polycrystalline α-CoV3O8 were
performed on the BT-4 thermal triple axis spectrome-
ter74 at the NIST Center for Neutron Research (NCNR).
Incident and scattering neutron energies were set to
14.7 meV (λ=2.3592 Å), selected by vertically fo-
cussing PG002 monochromator and analyzer crystals
with PG filters located before and after the sample
to reduce higher-order neutron contamination. The
Söller horizontal collimator configuration downstream
order was 60′-monochromator-80′-sample-80′-analyzer-
60′-detector. A top loading liquid helium 50 mm bore
Orange cryostat provided an accessible temperature
range of 1.5 to 300 K. θ-2θ measurements were collected
at both 3 K and 300 K over 2θ = [15, 90]◦ in 0.2◦ steps
(|Q| = [0.695,3.766] Å−1 in 0.009 Å−1 steps). Magnetic
order parameter measurements were performed at
2θ = 41.6◦ (|Q| = 1.89 Å−1) over T=[3, 32] K in 0.1 K
steps.

III. RESULTS & ANALYSIS

A. Crystal Structure

As illustrated in Fig. 2(a) and summarized in
Tabs. V-VI in Appendix A, single crystal x-ray diffrac-
tion at 120 K confirmed an orthorhombic unit cell
(a = 14.29344(4) Å, b = 9.8740(3) Å, c = 8.34000(3) Å)
with a volume of 1185.60(6) Å3, corresponding to Z = 8.
Systematic extinctions provided Ibam (#72, Fig. 1(a,b))
and Iba2 (#45, Fig. 1(d)) as possible space groups, with
statistical analysis of the intensity data favoring the cen-
trosymmetric Ibam. In a procedure analogous to previ-
ous studies on hydrothermally grown single crystals, the
structure was solved using a direct method52. The cor-
responding unit cell was found to consist of three metal
sites with octahedral (16k), tetrahedral (8j) and trigonal
bipyramidal (8j) coordination, with Co2+ and V4+ with
half occupancies independently distributed over the 16k
site and V5+ with full occupancies in the latter two 8j
sites. Structural refinements utilizing 910 out of a to-
tal of 985 measured reflections confirmed two important
conclusions from previous studies52,61. Firstly, Co2+ and
V4+ are both randomly and equally distributed over the
16k site with refined occupancies of 0.506(6) and 0.494(4),
respectively. Secondly, the large refined anisotropic dis-
placements resulting from placing the O(5) oxygen in the
8f position with full occupancy support the local selec-
tion rule consisting of Co2+ and V4+ occupying respective
positions on opposite sides of the O(5) bridging oxygen
ligand, as illustrated in Fig. 1(c).

B. DC Magnetic Susceptibility

As summarized by Tab. I and Fig. 2, DC susceptibil-
ity measurements along all three principal axes indicates
that α-CoV3O8 behaves as a Curie-Weiss paramagnet at
high temperatures and undergoes an antiferromagnetic
transition at 19.5(5) K, corresponding to a TN much
greater than previously reported TN of 8.2 K for crystals

TABLE I. Curie-Weiss parametersa for α-CoV3O8 in an ex-
ternal DC field µoHext = 0.5 T applied parallel to the three
principal axes. Numbers in parentheses indicate statistical
errors.
Crystallographic Axis C (emu K/mol) peff (µB) θCW (K)

a 3.525(9) 5.310(7) 9.5(7)
b 3.31(2) 5.15(2) 2(1)
c 3.354(2) 5.180(2) −21.3(2)

Average 3.396(7) 5.213(7) −3.2(4)
a Calculated over a range of 150 ≤ T ≤ 300 K

grown hydrothermally52. A fit of the high temperature
data (Fig. 2b) to the Curie-Weiss law yielded Curie-Weiss
temperatures θCW of 9.5(7), 2(1), −21.3(2) K for µoHext

applied along a, b and c, respectively. The small θCW

with an average θCW = −3.2(4) K is suggestive of either
weak exchange interactions or the presence of multiple
and nearly canceling ferro/antiferromagneic interactions
resulting in the experimentally observed small average.
The differences in the constants measured along differ-
ent directions is also indicative of an anisotropy in the
system likely originating from the distortion of the local
octahedra60,75.

As illustrated in Fig. 2(b), the magnetization does not
approach zero in the low temperature limit after the an-
tiferromagnetic transition. Instead, its value for all three
principal axes plateaus at 2 K which indicates the possi-
bility for the presence of paramagnetism at lower temper-
atures, although no measurements were conducted below
2 K. In contrast to the d7 Co2+ moments that can couple
via eg orbitals, coupling between the d1 V4+ moments
are exclusively via t2g orbitals which is predicted to be
much weaker76–78 and thus more likely to exhibit para-
magnetic behavior. In fact, V4+ paramagnetism is sup-
ported by the observation that the saturated moment in
the low temperature limit corresponds to 0.150(2) µB, a
value consistent with a strongly reduced V4+ effective
paramagnetic moment predicted to occur in the pres-
ence of strong spin-orbit coupling and octahedral distor-
tions as has been previously observed experimentally in
Na2V3O7

79,80. Finally, the average effective paramag-
netic moment of 5.213(7) µB is smaller than the predicted
moment of 5.6 µB, for Co2+ in an octahedral environment
as studied in CoO81 and assuming a 1:1 ratio of high spin
Co2+ and V4+, confirming that both spin-orbit and dis-
tortion effects play a significant role59,82 in the magnetism
of α-CoV3O8, a topic that will be later addressed with
inelastic neutron scattering.

C. Magnetic Structure

As shown in Fig. 2(c) and summarized in Tabs. VII-
VIII in Appendix A, single crystal neutron diffraction
confirmed both an absence of any structural distortion
away from the Ibam space group down to 5 K and the ap-
pearance of additional Bragg reflections confirming long
range magnetic ordering as measured by previous DC sus-
ceptibility measurements52. Since DC susceptibility mea-
surements suggested that V4+ remained paramagnetic
down to at least 2 K, the refinement of single crystal
neutron diffraction data collected at 5 K assumed that
the magnetic Bragg reflections were exclusively due to
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FIG. 2. (a) Refinement of single crystal x-ray diffraction data collected at 120 K yielding a refined Ibam unit cell
(a=14.29344(4) Å, b=9.8740(3) Å, c= 8.34000(3) Å), in agreement with previous studies52. (b) Temperature dependence
of the DC magnetic susceptibility of α-CoV3O8 an external DC field µoHext = 0.5 T applied parallel to the three principal
axes. Red lines indicate Curie-Weiss fits to high temperature data and are summarized by Tab. I. (c) Single crystal neutron
diffraction intensity pattern collected at 5 K in the (H0L) scattering plane. Black ellipses indicate nuclear Bragg reflections.
Arrows indicate strong magnetic Bragg reflections at (-21-2) and (212). (d) Refinement of single crystal neutron diffraction
data on a (inset) 0.4312 g single crystal of α-CoV3O8 collected at 5 K. Schematic illustration of the refined magnetic structure
of α-CoV3O8 along the (e) bc and (f) ab planes with the Co2+ having 50 % occupancy. The orientation of the refined magnetic
moments on Co2+ are indicated by red arrows. (g) illustrates the ordered Iba2 space group with each Co2+ site fully occupied
and the black octahedra representing V4+ sites. Both panels (f) and (g) show a single layer of Co2+ ions.
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TABLE II. Comparison of the refined magnetic moment’s
components assuming random (Ibam) and ordered (Iba2) dis-
tribution of Co2+ and V4+ on the metal sites of α-CoV3O8.
The goodness-of-fit metric χ2 and residuals from the magnetic
refinement of neutron single crystal diffraction data collected
at 5 K suggests that Co2+ and V4+ are randomly distributed.
Numbers in parentheses indicate statistical errors.

Parameter Value (Ibam) Value (Iba2)
µa 1.35(5) µB 1.30(6) µB

µb 1.16(5) µB 1.09(8) µB

µc 3.05(4) µB 2.32(5) µB

χ2 3.18 5.15
RF2 8.38% 10.59%

RwF2 8.99% 14.57%
RF2

mag
24.13% 32.28%

Co2+ that were randomly distributed throughout the 16k
metal sites. The random distribution of Co2+ was ac-
complished by constraining the occupancy of each metal
site to a value of 1

2 . The additional magnetic Bragg re-
flections were successfully indexed using a propagation
vector k = (1, 1, 1) with the PIccn (#56.376) Shubnikov
space group83. The propagation vector k = (1, 1, 1) was
initially chosen as it corresponds to the first point of sym-
metry reduction by removing body-centering symmetry
with the same structural unit cell84. Subsequently, uti-
lizing the aforementioned value of k, a symmetry analysis
was performed in JANA200664. With a k = (1, 1, 1), the
symmetry analysis considers which models were compat-
ible — following the symmetry operations of the group,
but excluding body-centering — with the restriction that
moments at (x, y, z) are antiferromagnetically aligned
with those moments at (x+ 1

2 , y+ 1
2 , z+ 1

2 ). Four models
were found to be compatible, with the PIccn (#56.376)
Shubnikov space group yielding the best match.

Tab. II summarizes the results of a joint nuclear and
magnetic refinement utilizing 5086 out of a total of 5120
measured reflections at 5 K (Fig. 2(d)), confirming a
strong preference for the PIccn Shubnikov space group
of Ibam over PIcc2 of Iba2. The refined magnetic mo-
ment for Co2+ was found to be µ = 3.53(2) µB with µa,
µb and µc as 1.35(5) µB, 1.16(5) µB and 3.05(5) µB, re-
spectively. α-CoV3O8 adopts a magnetic structure con-
sisting of effective pairs of 2D layers in the ab plane, sep-
arated from one another by a non-magnetic layer con-
sisting of tetrahedrally coordinated V5+, as illustrated in
Fig. 2(f). Within these 2D layers, Co2+ spins are ferro-
magnetically coupled along both a and b, corresponding
to inter-chain superexchange interactions. These 2D lay-
ers come in pairs with each offset from one another by
[0.1858a, 0.1508b and 0.1194c] with the pair being anti-
ferromagnetically coupled to the adjacent pair along c,
corresponding to intra-chain superexchange interactions.

