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Abstract  

Nowadays, roughly 90% of worldwide epoxy resin materials are made from diglycidyl ether of 

bisphenol A (DGEBA). This resin offers unique features such as outstanding mechanical properties, 

chemical resistance, and shape stability. By contrast, the growing awareness of environmental issues, 

global warming, and depletion of petroleum reservoir suggest search for alternative bio-epoxy resin 

from sustainable resources. Indeed, DGEBA is a petroleum-based monomer obtained from bisphenol 

A and epichlorohydrin, two potential harmful precursors. Moreover, the problem deepens when it 

comes to the high flammability of such materials, which restricts their use in many high-end 

applications. Although the introduction of flame retardant (FR) additives to epoxy matrices has been a 

major strategy to induce flame retardancy, negative impact on mechanical properties and migration of 

FR’s to the materials’ surface remain unresolved issues. A means to overcome such drawbacks is to 

chemically bond reactive flame retardants to epoxy resins. This impedes the migration of FR’s as well 

as not affecting the resins’ mechanical properties. With the rapid development of reactive bio-based 

FR’s and epoxy resins, production of flame retardant bio-epoxy with high biomass content has 

become a promising strategy to address these issues. This mini-review encompasses the development 

of flame retardant bio-epoxy resins from different resources with inherent chemical structures of 

either epoxy monomers or embedded reactive flame retardant elements.  

Keywords: Bio-based epoxy resin; Flame retardancy; Thermoset composites 
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1. Bio-epoxy versus conventional petroleum-based epoxy  

Epoxy resins offer versatile integrated features such as outstanding mechanical properties, 

chemical resistance, and shape integrity in harsh conditions. These functional properties are 

the result of a crosslinked 3D network obtained by the chemical reaction between an epoxy 

monomer and a curing agent [1, 2]. The use of epoxy thermosets has been surged over the 

last decade in a wide range of applications such as coatings, adhesives, solar cells, electronic 

apparels, as well as in automotive and aerospace industries [3, 4]. Such applications are 

expected to receive more attention in the near future. Petroleum-based diglycidyl ether 

bisphenol A (DGEBA) accounts for ca. 90% of the epoxy resin worldwide usage. This 

monomer is produced from the reaction between bisphenol A (BPA) and epichlorohydrin 

(ECH) in sodium hydroxide media (NaOH) [5]. Although DGEBA displays fascinating 

properties such as chemical resistance, good adhesion, and superior mechanical properties, 

the use of this monomers encounters several barriers [6] summarized as follows:   

(I) It has been proved that DGEBA has severed effects on living organisms due to the 

toxicity of BPA [7]. Since BPA has been involved in the manufacture of many 

products, especially in epoxy resin thermosets, concerns about exposure to high 

dosages of BPA that might be harmful for human have consequently risen. Given 

this, legislation in many countries has banned use of BPA in infant-related 

products [8].  

(II) From an economic point of view, as DGEBA is derived from petroleum, it has 

experienced a rise in raw materials prices that have had a negative effect on the 

market.  

(III) Emitted CO2 from fossil fuels is the major suspect for recent global warming, 

which has encouraged researchers to substitute petroleum-based products with 
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renewable green products. In addition, unreacted BPA might be released during 

products production and ageing, and hence be rejected to the environment. [9].   

Thus, taking into consideration of the worldwide volume of DGEBA usage, a great deal of 

work has been devoted to explore bio-based epoxy resins from renewable resources such as 

plant oils [10, 11], lignin [12], rosin acids [13], tannins [14], cardanol [15], and itaconic acid 

[16] to replace traditional petroleum-based DGEBA. Rapid development in the synthesis of 

bio-epoxy resins and their outstanding characteristics nominate them as powerful building 

blocks to possible overtake commercial DGEBA market [17, 18]. In terms of curing 

potential, substantial attempts have been made in our group to define, quantify, and explain 

mechanism of network formation in thermoset systems [19-21]. However, potential curability 

of bio-epoxy resins are lower than the commercial DGEBA, which needs to be studied 

because of the fact that almost the whole ultimate properties of thermosets strongly depend 

on the epoxy curing state [22, 23]. Analysis of mechanical properties revealed that bio-epoxy 

resins derived from rigid chemical structures such as diphenolic acid, rosin acid, and 2,5-

furandicarboxylic acid (FDCA) show mechanical properties comparable to DGEBA [24, 25]. 

