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ABSTRACT
Ceramic particles have been introduced intometal matrices to improve the strength and stiffness of
metals, albeit at the cost of the ductility unfortunately. Simultaneously increasing the strength and
ductility of metal matrix composites (MMCs) is still a challenge. Accumulative orthogonal extrusion
process (AOEP), which disperses nanoparticles and refines grain structures of particles reinforced
MMCs via severe plastic deformation, is proposed in this paper. The high strength (687MPa) and
superior ductility (14.8%) are simultaneously achieved in the resultant TiB2 particles reinforced
Al–Zn–Mg–Cu matrix composites, and the underlying mechanisms are discussed in terms of par-
ticles’ influences.

IMPACT STATEMENT
An easily realized SPD technology is proposed to effectively optimize the structures of nanoparti-
cles reinforced composites in industrial scale. High strength and good ductility are simultaneously
achieved in the resultant composites.
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In the past decades, particulate reinforced metal matrix
composites (Particle-MMCs) have developed to be one
of the potential structural materials due to their high
strength and stiffness. Many kinds of micron sized par-
ticles, such as SiC [1], B4C [2], Al2O3 [3], are introduced
in metal matrices to improve the strength and Young’s
modulus of the materials albeit at the cost of the ductility.
Thus, new technologies are proposed to simultaneously
increase the strength and ductility of MMCs. Recently,
Chen et al [4] successfully introduced uniform nanopar-
ticles into metal matrices, and the final nanocomposites
presented ultrahigh strength and good plasticity as well.
It has demonstrated that uniformly distributed nano-
reinforcements can simultaneously improve the strength
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and ductility of MMCs. Specifically, in the Al-based
composites, the novel nano-sized reinforcements such as
carbon nanotubes (CNTs) [5, 6], graphene nanosheets
(GNSs) [7, 8] and nanoparticles (nano-TiB2, nano-SiC,
etc) [9, 10] are added in Al matrices aiming at fur-
ther improved mechanical performance. Although these
efforts have been performed to a certain extent, the
ultrahigh strength (σ 0.2 > 600MPa) and good ductil-
ity (ε > 10%) are still rarely obtained concurrently in
Al-based nanocomposites.

Clustering is one of the major problems in nanoparti-
cles reinforced MMCs (NanoP-MMCs), especially when
the composites are fabricated via solidification pro-
cess [11]. Nanoparticles tend to be pushed by the
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solidification front and therefore cluster at the grain
boundaries in the casted NanoP-MMCs [12]. Although
the plastic deformations such as hot extrusion [13]
and rolling [14] have been utilized to optimize the
microstructures of NanoP-MMCs, where the strains are
not effective to disperse the clusters of nanoparticles.
Thereafter, the severe plastic deformation (SPD) tech-
niques which impose extremely high strains, including
equal channel angular pressing [15], high pressure tor-
sion [16], are employed and can neither uniform the
nanoparticles completely. Only the friction stir process-
ing (FSP) [17] has been proved capable of well dispers-
ing the nanoparticles in NanoP-MMCs, but FSP usually
introduces flaws like pores in materials [18]. Further-
more, all these SPD processes are particularly demanding
and limited in work-piece size, therefore it is difficult to
be widely applied in producing bulk NanoP-MMCs in
industry. Herein, an easy-to-use SPD technology with
large processing size is eagerly needed to optimize the
structures of bulk NanoP-MMCs.

In this study, an easily realized accumulative orthog-
onal extrusion process (AOEP) is innovatively proposed
to disperse the clusters of nanoparticles in the in-situ syn-
thesized NanoP-MMCs. It is found that the novel AOEP
processes can effectively disperse the nanoparticles and
refine the grain structures in composites. The resultant

bulk NanoP-MMCs have a high strength of 687MPa as
well as a good ductility of 14.8%.