D. Inelastic Neutron Scattering

Motivated by the random distribution of Co2+ and
V4+, multiple ferro-/antiferromagnetic interactions and
the presence of strong spin-orbit coupling, the spin dy-
namics of α-CoV3O8 was investigated with inelastic neu-
tron scattering. All inelastic scattering intensities were
normalized to absolute units using the paramagnetic ap-
proximation85. Normalization was performed by using

both Co and V as internal incoherent standards86,87 to
calculate an absolute calibration constant A converting

vanadium-corrected scattering intensities Ĩ(Q, E) to the

differential scattering cross section d2σ
dEdΩ which was then

converted to the dynamic structure factor S(Q, E) by

AĨ(Q, E) ≡ d2σ

dEdΩ
=
(γro

2

)2

g2
J2|f(Q)|2S(Q, E), (1)

where it is understood88 that S(Q, E) is Szz(Q, E) =
Tr{Sαβ(Q,E)}

3 ,
(
γro
2

)2
and gJ equals to 73 mb sr−1 and

the Landé g-factor, respectively, while the factor of 2 cor-
responds to the paramagnetic cross section85,87,89,90. The
value for the Landé g-factor is discussed in Appendix B 2.
Hereafter, all neutron scattering quantities with a tilde

(for example S̃(|Q|, E)), denote the inclusion of the mag-
netic form factor squared |f(Q)|2.

1. Spin-Orbit Transitions

As discussed in Appendix B 1, Co2+ (L = 3 and S = 3
2 )

in an octahedral crystal field environment can be pro-
jected onto a ground state with an effective orbital angu-
lar momentum75 of l = 1 with a projection factor60,81 α of
− 3

2 . Diagonalizing the projected spin-orbit Hamiltonian

ĤSO = αλ̂l · Ŝ results in three spin-orbit manifolds91–93

characterized by an effective angular momentum ĵ = l̂+Ŝ
with eigenvalues j ≡ jeff of 1

2 , 3
2 , and 5

2 . The jeff = 3
2

and 5
2 manifolds are separated in energy from the jeff = 1

2

ground state doublet manifold by 3
2αλ and 5

2αλ, respec-

tively75. For pure CoO91, |αλ| ∼ 24 meV, and therefore
for an undistorted octahedra, one would expect a crystal
field excitation at ∼36 meV. In this section, we study the
magnetic excitations in α-CoV3O8 in order to determine
if its ground state can be considered as a jeff = 1

2 .
Given that only small single crystals were available

of α-CoV3O8, preliminary neutron inelastic scattering
data failed to produce a measurable signal. To extract
information on the low temperature magnetic dynam-
ics, we therefore used powders and time-of-flight neu-
tron spectroscopy techniques. Neutron inelastic scatter-
ing measurements (Figs. 3(a)-(c)) on polycrystalline α-
CoV3O8 with an Ei = 150, 60 and 15 meV, respectively
at 5 K revealed two clear low |Q| excitations at ∼ 5 meV
and ∼ 25 meV. To prevent any weak magnetic signal of
interest from being masked by strong phonon bands, a

scaled inelastic scattering spectrum γ̃S̃(|Q|, E) of an ap-
proximate isostructural compound α-ZnV3O8

53 collected
with identical experimental conditions was subtracted
as a background94. Neutron inelastic scattering inves-
tigations of α-ZnV3O8 on MARI found no evidence of
correlated V4+ moments over the energy range reported
here. The scaling factor γ̃ for the background was cal-
culated from the ratio between energy-integrated cuts of

S̃(|Q|, E) of α-CoV3O8 and α-ZnV3O8 along |Q| at high
|Q|, thereby normalizing by the phonon scattering. The
use of α-ZnV3O8 as a background not only removes the
constant and |Q|2-dependent background contributions
but the presence of V4+ in both compounds allows for
the isolation of magnetic fluctuations solely attributable
to Co2+. As illustrated in Figs. 3(d)-(g), the use of α-
ZnV3O8 as an effective background revealed that the ori-
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FIG. 3. S̃(|Q|, E) measured on MARI at T = 5 K with an Ei of (a) 150 meV, (b) 60 meV and (c) 15 meV. (d,e) Magnetic

scattering S̃M (|Q|, E) and (f,g) corresponding |Q|-integrated cuts (|Q|=[0,3] Å−1). Vertical lines in (f,g) indicate instrumental

resolution. S̃M (|Q|, E) was calculated by the subtraction of corresponding S̃(|Q|, E) for α-ZnV3O8 measured at identical
experimental conditions. All inelastic scattering intensities have been normalized to absolute units.

gin of the low-|Q| excitations must be due to Co2+ exclu-
sively, excluding the possibility of any contribution from
V4+.

Following the analysis of inelastic scattering mea-
surements on monoclinic and triclinic polymorphs of
CoV2O6

60, the low-|Q| excitations in α-CoV3O8 can be
understood as transitions between different spin-orbit
manifolds. A comparison between the inelastic spectra of
CoV2O6 and α-CoV3O8 suggests that the excitations at
∼ 5 meV and ∼ 25 meV are due to transitions within the
jeff = 1

2 manifold and between the jeff = 1
2 and jeff = 3

2
manifolds, respectively. In α-CoV3O8, these modes ap-
pear much broader than in CoV2O6; this will be discussed
later. Such an assignment is supported by the observation
that the transition at ∼ 5 meV is gapped at 5 K in the
magnetically ordered regime, as illustrated in Figs. 5(a)
and (b). Such a gap would be a consequence of the Zee-
man splitting of the jeff = 1

2 manifold due to the internal
molecular field caused by long range ordering in the Néel
phase60. Once the temperature is raised above TN, the
molecular field would be significantly reduced due to the
loss of magnetic order, resulting in the disappearance of
a gap, as is experimentally observed in Fig. 3(g).

In the context of this assignment in terms of jeff spin-
orbit split manifolds, a difference between α-CoV3O8 and

monoclinic α-CoV2O6 is the absence of an observable
∼110 meV magnetic excitation (Fig. 3(a)). As was previ-
ously calculated for CoV2O6

60, in addition to the strong
excitations for the intra-jeff = 1

2 and the jeff = 1
2 to

jeff = 3
2 transitions, the intensity of the jeff = 1

2 to

jeff = 5
2 transition scales with the distortion of the lo-

cal coordination octahedra95,96 with the transition being
absent for a perfect octahedra like in rocksalt and cubic
CoO91. The distortion of the local octahedra can quan-
tified by the parameter δ defined by

δ =
1

N
∑
i

{(
di − 〈d〉
〈d〉

)2

× 104

}
, (2)

where N = 6 and 〈d〉 denotes the average distance60,97.
α-CoV3O8 exhibits a much weaker octahedral distortion
(δ = 11.106(8)) than α-CoV2O6 (δ = 55) and is thus
expected to have a significantly weaker intensity. This
is also in agreement with previous results on triclinic
γ-CoV2O6 (with δ = 2.1 and 4.8 for the two different
Co2+ sites) which failed to observe a jeff = 5

2 transi-

tion60. A distortion of the local octahedra around the
Co2+ site should result in an anisotropic term in the mag-
netic Hamiltonian96,98,99. Given the powder average na-
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FIG. 4. (a) Magnetic scattering S̃M (|Q|, E) of α-
CoV3O8 measured on MARI at T = 5 K with an Ei of 15 meV
and the corresponding (b) |Q|-dependence of the total inte-
grated inelastic (E=[2,8] meV) magnetic scattering intensity
L. Regions I, II and III denote “get-lost” tube-, magnetic-
and phonon/form factor-dominated regions, respectively.

ture of the dynamics (discussed below), we are not sensi-
tive to this term. However, the consistency of the inelas-
tic response with the jeff description discussed above in
terms of the energy response is also consistent with other
Co2+-based magnets where a local distortions of the oc-
tahedra exists60,95. We now discuss further evidence for
our interpretation in terms of jeff levels by applying the
sum rules of neutron scattering to the integrated inelastic
scattering intensity.

2. Total Moment Sum Rule

To confirm the assignment of the 5 meV signal as ex-
citations within the ground state jeff = 1

2 manifold, the
total integrated spectral weight at 5 K of the lowest lying
excitation was calculated. As summarized by the total
moment sum rule of neutron scattering87,100–103, the sum
of all spectral weight is defined by

3
∫
d3Q

∫
dES(Q, E)∫
d3Q

= j(j + 1), (3)

where S(Q, E) ≡ Szz(Q, E) denotes the magnetic com-

ponent of the dynamic structure factor S̃zzM (Q, E) that
has been further renormalized by |f(Q)|2. The extra fac-
tor of 3 has been included to assure consistency with the
definition of S(Q, E) ≡ Szz(Q, E) given by Eq. 1 in the
paramagnetic approximation. A measurement of the in-
tegrated intensity is therefore sensitive to the effective j
of the manifold of levels being integrated over. Eq. 3 can
be simplified by integrating out the angular dependence
and canceling common terms resulting in an integral L
defined by

L(|Q|) =
3
∫
d|Q|Q|2

∫
dES(|Q|, E)∫

d|Q||Q|2
, (4)

The total integral L is uniquely a function of |Q| and
represents an integration of the magnetic density of states
over all energies including both elastic and inelastic chan-
nels in the cross section87. With jeff = 1

2 , the total mo-
ment sum rule (Eq. 3) would predict a value of 0.75 for
the total integrated intensity.

