G. I. Taylor and C. F. Elam, The distortion of iron crystals, Proc. R. Soc. A: Math. Phys. Eng. Sci, vol.112, pp.337-361, 1926.

A. H. Ngan, A generalized Peierls-Nabarro model for nonplanar screw dislocation cores, J. Mech. Phys. Solids, vol.45, pp.903-921, 1997.

A. H. Ngan, A new model for dislocation kink-pair activation at low temperatures based on the Peierls-Nabarro concept, Philos. Mag. A, vol.79, pp.1697-1720, 1999.

C. B. Raleigh, Mechanisms of plastic deformation of olivine, J. Geophys. Res, vol.73, pp.5391-5406, 1968.

D. L. Kohlstedt, C. Goetze, W. B. Durham, and J. V. Sande, New technique for decorating dislocations in olivine, Science, vol.191, pp.1045-1046, 1976.

Y. Gueguen, Dislocations in naturally deformed terrestrial olivine: classification, interpretation, applications, Bull. Mineral, vol.102, pp.178-183, 1979.

W. B. Durham and C. Goetze, Plastic flow of oriented single crystals of olivine: 1. mechanical data, J. Geophys. Res, vol.82, pp.5737-5753, 1977.

B. Evans and C. Goetze, The temperature variation of hardness of olivine and its implication for polycrystalline yield stress, J. Geophys. Res, vol.84, pp.5505-5524, 1979.

M. Darot and Y. Gueguen, High-temperature creep of forsterite single crystals, J. Geophys. Res.: Solid Earth, vol.86, pp.6219-6234, 1981.

R. J. Gaboriaud, M. Darot, Y. Gueguen, and J. Woirgard, Dislocations in olivine indented at low temperatures, Phys. Chem. Miner, vol.7, pp.100-104, 1981.

S. J. Mackwell, D. L. Kohlstedt, and M. S. Paterson, The role of water in the deformation of olivine single crystals, J. Geophys. Res.: Solid Earth, vol.90, pp.11319-11333, 1985.

Y. Wang, R. C. Liebermann, and J. N. Boland, Olivine as an in situ piezometer in high pressure apparatus, Phys. Chem. Miner, vol.15, pp.493-497, 1988.

M. Panning and B. Romanowicz, Inferences on flow at the base of Earth's mantle based on seismic anisotropy, Science, vol.303, pp.351-353, 2004.

J. Durinck, P. Carrez, and P. Cordier, Application of the Peierls-Nabarro model to dislocations in forsterite, Eur. J. Mineral, vol.19, pp.631-639, 2007.

P. Carrez, A. Walker, A. Metsue, and P. Cordier, Evidence from numerical modelling for 3D spreading of [001] screw dislocations in Mg 2 SiO 4 forsterite, Philos. Mag, vol.88, pp.2477-2485, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00513947

D. Mainprice, A. Tommasi, H. Couvy, P. Cordier, and D. J. Frost, Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle, Nature, vol.433, pp.731-733, 2005.

H. Jung, I. Katayama, Z. Jiang, T. Hiraga, and S. Karato, Effect of water and stress on the lattice-preferred orientation of olivine, Tectonophysics, vol.421, pp.1-22, 2006.

, Computer Simulations of Dislocations, 2006.

C. R. Catlow, Point defect and electronic properties of uranium dioxide, Proc. R. Soc. Lond. A, vol.353, pp.533-561, 1977.

G. V. Lewis and C. R. Catlow, Potential models for ionic oxides, J. Phys. C: Solid State Phys, vol.18, pp.1149-1161, 1985.

G. D. Price, S. C. Parker, and M. Leslie, The lattice dynamics of forsterite, Mineral. Mag, vol.51, pp.157-170, 1987.

M. J. Sanders, M. Leslie, and C. R. Catlow, Interatomic potentials for SiO 2, J. Chem. Soc., Chem. Commun, vol.0, pp.1271-1273, 1984.

B. G. Dick and A. W. Overhauser, Theory of the dielectric constants of alkali halide crystals, Phys. Rev, vol.112, pp.90-103, 1958.

C. R. Catlow and G. D. Price, Computer modelling of solid-state inorganic materials, Nature, vol.347, pp.243-248, 1990.

N. C. Richmond and J. P. Brodholt, Incorporation of Fe 3+ into forsterite and wadsleyite

, Am. Mineral, vol.85, pp.1155-1158, 2000.