The NanoP-MMCs in this study are 6 wt.% nano-
TiB2 particles reinforced Al–6.9Zn–2.3Mg–2.4Cu alloys
(nominal in wt.%) matrix composites (Nano-TiB2/Al–
Zn–Mg–Cu). The composites were firstly fabricated
using an in-situ mixed salt method, as described in
[19]. According to our former study [20], the TiB2 par-
ticles in Al matrices display a wide size distribution
from several nanometers to hundreds of nanometers, but
with a dominant fraction at the nanoscale (<100 nm).
Figure 1(b) is the micrograph of the in-situ casted Nano-
TiB2/Al–Zn–Mg–Cu composites showing that TiB2 par-
ticles agglomerate at grain boundaries to form clusters
with alloy elements segregations.

The as-casted composites were processed by a novel
AOEP technology involving two steps of unidirec-
tional extrusion and the subsequent orthogonal extru-
sion (Figure 1(a)). Details of the processing procedures
are provided in the supplemental materials (Figure S1).
Figure 1(c) is themicrographof unidirectionally extruded
composites, and it shows that the former TiB2 particles
clusters have been transformed to parallel bands of par-
ticles along the unidirectional extrusion direction (ED
1). Figure 1(d) exhibits the TiB2 particles distributions
in composites after orthogonal extrusion, showing the

Figure 1. (a) The flow process chart of AOEP in this study. The SEM images of Nano-TiB2/Al–Zn–Mg–Cu composites in (b) in-situ casted
state, (c) unidirectional extrusion and (d) AOEPed state, correspondingly. (e) SEMmicrograph of AOEPed Nano-TiB2/Al–Zn–Mg–Cu com-
posites after T6 treatment and the inset gives the corresponding Ti element distribution in EDX. (f ) is the enlarged SEM image showing
the details of nano-TiB2 particles.
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dispersion of the formerly clustered TiB2 particles in Al
matrices.

The AOEPed composites were subjected to solid-
solution at 475°C for 60 mins, quenched in water and
aged at 120°C for 20 h (T6 treatment) before the ten-
sile tests. The dog-bone tensile test specimens were
machined along the orthogonal extrusion direction (ED
2) with gauge length of 2mm× 3mm× 10mm, and ten-
sile tests were carried out on a Zwick/Roell machine at a
strain rate of 10−4/s and 10−3/s at room temperature. A
TESCAN MAIA3 scanning electron microscope (SEM),
equipped with a BRUKER e-FlashHR electron backscat-
ter diffraction (EBSD) detector and energy dispersive
X-ray spectroscopy (EDX), was used for studying the
distributions of TiB2 particles and grain structures of Al
matrices in composites. Geometrically necessary disloca-
tions (GNDs) maps in composites after tensile tests were
estimated from the automated crystal orientation map-
ping (ACOM), acquired by a FEI Tencai G2 transmission
electron microscope, operated at 200 kV and equipped
with a Nanomega Astar precession unite (TEM/ASTAR).
An electron probe size of around 1–2 nm and a step size
of 5 nmwere used to reveal the nanoscale characteristics.
The matrix alloys were fabricated by the same processes
as a counterpart, whose grain structures and mechanical
properties were also identified as above.

Figure 1(e) is the SEM micrograph of AOEPed com-
posites after T6, where the corresponding Ti element dis-
tribution in EDX map is given by the inset. The enlarged
image (Figure 1(f)) gives the details of nano-TiB2 par-
ticles. The result shows the two-step AOEP technology
can effectively disperse the TiB2 particles and promote
the dissolution of alloy elements segregations (Figures S2
and S3) in the resultant composites.