Since the assignment discussed above based on spin-
orbit transitions assumes that the ∼5 meV excitation
and the elastic cross section is exclusively due to ex-
citations within the jeff = 1

2 manifold, all quantities
in Eq. 3 were projected onto the ground state doublet
manifold by the projection theorem of angular momen-
tum93,94,104. As discussed in Appendix B2, the projec-
tion onto the ground state doublet required defining the
projected value of the Landé g-factor gJ as g′J = 13

3 and

the effective angular momentum jeff as 1
2

75,105. As illus-
trated in Fig. 4, the total integrated inelastic intensity
of S(|Q|, E) ≡ Szz(|Q|, E) given by L(|Q|) (Eq. 4) sat-
urates at 0.15(1). Combining the total integral of the
inelastic contribution and an elastic contribution106 of(

µ
g′JµB

)2

= 0.66, yields a total integral of 0.81±0.14, in

excellent agreement with the total moment prediction for
jeff = 1

2 of 0.75. The agreement further confirms our
assignment of the low energy excitations to transitions
within the ground state jeff = 1

2 spin-orbit doublet man-
ifold.

With the low energy excitations being successfully ap-
proximated by pure jeff manifolds, we may now rational-
ize the effective paramagnetic moment peff of 5.213(7) µB

that was calculated from DC susceptibility. Given that
the jeff = 1

2 and jeff = 3
2 manifolds are separated by

∼24 meV (∼278 K), both are significantly thermally pop-
ulated at the high temperatures used for the Curie-Weiss
fit. In such a high temperature regime, we would expect
a peff of gs

√
S(S + 1) = 3.9 µB , which is significantly less

than the measured value as has been commonly observed
for other magnets based on Co2+ in octahedral coordi-
nation59,60,92,107. The extra component measured with
susceptibility may be accounted for by noting that V4+

contributes gs
√
S(S + 1) = 1.7 µB. Therefore the addi-

tion of the contributions to peff from both Co2+ and V4+

corresponds to a total predicted peff = 5.6 µB, in close
agreement with the experimental data, with the small
discrepancy potentially attributable to the fact that the
jeff = 5

2 manifold is still not significantly populated at
T∼300 K. Although it is worth noting that an additional
and distinct possibility for a much larger measured effec-
tive paramagnetic moment may be a strong orbital con-
tribution as has been observed for the case of CoO108,109,
where the orbital contribution is significant, correspond-
ing to approximately 1

3 of the total ordered moment.

E. Critical Exponents

Despite the similarities between the inelastic spectra of
α-CoV3O8 and CoV2O6, one difference is the bandwidth
of the low energy excitation that we have assigned to the
jeff = 1

2 manifold. As illustrated in Fig. 3(g), in contrast
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to both polymorphs of CoV2O6, α-CoV3O8 exhibits a
broad peak in energy whose bandwidth is approximately
20 times that of instrumental resolution. Such a large
bandwidth could be accounted for by magnetic exchange
coupling between spins60,110,111. However, an alternative
explanation may lie in the intrinsic cationic disorder in-
herent to the disordered Ibam structure of α-CoV3O8

52.
Such large cationic disorder would result in a distribution
of cationic sites and correspondingly a spread of spin-
orbit transitions as has been shown for multiple doped
systems46,49,112–116, and thus perhaps such disorder may
also explain the large bandwidth in α-CoV3O8 due to a
distribution of molecular fields splitting the jeff = 1

2 man-
ifold. We investigate this possibility in this section using
scaling.

1. Scaling Analysis

The presence of such disorder would result in tempera-
ture being the dominant energy scale. To investigate this
possibility, the temperature dependence of the Co2+ spin
fluctuations was analyzed using a scaling analysis pre-
viously employed for the charge doped cuprates117–121.
For paramagnetic fluctuations, critical scattering theory
assumes a single energy scale, the relaxation rate Γ, is
dominant122. If Γ is driven by temperature, then it can
be shown that the energy-temperature dependence of the
uniform dynamic susceptibility χ′′(E, T ), follows E

T scal-

ing117,118 given by

χ′′(T,E)

χ′′(T = 0 K,E)
= arctan

{∑
i=0

ai

(
E

T

)2i+1
}
, (5)

where χ′′(T = 0 K,E) denotes the value of χ′′ in the
limit of T = 0 K and all even powers are excluded
in the sum to satisfy detailed balance, requiring χ′′

to be an odd function of energy120. For this partic-
ular analysis, the value of χ′′(T,E) was calculated by
first subtracting a temperature independent background
from the measured S(T, |Q|, E). The contribution of
the background was determined by an algorithm previ-
ously employed for Fe1+xTe0.7Se0.3

123 and polymer quan-
tum magnets124. The algorithm is based on the re-
quirement that all inelastic scattering must obey de-
tailed balance accounting for both sample environment
and other temperature-independent scattering contribu-
tions, and thus isolating the fluctuations exclusively due
to Co2+. The background-subtracted dynamic struc-
ture factor was then converted to χ′′(T, |Q|, E) via the
fluctuation-dissipation theorem125

χ′′(T, |Q|, E) = g2µ2
Bπ

{
1

n(E, T ) + 1

}
S(T, |Q|, E),

(6)
where n(E, T ) is the Bose factor. Finally, χ′′(T, |Q|, E)
was integrated over |Q| = [0, 3] and [0, 2] Å−1 for mea-
surements on MARI and IRIS, respectively. As illus-
trated in Fig. 5(c), E

T scaling adequately accounts for
the experimental data with the need for only two refined
constants of 3.2(1) and 0.8(2) for ao and a2, respectively,
since the inclusion of higher order terms in Eq. 5 did not
improve the fit. The success of E

T scaling suggests that

FIG. 5. |Q|-integrated cuts of S̃(|Q|, E) measured on (a)
MARI and (b) IRIS at various temperatures. Horizontal
lines indicate instrumental resolution. (c) Energy and tem-
perature dependence of the normalized χ′′ calculated from

|Q|-integrated cuts of S̃M (|Q|, E) measured on both IRIS
at MARI. (d) Compilation of the energy-temperature depen-
dence of |Q|-integrated χ′′ as calculated in (c). As discussed
in the main text, the data is described by a Lorentzian re-
laxational form (Eq. 8), revealing scaling behavior consistent
with Γ ∝ (T −TN)ν . The line of best fit yields ν = 0.636(10),
corresponding to a global minimum of χ2 as illustrated in
the inset. All panels share the same temperature scale (top
horizontal intensity bar). All |Q|-integrated cuts on MARI
and IRIS are from |Q|=[0,3] Å−1 for Ei=15 meV and from
|Q|=[0,2] Å−1 for Ef=1.84 meV, respectively.

Γ ∝ T ν and the larger value of ao over all other terms
suggests ν ≤ 1.

The value of ν was refined using a modified scaling al-
gorithm previously employed to detect anomalous scaling
in the vicinity of a quantum critical point for CeCu2Si2
and CeCu6−xAux

126–128. Utilizing the single relational
energy mode approximation and the Kramers-Kronig re-
lations129, the uniform dynamic susceptibility can be
approximated as a Lorentzian-like response95,117,130–135

given by

χ′′ = χ′
{

EΓ

E2 + Γ2

}
, (7)

where χ′ denotes the static susceptibility and Γ ∝ ξ−1,
where ξ is the correlation length136. If one assumes both
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FIG. 6. (a) Neutron diffraction profiles of polycrystalline α-
CoV3O8 collected at 3 and 300 K on BT4. (inset) Additional
scattering intensity on the (212) magnetic Bragg reflection at
3 K confirms long range magnetic order. The horizontal line
indicates instrumental resolution. (b) Temperature depen-
dence of the elastic intensity at |Q| = 1.89 Å−1 (2θ = 41.6◦),
corresponding to the maximum of the (212) magnetic Bragg
reflection as indicated by the arrow in (a). A fit to (TN − T)2β

yields TN=18.8(6) K and β=0.28(7).

the single energy scale Γ = γ(T− TN)ν and the static
susceptibility χ′ = C

Γ , where γ and C are constants, then
Eq. 7 assumes the form

χ′′ =
C

γ(T − TN )ν


E

γ(T−TN )ν

1 +
(

E
γ(T−TN )ν

)2

 . (8)

The first assumption leading to Eq. 8 stems from the
fact that the scaling properties of the dynamics are being
investigated near the vicinity of an ordering transition
at TN ∼ 19 K and not a quantum critical point as in
the cuprates and heavy fermion systems106,128,137, a fact
that was reflected in Fig. 5(c) by defining χ′′(T = 0, E)
as the value at 24 K. The second assumption is based on
the paramagnetic behavior observed with DC suscepti-
bility at high temperatures, suggesting χ′ should adopt a
Curie-Weiss form106,117. As illustrated in Fig. 5(d), the
scaling relation (Eq. 8) provides a good description of
the experimental data over 4 orders of magnitude in E

T ,
yielding a refined ν of 0.636(10). It is important to note
that the refined value of ν is not consistent with random
dilute 3D Ising behavior where ν = 0.683(2), but instead
is consistent with the ordered 3D Ising universality class
with a ν = 0.6312(3)122,138–142. While scaling and criti-
cal scattering typically only applies near the phase tran-
sition, work on other transition metal based compounds
has found critical scattering that scales up to high tem-
peratures in the paramagnetic regime110,143.

2. Magnetic Order Parameter

The scaling analysis in the previous section found that
the critical fluctuations are both consistent with an or-
dered three dimensional Ising universality class and with

the DC susceptibility data presented above. Conse-
quently, while the excitations are separated into distinct
jeff manifolds, the scaling analysis indicates that the dis-
tortion does introduce an anisotropy term in the mag-
netic Hamiltonian influencing the critical dynamics out-
lined in the previous section. In an attempt to further
deduce the universality class of CoV3O8, neutron diffrac-
tion measurements were performed on polycrystalline α-
CoV3O8 to extract further critical exponents. As illus-
trated in Fig. 6(a), polycrystalline α-CoV3O8 exhibits
long range magnetic ordering at 3 K, in agreement with
both single crystal DC susceptibility (Fig. 2(b)) and sin-
gle crystal neutron diffraction (Fig. 2(c)) measurements.
The temperature dependence of the scattering intensity
of the (212) magnetic Bragg reflection is displayed in
Fig. 6(b), corresponding to the square of the magnetic
order parameter144 φ, given by the power-law dependence

I(T ) ≡ φ2(T ) ∝ (TN − T )2β , (9)

yields a refined TN of 18.8(6) K in agreement with DC
susceptibility measurements and a refined β of 0.28(7).
Although the value of β is in agreement with the pre-
dicted value of 0.326 for the ordered 3D Ising universal-
ity class122, the large statistical error also implies agree-
ment with the predicted value for the random dilute
3D Ising model of 0.35138–141. Therefore, the critical
magnetic fluctuations are in agreement with expectations
from both ordered and disordered 3D Ising behavior.

