S. C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater Sci Eng R Rep, vol.74, issue.10, pp.281-350, 2013.

R. George, K. T. Kashyap, and R. Rahul, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scr Mater, vol.53, issue.10, pp.1159-1163, 2005.

D. H. Nam, S. I. Cha, and B. K. Lim, Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites, Carbon N Y, vol.50, issue.7, pp.2417-2423, 2012.

F. Mokdad, D. Chen, and Z. Liu, Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite, Carbon N Y, vol.104, pp.64-77, 2016.

Y. Wang, M. Chen, and F. Zhou, High tensile ductility in a nanostructured metal, Nature, vol.419, issue.6910, pp.912-915, 2002.

Y. T. Zhu and X. Liao, Nanostructured metals: retaining ductility, Nat Mater, vol.3, issue.6, pp.351-352, 2004.

G. E. Dieter, Mechanical metallurgy, SI metric edition. London: McGraw-Hill, 1988.

S. Yoo, S. Han, and W. Kim, Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes, Scr Mater, vol.68, issue.9, pp.711-714, 2013.

S. Dong, J. Zhou, and D. Hui, A quantitative understanding on the mechanical behaviors of carbon nanotube reinforced nano/ultrafine-grained composites, Int J Mech Sci, vol.101, issue.102, pp.29-37, 2015.

S. Dong, J. Zhou, and D. Hui, Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites, Compos A: Appl Sci Manuf, vol.68, pp.356-364, 2015.

G. Fribourg, Y. Bréchet, and A. Deschamps, Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy, Acta Mater, vol.59, issue.9, pp.3621-3635, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639972

X. Feaugas, On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress, Acta Mater, vol.47, issue.13, pp.3617-3632, 1999.

M. Yang, Y. Pan, and F. Yuan, Back stress strengthening and strain hardening in gradient structure, Mater Res Lett, vol.4, issue.3, pp.145-151, 2016.

M. Delince, Y. Brechet, and J. D. Embury, Structureproperty optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model, Acta Mater, vol.55, issue.7, pp.2337-2350, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00204832

R. Xu, Z. Tan, and D. Xiong, Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling, Compos A: Appl Sci Manuf, vol.96, pp.57-66, 2017.

X. Wu, M. Yang, and F. Yuan, Heterogeneous lamella structure unites ultrafine-grain strength with coarsegrain ductility, Proc Natl Acad Sci U S A, vol.112, issue.47, pp.14501-14505, 2015.

P. Withers, W. Stobbs, and O. Pedersen, The application of the Eshelby method of internal stress determination to short fibre metal matrix composites, Acta Metall, vol.37, issue.11, pp.3061-3084, 1989.

X. Feaugas and H. Haddou, Effects of grain size on dislocation organization and internal stresses developed under tensile loading in FCC metals, Philos Mag, vol.87, issue.7, pp.989-1018, 2007.

C. Sinclair, W. Poole, and Y. Bréchet, A model for the grain size dependent work hardening of copper, Scr Mater, vol.55, issue.8, pp.739-742, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00140262

L. M. Brown and D. R. Clarke, Work hardening due to internal stresses in composite materials, Acta Metall, vol.23, issue.7, pp.821-830, 1975.

J. Da-costa-teixeira, L. Bourgeois, and C. Sinclair, The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: towards a prediction of the strength-elongation correlation, Acta Mater, vol.57, issue.20, pp.6075-6089, 2009.

H. Proudhon, W. J. Poole, and X. Wang, The role of internal stresses on the plastic deformation of the Al-Mg-Si-Cu alloy AA6111, Philos Mag, vol.88, issue.5, pp.621-640, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00358498

P. Beauchamp and J. Lepinoux, Image force on a dislocation in a bcc bicrystal: computer investigation of core effects

, Philos Mag A: Phys Condens Matter Struct Defects Mech Prop, vol.81, issue.5, pp.1187-1205, 2001.

C. Nan and C. D. , The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites, Acta Mater, vol.44, issue.9, pp.3801-3811, 1996.

D. Kuhlmann-wilsdorf and N. Hansen, Geometrically necessary, incidental and subgrain boundaries, Scr Metall Mater, vol.25, issue.7, pp.1557-1562, 1991.

O. Rezvanian, M. Zikry, and A. Rajendran, Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling, Proc R Soc A, vol.463, pp.2833-2853, 2007.

M. Ashby, The deformation of plastically nonhomogeneous materials, Philos Mag, vol.21, issue.170, pp.399-424, 1970.

L. Jiang, Z. Li, and G. Fan, Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes, Scr Mater, vol.66, issue.6, pp.331-334, 2012.

E. I. Salama, A. Abbas, and A. M. Esawi, Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites, Compos A: Appl Sci Manuf, vol.99, pp.84-93, 2017.