Figure 2(a, c) shows the grain structures of Al matri-
ces after AOEP, which consist of short ribbon grains and
fine equiaxial grains, and detailed grain evolutions dur-
ing AOEP are given in Figure S4. The inset in Figure 2(a)
is the corresponding grain size distribution ofAlmatrices
with an average grain size of 2.0 μm, which is much finer
than the grain structures (6.8 μm) of AOEPed matrix
alloys (Figure S5). Figure 2(b, d) gives the resultant grain
structures of composites after T6 treatment. The grain
structures still consist of ribbon grains and embedded
equiaxial grains, and the grains have only slightly grown
to an average grain size of 2.8 μm. Therefore, besides of
dispersing nanoparticles, the AOEP refines the Al matri-
ces as well. The uniformly redistributed TiB2 particles
can effectively hinder the migrations of grain boundaries
and inhibit the grain coarsening during the subsequent
heat treatment.

Figure 3(a) is the tensile strain–stress curve of the
Nano-TiB2/Al–Zn–Mg–Cu composites. It shows that

the as-casted composites after T6 treatment exhibit
a yield strength (YS) of only 482MPa and fracture
at a strain below 2%. After AOEP, much higher YS
of 610MPa, ultimate strength (UTS) of 687MPa and
good ductility of 14.8% are concurrently achieved in
the resultant composites (Figure S6). Figure 3(b) com-
pares the mechanical properties of the AOEPed Nano-
TiB2/Al–Zn–Mg–Cu composites with those of other Al
matrix MMCs in literatures [1, 2, 5, 7, 8, 21–33]. It shows
that the AOEPedNano-TiB2/Al–Zn–Mg–Cu composites
have nearly twofold strength over those of the reported
Particle-MMCs andGNSs-MMCs exhibiting comparable
ductility. Moreover, its ductility is almost twice as high
as that of NanoP-MMCs with the equivalent strength.
Consequently, the mechanical behavior of composites
in this study stands out from the trend, suggesting
a superior combination of mechanical properties with
enhanced toughness as the nanostructure-hierarchy Al
alloys with known mechanical performance boundaries
[34]. The mechanical properties of the AOEPed matrix
alloys (609MPa and 12.6%) are also given in Figure 3(b),
which are much lower than those of AOEPed compos-
ites. Thus, the superiormechanical properties of resultant
composites are mainly stem from the influences of TiB2
particles.

First of all, the uniformnano-TiB2 particles contribute
predominantly to the high strength of AOEPed compos-
ites through the Orowan mechanism [4]:

�σOrowan = φGmb
dp

(
6Vp

π

)1/3
, (1)

where Gm, b, Vp and dp are the shear modulus of the
matrix, the Burgers vector, the volume fraction and the
size of nanoparticles, correspondingly. φ is a constant
equal to 2. Considering that in this study, Gm = 28GPa,
b = 0.283 nm, Vp = 0.022 and dp = 33 nm [20], the
�σOrowan offered by TiB2 is estimated to be 167MPa,
which is much higher than the increased strength
(120MPa) from coarse-grain 7XXX alloys to UFG 7XXX
alloys [35]. Apart from the nano-TiB2 particles, fine
grain structures, solid-solution and second phase nano-
precipitates (Figure S7) strengthening in Al–Zn–Mg–Cu
matrices contribute to strengthen the composites. Thus,
although the composites fabricated in this study have
coarser grain structures (2.8 μm) than the SPDed 7XXX
Al alloys with UFG (<1 μm) structures or nanocrys-
tallines (<100 nm), the composites are stronger than
most of the SPDed 7XXX Al alloys, as shown in
Figure 3(b).

A good ductility is also obtained in AOEPed Nano-
TiB2/Al–Zn–Mg–Cu composites, which could be mainly
attributed to two factors:
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Figure 2. EBSD maps of AOEPed Nano-TiB2/Al–Zn–Mg–Cu composites in (a) deformation state and (b) T6 state, the insets depict the
corresponding grain size distribution of composites and the statistic average grain sizes are also given by labels. High angle grain bound-
aries (θ > 15°) aremarked in thick black lines, while low (5° < θ < 15°) and very low (2° < θ < 5°) angle grain boundaries aremarked
in thin black and lime green lines, correspondingly. The color codes representing the crystal orientation in IPF images are also given in
(b). (c) and (d) are the corresponding Ti element distributions in EDX of (a) and (b).