F. First Moment Sum Rule, Local Cation Ordering
& Single Mode Approximation

In order to deduce further information concerning both
the dimensionality d and the microscopic exchange con-
stants J , a combination of the first moment sum rule
of neutron scattering and the single mode approximation
was employed. The determination of the values for J and
d begin with the Hohenberg-Brinkman first moment sum
rule145 given by

〈E〉(Q) =

∫
dEES(Q, E)

= −2

3

∑
i,j

nijJij〈Ŝi · Ŝj〉(1− cos(Q · dij)) (10)

and its powder-average

〈E〉(|Q|) = −2

3

∑
i,j

nijJij〈Ŝi · Ŝj〉
{

1− sin(|Q||dij |)
|Q||dij |

}
,

(11)

as derived in Appendix C, where nij , Jij , 〈Ŝi ·Ŝj〉 and dij
denote the number of individual exchange interactions,
the exchange constant, the spin-spin correlator and the
displacement vector between spins at sites i and j, re-
spectively60,102,146.

Since all of the inelastic intensity measured at 5 K on
MARI with an Ei = 15 meV shown in Fig. 3(g) corre-
sponds to excitations within the ground state jeff = 1

2 ,
proven by the total moment sum rule, then the sin-
gle mode approximation (SMA) can be applied102,147.
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FIG. 7. (a) |Q|-dependence of the background subtracted first moment 〈̃E〉 as measured on MARI at T=5 K with an Ei=15 meV
integrated over E=[2,8] meV. A fit to the first moment sum rule (Eq. 11) reveals that only six distances |dij | out to 7.5 Å possess
non-negligible nJij values as illustrated in (b), and summarized in Tab. III. For the purposes of comparison, distances present
only in the ordered and disordered atomic arrangements are distinguished by purple and dark pink outline colors, respectively.
Distances with non-negligible nJij contributions have a face color corresponding to the illustration of the corresponding six
interactions along the (c) bc and (d) ac planes of the α-CoV3O8 unit cell. Both non-bridging oxygen atoms have been excluded
and V4+ ions have been reduced in size for the purposes of clarity. Two particular distances: 3.209 Å and 3.540 Å are absent
as noted in (a), corresponding to nearest neighbor and bridging metal site distances, respectively.

The single mode approximation, applicable to a situa-
tion where the excitation spectrum is dominated a single
coherent mode, allows for the dynamic structure factor
to be written as S(Q, E) = S(Q)δ[ε(Q) − E], where
δ[ε(Q) − E] assures energy conservation60,87,100,124,148.
Applying the single mode approximation to the first mo-
ment sum rule yields

S(Q, E) = −2

3

1

ε(Q)

∑
i,j

nijJij〈Ŝi · Ŝj〉·

{1− cos(Q · dij)} δ[ε(Q)− E], (12)

providing a quantitative relationship between S(Q, E)
and the dispersion ε(Q) and by extension, a measure of
the dimensionality60,87,149,150. For numerical purposes,
the delta function was approximated as a Lorentzian with
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a FWHM equal to that of the calculated experimental res-
olution width of 0.24 meV at 5 meV transfer on MARI.
Eqs. 10-12 assume the presence of Heisenberg exchange
and thus excludes exchange anisotropy60,100,102,147. It is
important to note that the exclusion of any anisotropy
terms is simply a first approximation based on the success
of the isotropic exchange model to account for experimen-
tal data in a variety of other Co2+-based systems such as
CoV2O6, KMn1−xCoxF3 and Mn1−xCoxF2

13,60,92,105,151.
In fact, there is evidence that anisotropic exchange is
not negligible in α-CoV3O8. Such experimental evi-
dence includes equal intensities for transitions within
the ground state manifold and between the ground
state and first excited state manifolds75,92, as illus-
trated in Fig. 3(f). Another piece of evidence is the
presence of a weak signal at ∼ 1 meV at low energy
transfer measurements, as illustrated in Fig. 3(g) that
may be indicative of anisotropic breakdown of mag-
netic excitations60,75,87,100,152. The non-negligible value
of anisotropic exchange in α-CoV3O8 is indeed expected
due to the distorted octahedra around Co2+ (δ ∼ 11) and
has been observed in α, γ-CoV2O6 with similar distortion
parameters60,82 but will be excluded in the context of the
current discussion.

1. First Moment Sum Rule & Cation Order

This section utilizes the first moment sum rule of neu-
tron scattering to provide an estimate of the exchange
constants in α-CoV3O8. Fig. 7(a) shows the background

subtracted first moment 〈̃E〉(|Q|) at 5 K was successfully
described by the powder averaged first moment sum rule
(Eq. 11) incorporating all possible 15 Co2+−Co2+ dis-
tances in the α-CoV3O8 unit cell from |dij | = [3.209,

7.669] Å. As summarized by Tab. III, a least squares op-
timization revealed that only six unique distances possess

non-negligible −nijJij 〈̂ji · ĵj〉 values, where the use of ĵ

in the correlator instead of Ŝ is due to the use of g′J in
the normalization process. Two particular distances with

negligible −nijJij 〈̂ji · ĵj〉 contributions are 3.209 Å and

3.540 Å, corresponding to the nearest neighbor and metal
site distances across the O(5) bridging ligand, respec-
tively. The absence of the latter is expected due to the
local selection rule52 as illustrated in Fig. 1(c), but the
absence of the nearest neighbor distance is inconsistent
with a random distribution of Co2+ inherent to the dis-
ordered Ibam structure previously deduced by diffraction
measurements that are summarized in Fig. 2. Upon closer
inspection of the α-CoV3O8 unit cell, these six distances
were shown to correspond to the unique distances found
exclusively in the ordered Iba2 structure53 as illustrated
in Figs. 7(c) and (d), confirming an ordered arrangement
of Co2+.

While this analysis indicates the distances are con-
sistent with the ordered Iba2 structure, there are two
potential caveats. Because we measure the product

−nijJij 〈̂ji · ĵj〉, (i) the value of nij may not be negli-

gible but instead it may be the correlator 〈̂ji · ĵj〉 whose
value is negligible; (ii) and/or the exchange constants Jij
may themselves be negligible. To address issue (i), we

have calculated the correlator 〈̂ji · ĵj〉 based on energy-
integrated magnetic diffraction data (Tab. III) and found

TABLE III. Distances |dij | with corresponding non-negligible

refined values of −nijJij 〈̂ji · ĵj〉 and nijJij from the fit of
the first moment 〈E〉(|Q|) (E=[2,8] meV) at 5 K to the first
moment sum rule145. The corresponding calculated spin-

orbit corrected Curie-Weiss constant θ̃CW (Eq. 13) is in close
agreement with the experimentally determined Curie-Weiss
constant averaged over all three principal directions θ̄CW,exp.
Numbers in parentheses indicate statistical errors.

|dij | (Å) −nijJij 〈̂ji · ĵj〉
(meV f.u.−1)

〈̂ji · ĵj〉 nijJij (meV f.u.−1)

5.200(2) 0.023(1) −0.420(2) 0.055(1)

5.395(3) 0.173(1) −0.594(3) 0.30(1)

5.6083(14) 0.016(2) 0.484(2) −0.033(1)

5.649(4) 0.099(2) 0.417(3) −0.24(1)

6.168(3) 0.08(1) −0.483(3) 0.17(1)

7.3321(9) 0.13(1) 0.595(4) −0.22(1)

θ̄CW,exp −3.2(4) K

θ̃CW −0.24(15) K

it to be substantial for all distances. We address argu-
ment (ii) by pointing out that some distances with negli-

gible −nijJij 〈̂ji · ĵj〉 have a Co2+-O2−-Co2+ angle close to
180◦, predicted by the Goodenough-Kanamori-Anderson
rules to yield strong antiferromagnetic exchange76–78.

We now extract the exchange constants Jij by dividing

out the correlator from the −nijJij 〈̂ji · ĵj〉. By inserting
the 6 values of nijJij in the mean field expression for the
Curie-Weiss temperature153,154

θ̃CW = −
S(S + 1)

∑
i,j

nijJij

3ζ
, (13)

where ζ is a scale factor of 1.9 calculated by Kanamori81,
one obtains −0.24(15) K, a value that is both small and
negative, in agreement with the experimentally deter-
mined value of −3.2(4) K. The close similarity between
the calculated and experimentally determined values of
θCW suggests that all relevant exchange interactions have
been accounted for by the Iba2 structure. It is impor-
tant to emphasize that this analysis assumes isotropic
exchange and thus assumes the isotropic part of the mag-
netic Hamiltonian is dominant. While susceptibility data
indicates some anisotropy, the similarity between the ex-
tracted exchange constants and the θCW lends support
for the isotropic approximation, while the slightly larger
negative measured value may possibly be indicative of
some anisotropic contributions. Future advances in both
single crystal growth of this material and also higher flux
neutron instrumentation will allow single crystal data to
be obtained and the parameters refined.

