F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int, vol.41, pp.612-625, 2001.

Y. Dai, J. Henry, Z. Tong, X. Averty, J. Malaplate et al., Neutron/proton irradiation and He effects on the microstructure and mechanical properties of ferritic/martensitic steels T91 and EM10, J. Nuc

. Mater, , vol.415, pp.306-310, 2011.

J. Blach, L. Falat, and P. ?evc, Fracture characteristics of thermally exposed 9Cr-1Mo steel after tensile and impact testing at room temperature


M. El-may, N. Saintier, O. Devos, O. , A. Rozinoer et al., Effect of Corrosion on the Low-cycle Fatigue Strength of Steels used in Frequent Start-up Power Generation Steam Turbine, Proc. Eng, vol.133, pp.528-534, 2015.

I. Serre and J. Vogt, Heat treatment effect of T91 martensitic steel on liquid metal embrittlement

, J. Nucl. Mater, vol.376, pp.330-335, 2008.

K. Guguloth, S. Sivaprasad, D. Chakrabarti, and S. Tarafder, Low-cycle fatigue behavior of modified 9Cr-1Mo steel at elevated temperature, Mat. Sci. Eng, vol.604, pp.196-206, 2014.


P. Verma, S. N. Santhi, S. R. Singh, and . Vakilsingh, Low cycle fatigue behavior of modified 9Cr-1Mo steel at room temperature, Mat. Sci. Eng, vol.652, pp.30-41, 2016.


R. Kannan, R. Sandhya, V. Ganesan, M. Valsan, B. Sankara-rao et al., Effect of sodium environment on the low cycle fatigue properties of modified 9Cr-1Mo ferritic martensitic steel, J Nuc. Mater, vol.384, pp.286-291, 2009.

A. Verleene, J. B. Vogt, I. Serre, and A. Legris, Low cycle fatigue behaviour of T91 martensitic steel at 300 °C in air and in liquid lead bismuth eutectic, Int. J. Fatigue, vol.8, pp.843-851, 2006.


X. Gong, P. Marmy, L. Qing, B. Verlinden, M. Wevers et al., Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450°C, J Nuc. Mater, vol.468, pp.289-298, 2016.

D. Kalkhof, M. Grosse, and M. , Influence of PbBi environment on the low-cycle fatigue behavior of SNS target container materials, J Nuc. Mater, vol.318, pp.143-150, 2003.

T. Naoe, Z. Xiong, and M. Futakawa, Gigacycle fatigue behaviour of austenitic stainless steels used for mercury target vessels, J Nuc. Mater, vol.468, pp.331-338, 2016.


H. Tian, P. K. Liaw, J. P. Strizak, and L. K. Mansur, Fatigue properties of type 316LN stainless steel in air and mercury, J Nuc. Mater, vol.343, pp.134-144, 2005.

C. Ye and J. Vogt, Proriol Serre I. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: The role of loading rate and of the oxygen content in the liquid metal, Mat. Sci. Eng, vol.608, pp.242-248, 2014.

K. Thomsen, N. H. Schmidt, A. Bewick, K. Larsen, and J. Goulden, Improving the Accuracy of Orientation Measurements using EBSD, Microsc. Microanal, vol.19, pp.724-725, 2013.

J. Goulden and A. Bewick, The Application of the AZtec EBSD System to the Study of Strain in the SEM, Microsc. Microanal, vol.22, pp.18-19, 2016.

X. Gong, P. Marmy, B. Verlinden, M. Wevers, and M. Seefeldt, Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350 °C -Effects of oxygen concentration in the liquid metal and strain rate, Corr. Sci, vol.94, pp.377-391, 2015.


G. Seidametova and J. Vogt, Proriol Serre I. The early stage of fatigue crack initiation in a 12%Cr martensitic steel, Int. J. Fatigue, vol.106, pp.38-48, 2018.

M. N. Batista, M. C. Marinelli, and S. Hereñú, Alvarez-Armas I. The role of microstructure in fatigue crack initiation of 9-12%Cr reduced activation ferritic-martensitic steel, Int. J. Fatigue, vol.72, pp.75-79, 2015.


K. Koschella and U. Krupp, Investigations of fatigue damage in tempered martensitic steel in the HCF regime, Int. J. Fatigue, vol.124, pp.113-122, 2019.

N. S. Stoloff and T. L. Johnston, Crack propagation in a liquid metal environment, Acta. Metal, vol.11, issue.63, pp.90180-90189, 1963.

A. R. Westwood and M. H. Kamdar, Concerning liquid metal embrittlement, particularly of zinc monocrystals by mercury, Philos Mag, vol.8, pp.787-804, 1963.


S. P. Lynch, Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process, Acta. Metall, vol.36, pp.2639-2661, 1988.

P. Serre, I. Vogt, J. Nuns, and N. , ToF-SIMS investigation of absorption of lead and bismuth in T91 steel deformed in liquid lead bismuth eutectic, Applied Surf. Sci, vol.471, pp.36-42, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02308679


T. Auger, S. Hémery, M. Bourcier, C. Berdin, M. Martin et al., Crack path in liquid metal embrittlement: experiments with steels and modelling, Frattura ed Integrità Strutturale, vol.35, pp.250-259, 2016.