However, natural oil-based resins display inferior mechanical and thermal properties due to 

their long aliphatic chains, and because of their lower crosslinking density [25]. Furthermore, 

it was documented that the analysis of kinetics of epoxy curing provides a practical tool to 

compare the reactivity of bio-epoxy monomers with flame retardant additives [26]. Flame 

Retardancy Index was recently defined to quantitatively study flame retardancy potential of 

polymer composites, but revisiting must be applied for inherently bio-epoxy systems [27].  

Incorporation of flame retardant additives impedes the curing reaction and consequently 

lower the matrices’ mechanical properties. Such an influence can also be detected by another 

useful criterion, namely Cure Index [28].  



5 

 

Table 1 presents the main class of bio-based epoxy resins derived from sustainable resources.  

Overall, epoxy resins derived from renewable resources benefit from identical properties to 

those of commercial DGEBA, while eliminating the environmental and production 

drawbacks. However, like petroleum-based epoxies, bio-epoxy resins suffer from high 

flammability, which is a crucial prerequisite for many applications such as transportation, 

construction, and electronic appliances [29-33]. Overall, two strategies can be used to achieve 

an adequate level of flame retardancy performance. 

(I) The starting of using epoxy monomers with high char content and low combustion 

energy, which impart flame retardancy to the structure of epoxy building blocks [14]. 

(II) The strategy of incorporation of flame retardant (FR) to the epoxy matrix is based on 

chemical bonding of FR’s to epoxy monomers or physical blending with epoxy resins 

[34]. Even if the physical blending of FR’s is still a cheaper method from an 

industrial point of view, it remains challenging due to the difference in chemical 

structures between the FR’s and the epoxy matrix. This leads to poor miscibility and 

difficult handling of the epoxy filled with flame retardant formulations [35]. In 

addition, migration or leaching of FR’s during life cycle, as well as a negative effect 

of additives on the epoxies crosslinking density [36] and consequently a loss of 

mechanical properties remain as unresolved issues. However, a means to overcome 

all these issues is to chemically bond FR’s to epoxy monomers so as to obtain captive 

FR’s in the polymer network.  

 

In addition, two parallel fields of research, as regards the development of the bio-based 

epoxy resin and the bio-based flame retardant are at cutting edge. Thus, both approaches 

need to meet on a common ground to benefit the design of fully bio-epoxy resins with high 

biomass content [37-41]. However, to the best of our knowledge, only few works reported 
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the synthesis of fully bio-epoxy resins with flame retardancy properties. In this sense, this 

short mini-review aims to highlight the current development of flame retardant bio-based 

epoxy resins. Even though several review papers have been published to cover the bio-based 

epoxy resin [6, 42] and bio-based flame retardants [43], the area of inherently flame 

retardant epoxy resins from sustainable resources remains largely intact.  
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Table 1. Chemical structure and main sources of bio-epoxy resins [42]. 

Class Chemical structure Main sources 

 
 
Isosorbide-based 
epoxy 
 
 
 
 

 

Starch 

Furan-based epoxy 

  

 

Corn cobs,  biomass 

wastes 

Phenolic- and 
polyphenolic-based 
epoxy 

 

Black Mimosa Bark, 

Quebracho Wood 

Lignin-based epoxy 
derivatives 

 

Wood 

Rosin-based epoxy 

 

Pine resin 
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2. Inherently flame retardant bio-epoxy resins 

Synthesis of flame retardant bio-epoxy resins from renewable resources capable of giving 

adequate mechanical properties, comparable to that of DGEBA is of a prime importance in 

developing bio-based formulations.  

Miao et al. [44] compared the flammability of bio-based bis(2-methoxy-4-(oxiran-2-

ylmethyl)phenyl)furan-2,5-dicarboxylate (EUFU-EP) with the commercial DGEBA cured 

with methyl hexahydrophthalic anhydride (MHHPA) in terms of time to ignition (TTI), peak 

of heat release rate (pHRR) and total heat release (THR). Aside from identical TTI values for 

both systems, EUFU-EP had lower pHRR and THR values, which were indicative of higher 

flame retardancy performance for EUFU-EP. This was mainly explained by the presence of a 

packed aromatic structure in EUFU-EP resin, which reflected in higher char content and glass 

transition temperature (Tg). Although the crosslinking density of EUFU-EP/MHHPA was 

lower than that of the EUFU-EP/MHHPA system, the mechanical properties of EUFU-

EP/MHHPA were improved due to the presence of furan and aromatic structures in the 

EUFU-EP backbone.  