2. Single Mode Approximation & Dimensionality

Since the first moment sum rule indicates the presence
of multiple unique interactions spanning all three crystal-
lographic directions in the Iba2 structure53, it was sus-
pected that a more intriciate dispersion relation should
be chosen for Eq. 12, such as the expression given by
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TABLE IV. Refined parameters of the heuristic dispersion re-

lation in the single mode approximation of S̃(|Q|, E) utilizing

the refined values of −nijJij〈Ŝi · Ŝj〉 at 5 K summarized in
Tab. III. As a first approximation, the intra-plane dispersion
parameters were fixed to zero. Numbers in parentheses indi-
cate statistical errors.

Dispersion Parameter Refined Value (meV2)

Bo 28.2(3)

Bh −1.13(2)

Bk −4.63(4)

Bl 6.8(7)

Bhk 0

Bhl 0

Bkl 0

B2h −1.13(2)

B2k −4.63(4)

B2l 6.8(7)

ε(Q) = (Bo +Bh cos(2πh) +Bk cos(2πk) +Bl cos(2πl)

+Bhk{cos[2π(h+ k)] + cos[2π(h− k)]}
+Bhl{cos[2π(h+ l)] + cos[2π(h− l)]}
+Bkl{cos[2π(k + l)] + cos[2π(k − l)]}

+B2h cos(4πh) + β2k cos(4πk) +B2l cos(4πl))
1
2 ,

(14)

where Bi are the dispersion parameters. The dispersion
relation ε(Q) in Eq. 14 satisfies Bloch’s theorem89 and
has been previously used to parametrize the dispersion
for more complex systems involving multiple exchange in-
teraction pathways such as PHCC100, whose large disper-
sions could not be adequately described with the heuristic
model ε(Q) = βo +

∑
i

βi cos(Q · dij)60,124,155.

As a first approximation, the parameters in Eq. 14 in-
volving interactions between the principal axes were set
to zero and each parameter along a particular principal
axis was set to be equal (e.g. Bh = B2h). This simple
model effectively reduces Eq. 14 to the aforementioned
simple heuristic model60,124,155 and treats every exchange
interaction as a combination of interactions along the
three principal axes. As illustrated in Fig. 8, all ma-

jor features of S̃M (|Q|, E) collected at 5 K, including
the large bandwidth, was successfully accounted for by
a least squares optimization of the dispersion parame-
ters. As summarized in Tab. IV, the refined dispersion
parameters indicate the presence of three dimensional
magnetism, consistent with the lack of significant asym-

metry in the |Q|-integrated cut S̃M (E)|Q| displayed in
Fig. 8(c), as would be expected for both 1D and 2D mag-
netic fluctuations87,156,157 . As summarized by Tab. IV,
the dispersion parameters along h and l are both nega-
tive while the dispersion parameters along k are positive
with a larger magnitude. Both the signs and relative
magnitudes of the dispersion parameters can be recon-
ciled using the spin-flip hopping model60,158, where Bi
for a particular direction i is interpreted as a hopping
term whose value is proportional to the energy cost of
a spin-flip t ∼ SJ along that particular direction. The
negative h and k dispersion parameters correspond to

FIG. 8. (a) S̃M (|Q|, E) measured on MARI at T=5 K with an

Ei=15 meV. (b) S̃M (|Q|, E) calculated by the optimization of
all parameters Bi in the heuristic model of ε(Q) in the single

mode approximation of S̃(Q, E) utilizing the refined values
of −nJij〈Si · Sj〉 from the first moment sum rule. (c) Com-
parison of |Q|-integrated cuts (|Q|=[0,3] Å−1) of measured

and calculated S̃M (|Q|, E). For the purposes of comparison,
non-optimized |Q|-integrated cuts for all three types of di-
mensionality d are also presented. These cuts assume both
ε(Q) possesses the same gap parameter Bo obtained from the
3D SMA fit in (b) and each permissible set of parameters is
equally weighted. (d) Comparison of the measured and calcu-
lated |Q|-dependence of the first moment 〈E〉 integrated over
E=[2,8] meV.

ferromagnetic coupling along a and b, respectively, while
the larger positive l dispersion parameters correspond to
stronger antiferromagnetic coupling along c, all consis-
tent with both DC susceptibility and the refined magnetic
structure presented in Fig. 2. The ability to describe the
powder average magnetic dynamic response in terms of
a coherent sharp mode is consistent with the cation or-
der deduced from the critical scaling analysis and thus
further evidence that the broadening of the magnetic ex-
citations is due to powder averaging and not due to the
underlying disorder.

IV. DISCUSSION

A. Experimental limitations

There are several limitations to the analysis presented
in this paper. The first is the use of α-ZnV3O8 as a
background for the analysis of the low temperature in-
elastic spectrum of α-CoV3O8. As shown in Fig. 1(d),
α-ZnV3O8 crystallizes in the cation ordered Iba2 space
group53 and is thus not completely isostructural to α-
CoV3O8. It can be argued that the local cation ordering
deduced is an artefact of the Iba2 structure of the α-
ZnV3O8 background. To counter such a claim, we point
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out that the scaling analysis utilizing the same inelastic
neutron scattering data, but after the subtraction of an
independently calculated temperature-independent back-
ground derived from detailed balance123,124, provided a
critical exponent ν consistent with pure 3D Ising behav-
ior. Such pure 3D Ising behavior would be unexpected if
Co2+ was locally disordered.

Another limitation is the observation that the low tem-
perature cooperative magnetism of α-CoV3O8 can be
treated as exclusively due to coupling between Co2+ mo-
ments. The presence of a second magnetic disordered
“counter”-cation is in contrast to the model dilute 3D
Ising antiferromagnets where the “counter”-cations are
non-magnetic and thus interactions between magnetic
ions of one type (e.g. Fe2+) are exclusively consid-
ered6,13,47,48,159. Such a situation was assumed to apply
to α-CoV3O8 in the analysis presented so far as a first
approximation since there is evidence that V4+ behaves
paramagnetically; but it is highly unlikely that coupling
between V4+ and other V4+ or Co2+ plays no role in
the low temperature magnetism and thus the analogy to
the dilute antiferromagnets such as FexZn1−xF2 should
be approached with caution. It is important to note that
the apparent lack of influence of V4+ coupling, relative
to coupling between Co2+ cations, may be due to the ex-
clusive use of t2g orbitals by V4+, in contrast to the eg
orbitals utilized by Co2+ which is predicted to give much
stronger coupling76–78,93,160.

A further limitation concerns the nature of the compet-
ing ferromagnetic and antiferromagnetic interactions in
α-CoV3O8. In contrast to the FexZn1−xF2 series13,49,161,
α-CoV3O8 exhibits both distinct ferromagnetic inter-
chain and antiferromagnetic intra-chain coupling along
the ab plane and along c, respectively. Both ferromag-
netic and antiferromagnetic coupling possess similar mag-
nitudes as proven by their near cancellation correspond-
ing to a Weiss temperature near zero. With a Weiss
temperature near zero, combined with a TN ∼ 19 K,

the frustration index f =
∣∣∣ θCWTN ∣∣∣ . 1 implies the ab-

sence of frustration, a key contributor to the rich phase
diagram of the dilute 3D Ising antiferromagnets6. To
address the concurrent presence of both ferromagnetic
and antiferromagnetic couplings, it is worth noting that
such a situation is reminiscent of another random dilute
3D Ising magnet system FexMg1−xCl2 where x > 0.55,
a series of compounds whose magnetic properties have
been shown consistently to be qualitatively similar to
that of FexZn1−xF2

162,163. To address the absence of
frustration, it is worth noting that in contrast to the cur-
rent study, previous work52 on smaller hydrothermally
grown crystals of α-CoV3O8 reported a TN = 8.2 K
and a Weiss temperature of −32.1 K, corresponding to
a frustration index f ∼ 4, indicating evidence for sig-
nificant frustration. Such contrasting behavior provides
strong evidence that sample dependence may play a sig-
nificant role in determining the magnetic properties of
α-CoV3O8, as has been consistently observed for the di-
lute antiferromagnets, whose response functions are sig-
nificantly influenced by both sample quality and non-
equilibrium physics1,13,161. The particular dependence
on sample quality can be partially rationalized using re-
cent work by Volkova164 on α-ZnV3O8. Numerical simu-
lations indicated that although the ordered-Iba2 arrange-
ment was predicted to exhibit minimal frustration, if one

instead assumed a disordered-Ibam arrangement, signifi-
cant magnetic frustration was predicted to manifest itself
as competing inter-chain couplings of similar magnitudes
in the presence of a dominant antiferromagnetic intra-
chain coupling. The contrasting behavior between Iba2
and Ibam cationic arrangement may provide an explana-
tion for the aforementioned difference in the experimen-
tally determined frustration indices with samples possess-
ing more disorder exhibiting a larger value of f .

B. Disordered Ibam versus ordered Iba2?

A contradiction arises from a combined analysis of x-
ray and neutron diffraction, DC susceptibility and in-
elastic neutron spectroscopy measurements in that the
disordered-Ibam structure is derived from diffraction
measurements, however the dynamics are more consis-
tent with an ordered-Iba2 arrangement of Co2+ ions.
Diffraction indicates that statically the arrangement of
Co2+ ions is disordered, however the collective long wave-
length fluctuations seem to average out this disorder. α-
CoV3O8 therefore appears to be magnetically ordered for
longer lengthscales. The disorder in α-CoV3O8 differs
from a Griffiths phase where local order is present and
maybe more analogous to the situation in water ice where
local selection rules are present.165 However, the lack of
strong diffuse scattering in our single crystal experiments
makes a comparison to these correlated disordered sys-
tems difficult. However, the presence of the local selec-
tion structural selection for Co2+ and V4+ distinguishes
CoV3O8 from a doped random magnet where no such
local order is required. The apparent robustness of α-
CoV3O8 to disorder is discussed below in the context of
spin-orbit coupling and comparison to other model mag-
nets in a random field.