Figure 3. (a) The tensile strain–stress curves of theNano-TiB2/Al–Zn–Mg–Cu composites. Thehollow square is the 0.2%offset yield point
and black solid square is the ultimate strength point. The inset compares the elongations of composites at a strain rate of 10−3/s and
10−4/s. (b) Strength versus tensile ductility of the AOEPed composites andmatrix alloys, other Al-based MMCs and SPDed 7XXX alloys in
literatures.
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Figure 4. (a) TEM image of Nano-TiB2/Al–Zn–Mg–Cu composites after tensile tests. (b) is the corresponding phases map of (a). (c) is
the corresponding GNDs map of (a), and the white dash circle and arrows indicate regions with high GNDs densities surrounding TiB2
particles. (d) The normalized work-hardening rate of Nano-TiB2/Al–Zn–Mg–Cu composites and reported 7XXX alloys with true strains.
(e) SEM fracture surface images of Nano-TiB2/Al–Zn–Mg–Cu composites, red dash circles and red arrows point out the submicron and
nano-TiB2 particles in dimples respectively.

(1) A high work-hardening rate. Figure 4(a–c) demon-
strates the structures and GNDs distributions in
the composite samples after tensile tests from
TEM/ASTAR analysis. It can be seen that both sub-
micron and nano-TiB2 particles in matrices can
effectively trap the dislocations (Figures 4(c) and S7).
A large amount of dislocations are notably accumu-
lated around these TiB2 particles in Al matrices dur-
ing plastic deformation (Figures 4(a) and S7), which
will result in a better work-hardening rate. A high
work-hardening rate can delay localized deforma-
tion (necking) under tensile stress and is essential for
the good uniform elongation [36]. Figure 4(d) shows
the normalized work-hardening rate of AOEPed

Nano-TiB2/Al–Zn–Mg–Cu composites with true
strains, and the comparison with the normal-
ized work-hardening rate of nano-grained 7XXX
alloys [36]. It shows that the AOEPed composites
have the highest work-hardening rate, and there-
fore exhibit a large uniform elongation of 11.7%.
Figure 4(e) shows the fracture surface of AOEPed
Nano-TiB2/Al–Zn–Mg–Cu composites. The frac-
ture surface consists of deep and small dimples,
with both submicronTiB2 particles (red dash circles)
and dense nano-TiB2 particles (red arrows) located
in the cores of dimples. This result further con-
firms that the dislocations have been accumulated
around these particles during plastic deformation
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as discussed above, finally inducing ductile fracture
(Figure S8).

(2) The great strain rate sensitivity. The inset in
Figure 3(a) gives the uniform and post-necking
elongations of AOEPed Nano-TiB2/Al–Zn–Mg–Cu
composites at strain rate of 10−3 /s and 10−4

/s respectively, which illustrates that the compos-
ites exhibit a twofold elongation after necking at
the slower strain rate. This result indicates that
theAOEPedNano-TiB2/Al–Zn–Mg–Cu composites
have a great strain rate sensitivity, contributing to the
resultant post-necking ductility as well [37].

In summary, the newly proposed AOEP technology is
proved effective to disperse the clusters of in-situ synthe-
sized nanoparticles in MMCs and refine the grain struc-
tures ofmatrices. Both high strength (687MPa) and good
ductility (14.8%) are achieved in the resultant compos-
ites. Combined with a high Young’s modulus of 78GPa
(Figure S6), our composites are a desirable lightweight
material for situations where both strength and ductility
are highly demanded. It is also noteworthy that theAOEP
is repeatable (Figure S1) and can be iterated to further
refine the grain structures and modify the mechanical
properties of MMCs. Moreover, the novel AOEP tech-
nology offers the possibility of achieving industrially bulk
SPDed samples by conventional extrusion facilities, so it
is promising to be applied to process otherNanoP-MMCs
in industry.
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