A. M. Walker, J. D. Gale, B. Slater, and K. Wright, Atomic scale modelling of the cores of dislocations in complex materials part 2: applications, Phys. Chem. Chem. Phys, vol.7, pp.3235-3242, 2005.

S. Mahendran, P. Carrez, S. Groh, and P. Cordier, Dislocation modelling in Mg 2 SiO 4 forsterite: an atomic-scale study based on the THB1 potential, Modell. Simul. Mater. Sci. Eng, vol.25, p.54002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606755

R. Skelton and A. M. Walker, Lubrication of dislocation glide in forsterite by Mg vacancies: Insights from Peierls-Nabarro modeling, Phys. Earth Planet. Inter, vol.287, pp.1-9, 2019.

G. D. Price, S. C. Parker, and M. Leslie, The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs, Phys. Chem. Miner, vol.15, pp.181-190, 1987.

B. Reynard, G. D. Price, and P. Gillet, Thermodynamic and anharmonic properties of forsterite, a-Mg 2 SiO 4 : computer modelling versus high-pressure and high-temperature Measurements, J. Geophys. Res.: Solid Earth, vol.97, pp.19791-19801, 1992.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys, vol.117, pp.1-19, 1995.

G. Henkelman, B. P. Uberuaga, and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys, vol.113, pp.9901-9904, 2000.

P. J. Mitchell and D. Fincham, Shell model simulations by adiabatic dynamics, J. Phys.: Condens. Matter, vol.5, pp.1031-1038, 1993.

N. H. De-leeuw and S. C. Parker, Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water, Phys. Rev. B, vol.58, pp.13901-13908, 1998.

X. Sun, Y. Chu, T. Song, Z. Liu, L. Zhang et al., Application of a shell model in molecular dynamics simulation to ZnO with zinc-blende cubic structure, Solid State Commun, vol.142, pp.15-19, 2007.

Y. Zhang, J. Hong, B. Liu, and D. Fang, Molecular dynamics investigations on the sizedependent ferroelectric behavior of BaTiO 3 nanowires, Nanotechnology, vol.20, p.405703, 2009.

W. Cai, Modeling dislocations using a periodic cell, Handbook of Materials Modeling, pp.813-826, 2005.

N. Lehto and S. Öberg, Effects of dislocation interactions: application to the perioddoubled core of the 90°partial in silicon, Phys. Rev. Lett, vol.80, pp.5568-5571, 1998.

S. Ismail-beigi and T. A. Arias, Ab initio study of screw dislocations in Mo and Ta: a new picture of plasticity in bcc transition metals, Phys. Rev. Lett, vol.84, pp.1499-1502, 2000.

P. Hirel, A. Kraych, P. Carrez, and P. Cordier, Atomic core structure and mobility of, Acta Mater, vol.79, pp.117-125, 2014.

P. Carrez, J. Godet, and P. Cordier, Atomistic simulations of 1?2 < 110 > screw dislocation core in magnesium oxide, Comput. Mater. Sci, vol.103, pp.250-255, 2015.

J. Durinck, A. Legris, and P. Cordier, Pressure sensitivity of olivine slip systems: firstprinciple calculations of generalised stacking faults, Phys. Chem. Miner, vol.32, pp.646-654, 2005.

P. Phakey, G. Dollinger, and J. Christie, Transmission electron microscopy of experimentally deformed olivine crystals, Flow and Fracture of Rocks, vol.16, pp.117-138, 1972.

D. L. Kohlstedt and C. Goetze, Low-stress, high-temperature creep in olivine single crystals, J. Geophys. Res, vol.79, pp.2045-2051, 1974.

N. Chaari, E. Clouet, and D. Rodney, First-principles study of secondary slip in zirconium, Phys. Rev. Lett, vol.112, p.75504, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00950867

P. Raterron, J. Chen, L. Li, and P. Cordier, Pressure-induced slip-system transition in forsterite: single-crystal rheological properties at mantle pressure and temperature, Am. Mineral, vol.92, pp.1436-1445, 2007.

L. Li, D. Weidner, P. Raterron, J. Chen, M. Vaughan et al., Deformation of olivine at mantle pressure using the D-DIA, Eur. J. Mineral, vol.18, pp.7-19, 2006.