C. Universality class of α-CoV3O8

Ising anisotropy is experimentally supported by several
observations discussed above: the presence of a significant
octahedral distortion (δ ∼ 11) as deduced from a com-
bination of single crystal x-ray and neutron diffraction
data, the presence of 3D Ising fluctuations as deduced
from both critical exponents ν and β, and the presence
of strong spin-orbit coupling supported by neutron spec-
troscopy. 3D dimensionality (d = 3) is suggested based
on the following: the values of the critical exponents ν
and β, the non-zero refined values of all h, k and l disper-
sion parameters in ε(Q) reflecting both strong coupling
in both the ab plane and along c, in combination with the
relatively weak anisotropy of the DC susceptibility.

The random magnetic cation distribution is supported
by the refined Ibam structure from both single crystal
x-ray and neutron diffraction and the value of β. An
additional observation is the intrinsic width of the AFM
transition as measured with DC susceptibility, reflected
by the large experimental error of β caused by the round-
ing of the order parameter measurement, as has been
experimentally observed in other dilute 3D Ising antifer-
romagnets such as CoxZn1−xF2

166. The dilution of 3D
Ising magnetism can be rationalized by the key obser-
vation that V4+ appears to remain purely paramagnetic
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down to 2 K and thus has no significant influence on the
low temperature cooperative magnetic properties of α-
CoV3O8, as proven by a combination of inelastic neutron
scattering and DC susceptibility measurements.

D. Comparison between α-CoV3O8 and Random
Field Ising magnets

If one disregards the magnetic influence of V4+, effec-
tively treating the cation as a “counter”-ion such as Zn2+

in FexZn1−xF2 or MnxZn1−xF2, then the magnetism due
to Co2+ in α-CoV3O8 may be regarded as being mag-
netically diluted by 50%. Additionally, it is important
to note that the failure to observe strong structural dif-
fuse scattering with x-ray and neutron diffraction mea-
surements is suggestive of a lack of local cation ordering
or gradients. These concentration gradients were noted
in dilute model antiferromagnets1,159,161,167–169. Such a
combination of significant dilution and disorder would
be expected to have a significant effect on the dynam-
ics1,11,12,20,49,51,116,170–172. In this sense, it is surprising
that there seems to be little effect on the magnetic dy-
namics in α-CoV3O8, where the magnetic excitations are
consistent with a fully ordered cation arrangement. Such
behavior is suggestive that hydrodynamic and long wave-
length fluctuations are not strongly sensitive to the dis-
order in α-CoV3O8, in contrast with expectations based
on theory173,174. The robust nature of the dynamics to
dilution, and in particular disorder is analogous to sev-
eral observations in dilute random field magnets and in
particular the FexZn1−xF2 series46,175,176, where sharp
excitations are still observable for large amount of dop-
ing49. Unlike members of the FexZn1−xF2 series closer
to the percolation threshold (xp ∼ 0.24) that exhibit spin
glass behavior6,45,49,170, Fe0.5Zn0.5F2 assumes long range
antiferromagnetic order in zero field with a TN corre-
sponding to half of that of FeF2

177,178. The appearance
of long range antiferromagnetic order as measured by DC
susceptibility with a µoHext = 0.5 T supports the claim
that α-CoV3O8 is not close to the percolation threshold,
where even the smallest external field destroys long range
order, as is the case for MxZn1−xF2, where M = Co2+

and Fe2+ 131. However, the random field Ising magnet
MnxZn1−xF2

179,180 does show strong effects of the disor-
der on the dynamics. Such behavior is consistent with
cases of random fields introduced through confinement
where when the critical fluctuations have a similar length
scale to the underlying disorder, the phase transition is
strongly altered1,11,20,39,172.

A key difference between MnF2 and both α-
CoV3O8 and FeF2 is the presence of strong crystal field
effects and spin-orbit coupling in the latter two com-
pounds133,175. It is also worth noting that unlike the
case of pure CoO81,91,94,181–184 where the large and far
reaching exchange constants result in a significant and ul-
timately problematic entanglement of spin-orbit levels94,
in the case of α-CoV3O8, the exchange constants are weak
and the Weiss temperature is near 0 K. Both observa-
tions suggest that the presence of both strong crystal field
effects and spin-orbit coupling with well-separated jeff

manifolds, as is the case for α-CoV3O8, may be central
to making the dynamics robust against strong disorder.

V. CONCLUDING REMARKS

In summary, a combination of zero field diffraction,
DC susceptibility and neutron spectroscopy measure-
ments have indicated that the low temperature cooper-
ative magnetism of α-CoV3O8 is dominated by jeff = 1

2

Co2+ cations randomly distributed over the 16k metal
site of the Ibam structure, thus corresponding to an in-
trinsically disordered magnet without the need for any ex-
ternal influences such as chemical dopants or porous me-
dia. Despite the intrinsic disorder, by employing the sum
rules of neutron scattering, the collective excitations have
been shown to not be significantly affected by the disor-
der, displaying behavior consistent with an ordered-Iba2
arrangement of jeff = 1

2 Co2+ moments over a macro-

scopic scale. These Co2+ moments are coupled via a
3D network of competing ferromagnetic and stronger an-
tiferromagnetic superexchange interactions within the ab
plane and along c, respectively, resulting in long range an-
tiferromagnetic order of the Co2+ moments at TN ∼19 K,
despite a Weiss temperature near 0 K. A comparison of
our results to the random 3D Ising magnets and other
compounds where spin-orbit coupling is present indicate
that both the presence of an orbital degree of freedom,
in combination with strong crystal field effects and well-
separated jeff manifolds may be key in making the dy-
namics robust against disorder.
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Appendix A: Crystallographic data

TABLE V. Crystal data, experimental and structural refinement parameters for single crystal x-ray diffraction measurements
on α-CoV3O8. Numbers in parentheses indicate statistical errors.

Parameter Value
Empirical Formula CoV3O8

Formula weight 339.7529 g mol−1

Temperature 120.0(1) K
Crystal Dimensions 0.40 × 0.11 × 0.09 mm3

Wavelength 0.71073 Å(Mo Kα)
Crystal System Orthorhombic
Space Group Ibam (#72)

a 14.29344(4) Å

b 9.8740(3) Å

c 8.34000(3) Å

V 1185.60(6) Å3

Z 8
ρ 3.8069(3) g cm−3

θ range for data collection 4.13◦ ≤ θ ≤ 30.18◦

Limiting Indices −19 ≤ h ≤ 20, −13 ≤ k ≤ 14 and −11 ≤ l ≤ 11
Number of Reflections I > 0 985

Number of Reflections I > 3σ(I) 910
Absorption Correction Method Gaussian

Extinction Method B-C Type 1 Gaussian Isotropic
Extinction Coefficient 2300(100)
Refinement Method Full matrix least squares on F 2

Number of Parameters(Constraints) 67(9)
RF2 (I > 3σ(I), all) 1.65%, 1.90%

RwF2 (I > 3σ(I), all) 2.38%, 2.46%
Goodness-of-Fit χ2 (I > 3σ(I), all) 1.47%, 1.48%

TABLE VI. Structural parameters of α-CoV3O8 obtained from the refinement of single crystal x-ray diffraction data collected
at 120 K. Numbers in parentheses indicate statistical errors.

Atom (Label) Wyckoff Position x y z Biso (Å2) Fractional Occupancy
Co 16k 0.654760(16) 0.33285(2) 0.81060(3) 0.39(2) 0.506(6)

V(1) 16k 0.654760(16) 0.33285(2) 0.81060(3) 0.39(2) 0.494(6)
V(2) 8j 0.52271(2) 0.16672(4) 0.5 0.321(5) 1
V(3) 8j 0.70168(2) 0.94348(4) 0.5 0.252(6) 1
O(1) 8j 0.73349(11) 0.41325(16) 0 0.52(2) 1
O(2) 8j 0.58248(10) 0.27500(16) 0 0.50(2) 1
O(3) 16k 0.76787(8) 0.35258(11) 0.66386(15) 0.53(2) 1
O(4) 8f 0.61080(11) 0.5 0.75 1.2(1) 1a

O(5) 16k 0.57900(8) 0.22361(12) 0.65802(16) 0.79(3) 1
O(6) 8j 0.57973(10) 0.98272(16) 0.5 0.48(2) 1

a The assignment of full occupancy in the 8f position corresponding to the bridging oxygen is in agreement with the initial refinement by
Oka et al.52.
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TABLE VII. Crystal data, experimental and structural refinement parameters for single crystal neutron diffraction measurements
on α-CoV3O8. Numbers in parentheses indicate statistical errors.

Parameter Value
Empirical Formula CoV3O8

Formula weight 339.7529 g mol−1

Temperature 5.00(3) K
Crystal Dimensions 13.2 × 4.1 × 2.1 mm3

Wavelength Polychromatic (time-of-flight)
Crystal System Orthorhombic

Nuclear Space Group Ibam (#72)
Magnetic Space Group (BNS Setting) PIccn (#56.376) or (IP bam

′ OG 72.10.639)
k (111)

a 14.3280(4) Å

b 9.9213(3) Å

c 8.4160(3) Å

V 1196.35(7) Å3

Z 8
ρ 3.773(3) g cm−3

θ range for data collection 2.94◦ ≤ θ ≤ 76.22◦

Limiting Indices −35 ≤ h ≤ 33, −25 ≤ k ≤ 19 and −16 ≤ l ≤ 22
Number of Reflections I > 0 5120

Number of Reflections I > 3σ(I) 5086
Refinement Method Full matrix least squares on F 2

Absorption Correction None
Extinction Method B-C Type 1 Gaussian Isotropic

Extinction Coefficient 348(8)
Number of Parameters(Constraints) 34(10)

µa 1.35(4) µB

µb 1.16(5) µB

µc 3.05(4) µB

RF2 (I > 3σ(I), all) 8.34%, 8.38%
RwF2 (I > 3σ(I), all) 8.98%, 8.99%
RF2

mag
(I > 3σ(I), all) 23.44%, 24.13%

Goodness-of-Fit χ2 (I > 3σ(I), all) 3.18, 3.19

TABLE VIII. Structural parameters for the nuclear structure of α-CoV3O8 obtained from the refinement of single crystal
neutron diffraction data collected at 5 K. Numbers in parentheses indicate statistical errors.

