H. Wang, Formation of nascent soot and other condensed-phase materials in flames, Proceedings of the Combustion Institute, vol.33, issue.1, pp.41-67, 2011.

A. , Combustion-formed nanoparticles, Proceedings of the Combustion Institute, vol.32, issue.1, pp.593-613, 2009.

D. Aubagnac-karkar, A. El-bakali, and P. Desgroux, Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method, Combustion and Flame, vol.189, pp.190-206, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02335046

C. Gu, H. Lin, J. Camacho, B. Lin, C. Shao et al., Particle size distribution of nascent soot in lightly and heavily sooting premixed ethylene flames, Combustion and Flame, vol.165, pp.177-187, 2016.

A. D. Abid, N. Heinz, E. D. Tolmachoff, D. J. Phares, C. S. Campbell et al., On evolution of particle size distribution functions of incipient soot in premixed ethylene?oxygen?argon flames, Combustion and Flame, vol.154, issue.4, pp.775-788, 2008.

M. Commodo, G. De-falco, A. Bruno, C. Borriello, P. Minutolo et al., Physicochemical evolution of nascent soot particles in a laminar premixed flame: from nucleation to early growth, Combustion and Flame, vol.162, issue.10, pp.3854-3863, 2015.

M. M. Maricq, S. J. Harris, and J. J. Szente, Soot size distributions in rich premixed ethylene flames, Combustion and Flame, vol.132, issue.3, pp.328-342, 2003.

S. Chowdhury, W. R. Boyette, and W. L. Roberts, Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer, Journal of Aerosol Science, vol.106, pp.56-67, 2017.

J. Simonsson, N. Olofsson, S. Török, P. Bengtsson, and H. Bladh, Wavelength dependence of extinction in sooting flat premixed flames in the visible and near-infrared regimes, Applied Physics B, vol.119, issue.4, pp.657-667, 2015.

B. Tian, Y. Gao, S. Balusamy, and S. Hochgreb, High spatial resolution laser cavity extinction and laser-induced incandescence in low-soot-producing flames, Applied Physics B, vol.120, issue.3, pp.469-487, 2015.

H. Bladh, J. Johnsson, N. Olofsson, A. Bohlin, and P. Bengtsson, Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame, Proceedings of the Combustion Institute, vol.33, issue.1, pp.641-648, 2011.

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux et al., Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame, Applied Physics B, vol.118, issue.3, pp.449-469, 2015.

S. Maffi, S. De-iuliis, F. Cignoli, and G. Zizak, Appl. Phys. B, vol.104, p.357, 2011.

F. Migliorini, K. A. Thomson, and G. J. Smallwood, Investigation of optical properties of aging soot, Applied Physics B, vol.104, issue.2, pp.273-283, 2011.

T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-anttila, Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames, International Journal of Heat and Mass Transfer, vol.50, issue.7-8, pp.1616-1630, 2007.

N. Moteki and Y. Kondo, Method to measure time-dependent scattering cross sections of particles evaporating in a laser beam, Journal of Aerosol Science, vol.39, issue.4, pp.348-364, 2008.

H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications, Progress in Energy and Combustion Science, vol.51, pp.2-48, 2015.

N. Olofsson, J. Simonsson, S. Török, H. Bladh, and P. Bengtsson, Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering, Applied Physics B, vol.119, issue.4, pp.669-683, 2015.

F. Goulay, P. E. Schrader, X. López-yglesias, and H. A. Michelsen, A data set for validation of models of laser-induced incandescence from soot: temporal profiles of LII signal and particle temperature, Applied Physics B, vol.112, issue.3, pp.287-306, 2013.

H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc et al., Modeling laser-induced incandescence of soot: a summary and comparison of LII models, Applied Physics B, vol.87, issue.3, pp.503-521, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00618142

C. Geigle, C. Mounaïm-rousselle, R. Schulz, B. Stirn, R. Tribalet et al., Appl. Phys. B, vol.87, p.503, 2007.

C. M. Sorensen, Light Scattering by Fractal Aggregates: A Review, Aerosol Science and Technology, vol.35, issue.2, pp.648-687, 2001.

P. Minutolo, G. Gambi, and A. D'alessio, The optical band gap model in the interpretation of the UV-visible absorption spectra of rich premixed flames, Symposium (International) on Combustion, vol.26, issue.1, pp.951-957, 1996.

J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle et al., Examination of wavelength dependent soot optical properties of diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements, Applied Physics B, vol.104, issue.2, pp.253-271, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01613299

K. O. Johansson, F. El-gabaly, P. E. Schrader, M. F. Campbell, and H. A. Michelsen, Evolution of maturity levels of the particle surface and bulk during soot growth and oxidation in a flame, Aerosol Science and Technology, vol.51, issue.12, pp.1333-1344, 2017.

X. López-yglesias, P. E. Schrader, and H. A. Michelsen, Soot maturity and absorption cross sections, Journal of Aerosol Science, vol.75, pp.43-64, 2014.