Likewise, Dai et al. [45] revealed that bio-based diglycidyl ether of daidzein (DGED) cured 

with 4,4’-diaminodiphenylmethane (DDM) was more reactive than the petroleum-based 

DGEBA. Such a higher reactivity was attributed to the additional unsaturated double bonds in 

DGED structure involved in the course of curing reaction. Consequently, the viscosity of 

DGED increased faster than that of DGEBA and; thus, the thermo-mechanical properties of 

DGED/DDM stand over DGEBA/DDM systems. From the flammability point of view, 

DGED formed char at the surface during combustion, which protected the bottom layers form 

heat transfer leading to self-extinguish in just 3 s with a very smaller flame. Since no 

complementary flame tests such as cone calorimetry were conducted, it appears difficult to 
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understand the flame behaviour of the proposed system taking into account the resistance of 

material contributed from condensed phase.   

Wan et al. [46] synthesized bio-epoxy resins by making linked two eugenol molecules 

together followed by epoxidation of terminal groups (DEU-EP), which resulted in a product 

with very high bio-based content of ca. 70 wt.%. This monomer was cured with DDM. The 

authors studied cure kinetics mechanism of bio-epoxy using model-free isoconversional 

approach and reported that addition of eugenol building blocks in the chain backbone as well 

as and their arrangement greatly affected cure behavior of DEU-EP/DDM systems. As a 

result, mechanical properties and high-temperature charring ability and flammability 

resistance were enhanced. It was also reported that DEU-EP/DDM resin left 38% char at 800 

°C, which was almost twice the amount left by the DGEBA/DDM system. Moreover, pHRR 

(201 kW/m2) and THR (16.3 kJ/m2) for DEU-EP were much lower than the values obtained 

for DGEBA. Eventually, self-extinguishing DEU-EP was attained in 10 s, which proved an 

inherent flame retardancy behavior. However, the storage modulus of DEU-EP dropped 

suddenly at higher temperatures where glass transition temperature occurred at 114 °C due to 

an increase in free volume and molecular mobility of DEU-EP polymer chains. Later, this 

group [47] developed eugenol-based bifunctional epoxy resins (TPEU-EP) with improved 

flame retardancy thanks to the full aromatic ester backbone of TPEU-EP. Despite lower 

crosslinking density of TPEU-EP compared to commercial DGEBA, an enhanced mechanical 

property was observed, which again was attributed to the aromatic structure of TPEU-EP. 

Cone calorimetry and burning analysis of TPEU-EP provided concrete evidence for potential 

application of TPEU-EP as an alternative for DGEBA of the synthesis route of TPEU-EP was 

economic-friendly for large scale production. Literature survey suggests that synthesis of 

flame retardant bio-epoxy experiences an early stage flourishing period, while chemically 

embedded FR elements in bio-epoxy were alternatives for inherent flame retardant bio-epoxy.  
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3. FR elements chemically embedded in bio-epoxy backbone  

3.1. Silicon-containing FR 

Silicon compounds improve flame retardancy of epoxy resins as a result of formation of 

residue in the condensed phase as well as the presence of radicals in vapour phase [48-50]. Li 

et al. [51] linked epoxidized eugenol bio-epoxy (EPEU) with silicon-containing bridges with 

different lengths and chemical structures. It was found that the flammability of the prepared 

silicon-containing bio-epoxy resin was significantly improved in comparison to the 

commercial DGEBA. The value of LOI reported for DGEBA was 22.8%, which was 

improved up to 31% for phenyl siloxane-containing bio-epoxy resins. This was explained by 

the carbonation of phenyl groups as well as the migration of Si-O to the surface, which 

formed an ablative layer that avoided the penetration of oxygen and fuel through the 

combustion layer. Moreover, the viscosity of the prepared silicon-containing bio-epoxy 

decreased when the length of siloxane linker increased, which eased epoxy curing reaction. 

The authors did not report on the mechanical and thermal properties of the prepared systems.  

 

3.2. Phosphorous-containing FR 

There are numerous works reporting the flame retardancy effect of phosphorous-containing 

compounds, which mainly benefit from char formation in the condensed phase [48, 52]. 

Menard et al. [38] embedded diglycidyl mono-phosphonated phloroglucinol reactive flame 

retardant derived from renewable resources of phloroglucinol in triglycidyl phloroglucinol 

(P3EP), and reported that the phosphorous flame retardant embedded in P3EP deteriorated 

thermal stability of epoxy resin; Such a behavior was explained by the plasticizing role of the 

flame retardant. However, the flammability of phosphorous flame retardants embedded in 

bio-epoxy was improved significantly, as confirmed by pyrolysis combustion flow 

calorimetry (PCFC) data together with char content measurements. Nevertheless, it should be 
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noticed that the complementary flammability tests were principally needed to be conducted 

for this system to fully comprehend the flame behaviour of system.    