Atom (Label) Wyckoff Position x y z Uiso (Å2) Fractional Occupancya

Co 16k 0.9068(3) 0.5765(3) 1.0616(5) 0.0005(5) 0.504(4)
V(1) 16k 0.9068(3) 0.5765(3) 1.0616(5) 0.0005(5) 0.496(4)
V(2) 8j 0.771 0.416 0.75 0.0042 1
V(3) 8j 0.957 1.198 0.75 0.0042 1
O(1) 8j 0.98357(9) 0.66282(11) 0.25 0.00356(16) 1
O(2) 8j 0.83242(8) 0.52523(11) 0.25 0.00388(16) 1
O(3) 16k 1.01787(6) 0.60246(8) 0.91384(10) 0.00392(11) 1
O(4) 8f 0.86076(9) 0.75 1 0.0126(4) 1
O(5) 16k 0.82899(6) 0.47373(8) 0.90801(10) 0.00556(12) 1
O(6) 8j 0.82973(8) 1.23252(10) 0.75 0.00269(15) 1

a The value of the fractional occupancies were fixed to the refined values obtained from a refinement of single crystal neutron diffraction
data collected at 50 K.

TABLE IX. Cell parameters, fit residuals and agreement factors for α-CoV3O8 obtained from the Rietveld refinement of
laboratory powder x-ray diffraction data collected at 300 K. Numbers in parentheses indicate statistical errors.

Parameter Value

a 14.292(1) Å

b 9.8844(9) Å

c 8.3969(8) Å

V 1186.2(3) Å3

χ2 1.487
Rp 10.26%

Rwp 14.05%
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TABLE X. Cobalt-oxygen distances and corresponding octahedral distortion parameter60,97 δ for α-CoV3O8 at 5 K deduced
from the Rietveld refinement of single crystal neutron diffraction data. Numbers in parentheses indicate statistical errors.

Oxygen Label d (Å)
(
d−〈d〉
〈d〉

)2

× 104

O(1) 2.12527(5) 27.79(3)
O(2) 1.98916(5) 2.162(8)
O(3) 2.07872(5) 8.79(2)
O(3)′ 2.02358(5) 0.0549(13)
O(4) 1.92213(5) 22.95(3)
O(5) 1.97422(4) 4.89(1)

1
N

∑{(
d−〈d〉
〈d〉

)2

× 104

}
11.106(8)
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FIG. 9. Room temperature diffraction profile of polycrystalline α-CoV3O8 collected on a Bruker D2 Phaser x-ray diffractometer
utilizing a monochromated Cu Kα,1,2 source, confirming the absence of any discernible impurities. A Rietveld refinement
(χ2 = 1.487, Rp = 10.26%, Rwp = 14.05%) indicates α-CoV3O8 crystallizes in the orthorhombic Ibam (S.G. #72) structure
(a = 14.292(1) Å, b = 9.8844(9) Å, c = 8.3969(8) Å).
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Appendix B: Projection Factors

As outlined in the main text, a comparison between the
current study and previous studies on other Co2+-based
magnets60,75,81,91,94,166,185 suggests that the low temper-
ature magnetism of α-CoV3O8 may be solely attributed
to the ground state doublet spin-orbit manifold, and thus
can be simplified to a j = 1

2 model. To utilize such a
model in the current study, the Landé g-factor gJ was re-
quired to be projected onto individual j ≡ jeff manifolds.

1. Calculation of the Orbital Angular Momentum
Operator Projection Factor α

Before proceeding with the projection of the Landé g-
factor onto the jeff = 1

2 ground state spin-orbit manifold,
it is important to note that such a doublet manifold is
a consequence of an approach commonly used60,75,81,91,94

to address the orbital triplet ground state in Co2+. Such
an approach first defines an effective total angular mo-

mentum ĵeff = l̂+ Ŝ, where l̂ is a fictitious orbital angular
momentum operator, with eigenvalue l =1 to reflect an
triplet orbital degeneracy104. Thus, a projection of gJ
and any angular momentum operators onto the j = 1

2

manifold requires a concurrent projection of L̂ onto l̂, via
a projection factor α.

The determination of the projection factor α begins
by first defining the crystal field Hamiltonian ĤCEF de-
scribing the effects of the crystalline electric field on the
free ion states of the d7 Co2+ resulting from the symme-
try imposed by the crystal lattice75,81,91,186. Assuming
both negligible distortions away from purely octahedral
coordination and negligible admixture between the 4F
ground and first excited 4P free ion states, a weak crys-
tal field approach can be employed187 whereby ĤCEF can
be written in terms of the Stevens operators Ô0

4, Ô4
4 and

the numerical coefficient B4 as

ĤCEF = B4

(
Ô0

4 + 5Ô4
4

)
. (B1)

The numerical coefficient B4 is defined as β〈r4〉 where β
is the Stevens multiplicative factor, while the Stevens op-
erators are defined in terms of the L̂2, L̂z and L̂± orbital
angular momentum operators104,187 as

Ô0
4 = 35L̂4

z − 30L̂2L̂2
z + 25L̂2

z − 6L̂2 + 3L̂4, (B2)

and

Ô4
4 =

1

2

[
L̂4

+ + L̂4
−

]
. (B3)

By combining Eqs. B1-B3 and setting B4 as −1, the
crystal field Hamiltonian is given by



−180 0 0 0 −232.4 0 0
0 420 0 0 0 −300 0
0 0 −60 0 0 0 −232.4
0 0 0 −360 0 0 0

−232.4 0 0 0 −60 0 0
0 −300 0 0 0 40 0
0 0 −232.4 0 0 0 −180


(B4)

in the |L = 3,mL〉 basis where each operator has been
normalized by ~. Before proceeding, it is worth noting
that by setting |B4| as 1, all energy eigenstates will be
in terms of B4 while the negative sign is due to the d7

electron configuration of Co2+, producing a triplet and
not a singlet ground state like Ni2+186,188.

Diagonalizing the crystal field Hamiltonian yields



−360 0 0 0 0 0 0
0 −360 0 0 0 0 0
0 0 −360 0 0 0 0
0 0 0 120 0 0 0
0 0 0 0 120 0 0
0 0 0 0 0 120 0
0 0 0 0 0 0 720


(B5)

corresponding to a triply degenerate ground state (Γ4),
a triply degenerate first excited state (Γ5) and a singlet
second excited state (Γ2), where ∆(Γ4 → Γ5) = 480B4

and ∆(Γ5 → Γ2) = 600B4.
Utilizing the diagonalized crystal field Hamiltonian

above, a transformation matrix C can be defined as

C =



0 0 −0.79 0.61 0 0 0
0 0 0 0 −0.71 0 −0.71

0.61 0 0 0 0 −0.79 0
0 1.00 0 0 0 0 0
0 0 −0.61 −0.79 0 0 0
0 0 0 0 −0.71 0 0.71

0.79 0 0 0 0 0.61 0


(B6)

where the columns of C are the eigenvectors correspond-
ing to the eigenvalues in Eq. B5. The eigenvectors are
arranged in the order of increasing eigenvalues from left
to right. In the case of degenerate eigenvalues, the eigen-
vectors are arranged in the order of increasing eigenvalues
from left to right after the application of a small perturba-
tive magnetic field ĤMF = HMF Ŝz. The transformation
matrix C rotates operators from the |L = 3,mL〉 basis to
a |φCEF〉 basis defined by the crystal field eigenvectors by

Ô|φCEF 〉 = C−1Ô|L,mL〉C. (B7)

Since the ground state multiplet of the crystal field
Hamiltonian corresponds to the triply orbitally degen-
erate manifold, then the top 3 × 3 block matrix of the
z-component of the orbital angular momentum operator
projected onto the crystal field basis must160: (1) have
its matrix entries arranged in a format equivalent to its
corresponding angular momentum operator with l = 1,
while (2) the entries in both matrices must be equal up

to the projection constant α. Projecting the L̂z opera-
tor from the |L = 3,mL〉 basis to the |φCEF〉 basis via
Eq. B7, one obtains

C−1L̂zC =



1.50 0 0 0 0 −1.94 0
0 0 0 0 0 0 0
0 0 −1.50 −1.94 0 0 0
0 0 −1.94 −0.50 0 0 0
0 0 0 0 0 0 2.00

−1.94 0 0 0 0 0.50 0
0 0 0 0 2.00 0 0


(B8)



20

A comparison of the top and middle 3 × 3 block matrices
in Eq. B8 to the L̂z operator (normalized by ~) in the
|l = 1,ml〉 basis given by

L̂z =

 −1 0 0
0 0 0
0 0 1

 (B9)

confirms that both block matrices have equivalent ar-
rangements of matrix elements to L̂z operator in the
|l = 1,ml〉 basis, with projection factors α = − 3

2 and 1
2

for the ground and first excited manifolds, respectively, in
agreement with previous derivations utilizing group the-
ory81,91,104,186.

As a final confirmation of the validity of the projection
described by Eq. B7, both L̂+ and L̂− were projected onto

the |φCEF〉 basis. Both L̂x and L̂y were then calculated
using the following identities:

L̂x =
L̂+ + L̂−

2
(B10)

and

L̂y =
L̂+ − L̂−

2i
. (B11)

yielding:

L̂x =



0 1.1 0 0 −1.4 0 0
1.1 0 −1.1 −1.4 0 −1.4 0
0 −1.1 0 0 1.4 0 0
0 −1.4 0 0 0.4 0 −1.4
−1.4 0 1.4 0.4 0 0.4 0

0 −1.4 0 0 0.4 0 1.4
0 0 0 −1.4 0 1.4 0


(B12)

L̂y = i



0 1.1 0 0 0 0 0
−1.1 0 −1.1 −1.4 0 1.4 0

0 1.1 0 0 1.4 0 0
0 1.4 0 0 0.4 0 −1.4
−1.4 0 −1.4 −0.4 0 0.4 0

0 −1.4 0 0 −0.4 0 −1.4
ξ 0 0 1.4 0 1.4 0


.