C. Betrancourt, F. Liu, P. Desgroux, X. Mercier, A. Faccinetto et al., Investigation of the size of the incandescent incipient soot particles in premixed sooting and nucleation flames of n-butane using LII, HIM, and 1 nm-SMPS, Aerosol Science and Technology, vol.51, issue.8, pp.916-935, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02336601

P. Desgroux, A. Faccinetto, X. Mercier, T. Mouton, D. Aubagnac-karkar et al., Comparative study of the soot formation process in a ?nucleation? and a ?sooting? low pressure premixed methane flame, Combustion and Flame, vol.184, pp.153-166, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02315800

T. Mouton, X. Mercier, M. Wartel, N. Lamoureux, and P. Desgroux, Laser-induced incandescence technique to identify soot nucleation and very small particles in low-pressure methane flames, Applied Physics B, vol.112, issue.3, pp.369-379, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01056655

H. Bladh, N. Olofsson, T. Mouton, J. Simonsson, X. Mercier et al., Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence, Proceedings of the Combustion Institute, vol.35, issue.2, pp.1843-1850, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02315797

P. Bengtsson and . Desgroux, Proceedings of the Combustion Institute, vol.35, p.1843, 2015.

A. D'alessio, A. D'anna, P. Minutolo, and L. A. Sgro, Combustion Generated Fine Carbonaceous Particles, p.206, 2007.

L. A. Sgro, A. C. Barone, M. Commodo, A. D?alessio, A. De-filippo et al., Measurement of nanoparticles of organic carbon in non-sooting flame conditions, Proceedings of the Combustion Institute, vol.32, issue.1, pp.689-696, 2009.

M. R. Kholghy, G. A. Kelesidis, and S. E. Pratsinis, Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation, Physical Chemistry Chemical Physics, vol.20, issue.16, pp.10926-10938, 2018.

E. Therssen, Y. Bouvier, C. Schoemaecker-moreau, X. Mercier, P. Desgroux et al., Determination of the ratio of soot refractive index function E(m) at the two wavelengths 532 and 1064 nm by laser induced incandescence, Applied Physics B, vol.89, issue.2-3, pp.417-427, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02315772

S. Bejaoui, R. Lemaire, P. Desgroux, and E. Therssen, Experimental study of the E(m, ?)/E(m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature, Applied Physics B, vol.116, issue.2, pp.313-323, 2013.

J. Yon, E. Therssen, F. Liu, S. Bejaoui, and D. Hebert, Influence of soot aggregate size and internal multiple scattering on LII signal and the absorption function variation with wavelength determined by the TEW-LII method, Applied Physics B, vol.119, issue.4, pp.643-655, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01612358

H. A. Michelsen, P. E. Schrader, and F. Goulay, Erratum to ?Wavelength and temperature dependence of the absorption and scattering cross sections of soot? [Carbon 48 (2010) 2175?2191], Carbon, vol.50, issue.2, p.740, 2012.

R. P. Bambha, M. A. Dansson, P. E. Schrader, and H. A. Michelsen, Effects of volatile coatings on the laser-induced incandescence of soot, Applied Physics B, vol.112, issue.3, pp.343-358, 2013.

Y. Bouvier, C. Mihesan, M. Ziskind, E. Therssen, C. Focsa et al., Molecular species adsorbed on soot particles issued from low sooting methane and acetylene laminar flames: A laser-based experiment, Proceedings of the Combustion Institute, vol.31, issue.1, pp.841-849, 2007.

P. Desgroux, X. Mercier, B. Lefort, R. Lemaire, E. Therssen et al., Soot volume fraction measurement in low-pressure methane flames by combining laser-induced incandescence and cavity ring-down spectroscopy: Effect of pressure on soot formation, Combustion and Flame, vol.155, issue.1-2, pp.289-301, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02315773

N. Olofsson, H. Bladh, A. Bohlin, J. Johnsson, and P. Bengtsson, Are Sooting Premixed Porous-Plug Burner Flames One-Dimensional? A Laser-Based Experimental Investigation, Combustion Science and Technology, vol.185, issue.2, pp.293-309, 2013.

F. Migliorini, S. Deiuliis, F. Cignoli, and G. Zizak, How ?flat? is the rich premixed flame produced by your McKenna burner?, Combustion and Flame, vol.153, issue.3, pp.384-393, 2008.

X. Mercier and P. Desgroux, Cavity Ring-Down Spectroscopy for Combustion Studies, Cavity Ring-Down Spectroscopy, pp.273-311
URL : https://hal.archives-ouvertes.fr/hal-02315781

R. L. Vander-wal and T. M. Ticich, Cavity ringdown and laser-induced incandescence measurements of soot, Applied Optics, vol.38, issue.9, p.1444, 1999.

F. Liu and G. J. Smallwood, Relationship between soot volume fraction and LII signal in AC-LII: effect of primary soot particle diameter polydispersity, Applied Physics B, vol.112, issue.3, pp.307-319, 2013.

H. A. Michelsen, Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles, The Journal of Chemical Physics, vol.118, issue.15, pp.7012-7045, 2003.

E. Cenker and W. L. Roberts, Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII, Applied Physics B, vol.123, issue.3, p.74, 2017.

F. Goulay, L. Nemes, P. E. Schrader, and H. A. Michelsen, Spontaneous emission from C2(d3?g) and C3(A1?u) during laser irradiation of soot particles, Molecular Physics, vol.108, issue.7-9, pp.1013-1025, 2010.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will et al., Laser-induced incandescence: recent trends and current questions, Applied Physics B, vol.83, issue.3, pp.333-354, 2006.

D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame, Combustion and Flame, vol.136, issue.1-2, pp.180-190, 2004.

H. A. Michelsen, P. E. Schrader, and F. Goulay, Wavelength and temperature dependences of the absorption and scattering cross sections of soot, Carbon, vol.48, issue.8, pp.2175-2191, 2010.

J. Yon, A. Bescond, and F. Ouf, A simple semi-empirical model for effective density measurements of fractal aggregates, Journal of Aerosol Science, vol.87, pp.28-37, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01612363

D. R. Snelling, K. A. Thomson, F. Liu, and G. J. Smallwood, Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame, Applied Physics B, vol.96, issue.4, pp.657-669, 2009.

J. Reimann, S. Kuhlmann, and S. Will, 2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS), Applied Physics B, vol.96, issue.4, pp.583-592, 2009.