Elsewhere [53], a phosphorus-containing bio-epoxy resin (EADI) was prepared based on 

itaconic acid (IA) and 9,10-dihydro-9-oxa-10- phosphaphenanthrene 10-oxide (DOPO), then 

it was used as bio-based flame retardant in DGEBA system. Mechanical and thermal 

properties of DGEBA/EADI were found to be as good as those of DGEBA systems, with a 

significant improvement flame retardancy in of bio-based system in terms of LOI, char 

content and burning time.  

In search for bio-epoxy resins, Lligadas et al. [35] synthesized two different epoxidized 

monomers including 10-undecenoyl triglyceride (UDTGE) and methyl 3,4,5-tris(10- 

undecenoyloxy) benzoate (UDBME) from fatty acids. To improve their flame retardancy 

properties,10-[2’,5’-bis(9-oxiranyl-nonayloxy)phenyl]-9,10-dihydro-9-oxa-10-

phosphaphenanthrene-10 oxide (DOPO-III) and bis(m-aminophenyl) methylphosphine oxide 

(BAMPO) were added to the structure of epoxy resin as flame retardant and curing agent, 

respectively. It was found that the Tg of UDBME-based resin was higher than that of UDTGE 

due to the presence of aromatic groups in the chemical structure of UDBME. However, Tg 

decreased upon addition of phosphorous-containing FR due to a lower crosslinking density. 

From a flammability point of view, LOI values and charring residue were both improved 

upon addition of phosphorous-containing DOPO-III and BAMPO. However, more accurate 

and reliable tests were required to fully analyse the flame behavior performance of the 

proposed system.  
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4. Concluding remarks and recommendations for future works 

DGEBA is the most sought epoxy resin in industrial applications thanks to its remarkable 

features. However, high volume usage of this monomer in various applications has risen 

increasing environmental concerns. By contrast, bio-epoxy resins produced from sustainable 

resources promise a green alternative for DGEBA. Such resins possess comparable properties 

to commercial DGEBA in terms of mechanical and thermal properties. Yet, bio-based epoxy 

resins suffer from high flammability, which jeopardize their potential application in many 

technical fields. Flammability of bio-epoxy resins has been addressed mainly through the 

incorporation of flame retardant elements or synthesis of bio-epoxy monomers with high char 

yield.  

Up to date, seldom investigations have highlighted the flammability of bio-epoxy resins, 

which are summarized in Table 2. For most cases, inadequate flame resistance of the 

proposed bio-epoxy systems has been highlighted by the investigators, which needs further 

investigations. On the other hand, flame retardancy of polyphenols derived from sustainable 

resources offer a great potential for fabrication of fully bio-epoxy resin, and this deserve to be 

considered for future works. For instance, Qi et al. [54] cured epoxidized soybean oil (ESO) 

with Tannic acid (TA) and histidine (His) as the curing agent and accelerator, respectively. 

The curing reaction between ESO and TA is relatively slow, but the addition of His improves 

the curing rate significantly, which was evident by nonisothermal analysis of curing kinetics. 

In addition, ESO/TA resins are thermally stable with an initial decomposition at 270 °C. 

However, the flame behaviour of this system has not been fully addressed yet. We believe 

that polyphenols with numerous hydroxyl groups provide a great substrate to link with the 

listed bio-epoxy resins observed in Table 1. Thus, this mini-review has aimed its focus on the 

importance of the study and development of fully bio-epoxy resins with fire retardancy 

properties by highlighting the importance of synthesis of flame resistant bio-epoxy resins.  
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Table 2: Flame behaviour of reported bio-based epoxy resins 

Epoxy resin Curing agent FR Tg 

(°C) 

LOI  

(%) 

Residue  

(%) 

Cone calorimetry Ul-94 Ref. 

      TTI 

(s) 

pHRR 

(kW.m-2) 

THR 

(mJ.m-2) 

  

EUFU-EP MHHPA - 153 - 10.9 200 291.3 20 - [44] 

DGED DDM - 205 31.6 42.9 - - - V0 [45] 

DEU-EP DDM - 114 - 38 - - - - [46] 

TPEU-EP DDS - 168 26.8 31.7 33 860 50.1 - [47] 

EPEU DDS Siloxane - 28 14.9 28 662 73.9 - [51] 

P3EP DIFFA P2EP1P 124 - 43.5 - - - - [38] 

DGEBA MHHPA EADI 109 31.4 5.55 - - - V0 [53] 

UDTGE, 

UDBME 

BAMPO DOPO-III ≈80 >28 >18 - - - - [35] 

ESO TA  57  8.7 - - -  [54] 
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