(B13)
Finally, by extracting the top 3 × 3 block matrices, de-
noted by a prime, from the definitions of L̂z (Eq. B8), L̂x
(Eq. B12) and L̂y (Eq. B13) and evaluating the commu-

tator [L̂′x, L̂
′
y], one obtains

[L̂′x, L̂
′
y] = i

 1.5 0 0
0 0 0
0 0 −1.5

 = iL̂′z. (B14)

By performing the commutator of all possible permuta-
tions of the projected components of the orbital angular
momentum operator, it can be shown that the canonical
commutation relations of angular momentum104, normal-
ized by ~,

[L̂′x, L̂
′
y] = iεxyzL̂

′
z (B15)

are satisfied for the new |φCEF〉 basis.

2. Calculation of Projected Landé g-Factor g′J

Recall from first-order perturbation theory75, the
field splitting of the Co2+ spin-orbit multiplets is de-
scribed by the perturbative Hamiltonian Ĥm given by

Ĥm = µB(gLL̂ + gSŜ) ·H, (B16)

where gL and gS denote orbital and spin g-factors, re-
spectively. For the particular case of the d-block metal
Co2+, both orbital and spin g-factors are taken to be the
electron’s g-factors, equal to approximately 1 and 2, re-
spectively, simplifying Eq. B16 to

Ĥm = µB(L̂ + 2Ŝ) ·H. (B17)

Since an effective total angular momentum ĵeff was de-
fined with the projected orbital angular momentum op-

erator l̂ with l =1, then the perturbative Hamiltonian in
Eq. B17 becomes

Ĥm = µB(αl̂ + 2Ŝ) ·H
= g′JµB ĵ ·H, (B18)

for a particular effective spin-orbit jeff manifold. Eq. B18
incorporates an orbital angular momentum operator L̂

that has been projected onto l̂ via a projection factor
α, and a projected Landé g-factor g′J . A comparison
between Eqs. B17 and B18 suggests that the Landé g-
factor — a fundamental proportionality constant that can
be derived directly from the Wigner-Eckart theorem94 —
defined as

gJ = 1

{
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)

}
+ 2

{
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

}
(B19)

for the original non-projected perturbative Hamiltonian
in Eq. B17 assumes the form

g′J =
(2 + α)j(j + 1)− (2− α)l(l + 1) + (2− α)S(S + 1)

2j(j + 1)
.

(B20)
As required, Eq. B20 reduces to Eq. B19 if α = 1. By
inserting the values of S = 3

2 to reflect the high spin d7

electron configuration in ideal octahedral coordination,
l = 1 to reflect the ground state crystal field manifold and
the associated projection factor α = − 3

2 , the projected

Landé g-factor of 13
3 is obtained for the jeff = 1

2 ground

state spin-orbit manifold75.

3. Calculation of Spin Angular Momentum
Operator Projection Factor α′

As discussed in previous work75,81,91,94,166,185 on other
systems whose magnetism is based on Co2+ in octahe-
dral coordination, multiple projections of different an-
gular momentum operators are necessary to consolidate
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the measured low temperature magnetic excitations and
the theoretical framework for a jeff = 1

2 ground state.

One method160 for such projections was presented in Ap-
pendix B 1 and involved the use of linear transforma-
tions in the matrix representation of operators. Although
powerful, this method relies on access to computation
software and quickly becomes tedious as the dimension
of the Hilbert space of interest increases. For the pur-
poses of completion, we present an alternative method
to project angular momentum operators onto a particu-
lar jeff manifold. This method consists of a special case
of the Wigner-Eckart theorem93,104, called the projection
theorem, given by

Ô = α′ĵeff =
〈Ô · ĵeff〉
j(j + 1)

ĵeff , (B21)

describing the projection of an angular momentum op-
erator Ô onto an effective total angular momentum op-

erator ĵeff via a projection factor α′. As introduced in

Appendix B 1, the operator ĵeff = l̂ + Ŝ denotes an ef-
fective total angular momentum operator that utilizes a
projection of an orbital angular momentum operator L̂
with L = 3 onto a fictitious orbital angular momentum

operator l̂ with l = 1 via α.
For illustrative purposes, let Ô be the spin angular mo-

mentum operator Ŝ. The numerator of the projection
factor α′ in Eq. B21 can be simplified by first using the
distributive property of the inner product

Ŝ · ĵeff = Ŝ · (̂l + Ŝ) = Ŝ2 + l̂ · Ŝ. (B22)

The inner product l̂ · Ŝ on the RHS of Eq. B22 can be
simplified to

l̂ · Ŝ =
1

2

[
(ĵeff)2 − l̂2 − Ŝ2

]
, (B23)

since the inner product of ĵeff with itself is equal to

(ĵeff)2 = (̂l + Ŝ) · (̂l + Ŝ) = l̂2 + Ŝ2 + 2̂l · Ŝ. (B24)

Combining Eqs. B22 and B23, the numerator of α′ in
Eq. B21 becomes

〈Ŝ · ĵeff〉 = S(S + 1) +
1

2
[j(j + 1)− l(l + 1)− S(S + 1)] ,

(B25)
where jeff was relabeled as j. Inserting Eq. B25 into
Eq. B21, one obtains

Ŝ =
S(S + 1) + 1

2 [j(j + 1)− l(l + 1)− S(S + 1)]

j(j + 1)
ĵeff ,

(B26)
which can be simplified algebraically to

Ŝ =

{
1

2
+
S(S + 1)− l(l + 1)

2j(j + 1)

}
ĵeff . (B27)

Finally, by inserting the aforementioned values of S = 3
2 ,

l = 1 and j ≡ jeff = 1
2 for high spin Co2+, Eq. B27

simplifies to

Ŝ =
5

3
ĵeff . (B28)

A comparison between Eqs. B21 and B28 indicates that
the projection factor α′ of the spin orbital angular mo-
mentum operator is 5

3 for the j = 1
2 ground state spin-

orbit manifold94. It can be shown81 that one obtains
the same value of α′ employing the method outlined
in Appendix B 1 with the transformation matrix C de-
fined as the eigenvectors of the spin-orbit Hamiltonian

ĤSO = αλ̂l·Ŝ, where α = − 3
2 as derived in Appendix B 1,

λ = −16 meV as measured by Cowley et al.91, and l̂ is
a fictitious orbital angular momentum operator with an
eigenvalue l=1 as discussed above and in the main text.

Appendix C: Derivation of the Powder-Averaged
First Moment Sum Rule of Neutron Scattering

The first moment sum rule of neutron scattering145

states that

〈E〉(Q) = −2

3

∑
i,j

nijJij〈Ŝi · Ŝj〉(1− cos(Q · dij)), (C1)

where Jij , nij〈Ŝi · Ŝj〉, dij denote the exchange con-
stant, spin-spin correlator and displacement vector be-
tween spins i and j, respectively. Applying the definition
of the powder average146, Eq. C1 becomes

S(|Q|, E) =

∫
dΩQ̂

S(Q, E)

4π
, (C2)

and utilizing the property of linearity of the integral, one
obtains

− Bij
12π

∫ π

0

∫ 2π

0

(1− cos(|Q||dij | cos θ))dφ sin θdθ, (C3)

where Bij denotes 2nijJij〈Ŝi · Ŝj〉 for a particular ij pair
type. Using the substitution of x = |Q||dij | cos θ in
Eq. C3, one obtains

Bij
3

(
1

4π

)∫ −|Q||dij |
|Q||dij |

∫ 2π

0

(1− cos(x))dφ
dx

|Q||dij |
. (C4)

Employing the linearity property of the integral, the first
term in Eq. C4 is reduced to

Bij
3

(
1

4π

)∫ −|Q||dij |
|Q||dij |

∫ 2π

0

dφdx

|Q||dij |
= −Bij

3
. (C5)

The second term in Eq. C4 becomes

− Bij
3

(
1

4π

)∫ −|Q||dij |
|Q||dij |

∫ 2π

0

cos(x)
dφdx

|Q||dij |
, (C6)
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which can be simplified by first integrating out dφ,

− Bij
3

(
2π

4π

)∫ |Q||dij |
−|Q||dij |

cos(x)
dx

|Q||dij |
, (C7)

which is equal to

− Bij
3

(
2π

4π

)
(sin(−|Q||dij |)− sin(|Q||dij |)). (C8)

Since sine is an odd function, Eq. C8 reduces to

Bij
3

(
sin(|Q||dij |
|Q||dij |

)
. (C9)

Combining both terms, one obtains the final expression
for the |Q|-dependence of the powder-averaged first mo-
ment as

〈E〉(|Q|) = −Bij
3

(
1− sin(|Q||dij |

|Q||dij |

)
. (C10)

The expression in Eq. C10 pertains to one particular ij
pair-type. Utilizing the linearity property of the integral
and replacing Bij by its definition, one can recover the
sum from Eq. C1,

〈E〉(Q) = −2

3

∑
i,j

nijJij〈Ŝi · Ŝj〉
(

1− sin(|Q||dij |
|Q||dij |

)
,

(C11)
corresponding to Eq. 11 in the main text.
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68 M. J. Gutmann, V. Petř́ıček, M. A. Daoud-Aladine, and
C. Y. Martin, Meas. Sci. Technol. 19, 034005 (2008).

69 M. Gutmann, Acta Cryst. A 61, c164 (2005).
70 C. Stock, R. A. Cowley, J. W. Taylor, and S. M. Ben-

nington, Phys. Rev. B 81, 024303 (2010).
71 K. H. Andersen, Nucl. Instr. Meth. Phys. Res. A 371, 472

(1996).
72 F. Hippert, E. Geissler, J. L. Hodeau, E. Lelièvre-
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