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Abstract 

In the context of Al- and Mn-doped ferritic steels, we progressively elaborate an atomic- 

scale energy model to reproduce the thermodynamic behavior of quaternary Fe-Al-Mn-

C on a bcc lattice. This model is built on physical concepts: DFT calculations, pair 

Hamiltonians, non-configurational thermal effects, these elements being combined in a 

reasoned way to lead to a mastered and predictive formulation. In particular, this 

approach allows to explore the correlation between ordering in substitutional ternary Fe-

Al-Mn and interstitial carbon, which brings new elements to the metallurgy of carbon in 

ferritic steels. 

I Introduction 

Current economic and ecological policies encourage car manufacturers to limit gas 

emissions, and reducing the mass of vehicles keeping their robustness and ductility 

would help to satisfy these criteria. One approach in this direction consists in lightening 

the materials, especially the steel-made parts. In the automotive sector, the research is 

mainly concerned with advanced high-strength steels (AHSS). For such multiphase 

steels, heat treatments are important because they monitor the phase fractions, as well as 

the chemical composition which plays an important role. In particular, adding 

manganese increases the proportion of austenite at equilibrium while aluminum 

stabilizes ferrite while contributing to an important decrease of the density. In the 

following, we are therefore interested in Fe-Al-Mn-C alloys (with high Fe content). 

Considering the iron-rich corner of this quaternary system, our starting point is the iron-

aluminum binary system, studied extensively [1-3] for several decades. Its well-known 

equilibrium phase diagram, determined by experimental techniques, is recalled in the 
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Supplemental Material (Figure S1). On the iron-rich side, there are three bcc-based 

compounds: the A2 solid solution, the Fe3Al ordered compound with D03 structure, and 

the FeAl ordered compound with B2 structure. The Fe-Mn phase diagram, also well-

known (not displayed for brevity), indicates that the presence of Mn strongly stabilizes 

the fcc Fe(Mn) solid solution on a large composition and temperature range. The Al-Mn 

phase diagram contains many stable phases at different compositions, which however 

are not based on a bcc or an fcc lattice. In the Fe-Al-Mn system based on the bcc lattice, 

the Fe2AlMn compound has an L21 ordered structure below 898 K, then becomes B2 

before moving gradually to the A2 solid solution up to 1677 K and finally melting at 

1686 K [4]. However, the L21 compound is not perfectly stoichiometric and its 

composition can include up to 10% additional iron [4,5]. Turning towards the role of 

carbon, the Fe-C solid solution was studied using various theoretical approaches that 

showed that C-C interactions in bcc Fe should be essentially repulsive [6-7]. Similar 

previous studies were also concerned by the mechanisms underlying the α � α’ 

martensitic transformation [8-15]. These studies were mainly devoted to unraveling the 

complex influence of more or less long-range elasticity-driven C-C interactions on the 

formation of diluted Fe-C ordered compounds with various orderings of C on octahedral 

sites. Using various theoretical/simulation approaches, these works revealed persistent 

uncertainties about the relative stabilities of such compounds, in particular those with 

compositions Fe16C or Fe16C2, which confirms that the behaviour of C in iron currently 

remains an intricate issue coupling thermodynamics and elasticity. Since such valuable 

investigations required input parameters, e.g. long-range C-C binding energies and local 

relaxations, extracted from atomic-scale simulations, their reliability was restricted 

somewhat by (i) the limited size of the supercells used in ab initio calculations, and (ii) 

the quality of the empirical EAM potentials used for larger supercells. Finally, since our 

study, being not primarily aimed at pursuing these investigations of Fe-C, is more 

focused on the complementary issue of interactions between C and substitutional 

elements in steels, it is worth mentioning several simulation works devoted to the study 

of Fe-Al-C by means of ab initio and Calphad calculations [16-18], were mainly 

intended to understand the role of the fcc-based κ-Fe3AlC “kappa” compound in the 

phase diagram, and a work on Fe-Ni-C [19] focused on the influence of Ni on 

martensite tetragonality. In spite of these works, the effect of interactions between C 
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and substitutional elements on thermodynamics and phase diagrams remains largely 

unknown. It is our aim to bring information on these topics. 

Throughout this study, the whole alloy energetics will be described by means of cluster 

Hamiltonians [20,21] restricted to short-ranged pair interactions, namely referred to as 

"on-site" or Ising models [22], allowing for each microscopic configuration, i.e. site 

occupancies, to calculate the associated energy and therefore to explore the 

configurational thermodynamics of the system, thus providing a convenient tool to 

compute phase diagrams from atomic-scale modeling [23]. Although it might a priori 

seem quite strong, our hypothesis of using only pair Hamiltonians benefits from at least 

two justifications. Firstly, it is made mandatory by the need to maintain tractability 

when investigating the thermodynamic properties of more or less multicomponent 

alloys such as Fe-Al-Mn-C, keeping in mind that we wish to ensure that the approach 

can be extended to chemically even more heavy (quinary, senary,…) systems. Secondly, 

previous works on binary metallic alloys (Pt-V [24] or Al-Zr. [25]) have shown that 

reasonable models can be achieved by means of short-range pair interactions. More 

recently, cluster Hamiltonians were developed [26] for chemically complex bcc-based 

alloys up to quinary Mo-Nb-Ta-V-W, which required a large amount of DFT 

calculations, and pointed out that the first- and second-neighbor pair interactions are 

significant while third-neighbor pair interactions are much weaker. 

Even in the absence of multibody interactions, it should be noted that notably increasing 

the complexity of the topic, could also be taken into account in pair Hamiltonians, 

which may thus (i) explicitly include magnetic interactions [27,28], (ii) try to account 

for long-range pair interactions through a mixed character, lying both in real space and 

in reciprocal space [29-31], or (iii) include composition-dependent cluster interactions 

[32]. On the whole, the numerous works on this delicate topic clearly lead to conclude 

that the selection of an appropriate cluster Hamiltonian taking into account these 

methodological extensions may quickly become complex and even intractable when the 

number of chemical species increases. In this context, and to maintain tractability in this 

work on quaternary body-centered Fe-Al-Mn-C, we therefore consider only pair 

interactions, referred to as effective cluster interactions afterward since the energy 

coefficients of a cluster Hamiltonian may practically change values if the selected set of 

interactions is modified (adding pairs of longer range for example). 
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The choice of the type of Hamiltonian being made, it remains to determine the energy 

coefficients that best describe the system of interest. To address this point, direct 

approaches [33] attempted to model the electronic interactions from the Coherent 

Potential Approximation (CPA) supplemented by the Generalized Perturbation Method 

(GPM), allowing to provide separately each cluster interaction, while inverse 

approaches [34] postulated a priori Hamiltonian forms (most often pair Hamiltonians) 

whose coefficients were adjusted by inverse MC simulations, so as to reproduce the 

values of the observables measured experimentally by neutron and/or X-ray diffraction 

and/or diffuse scattering. Since the 1990s, with the rise of electronic structure 

calculations using Density Functional Theory (DFT) [35,36], the energy coefficients 

have been more and more widely determined by least-squares fit on energies calculated 

from DFT for a number of atomic structures, referred to as the adjustment structure 

database (ASDB) in the following. This ab initio-based inverse approach has become 

extremely popular [37] since the years 2000, probably because of its wide availability 

and very low cost compared to that of experimental methods, and is thus adopted in the 

present work. In this context, being interested particularly in the iron-rich part of the 

system, we adjust the coefficients on the calculated energies of supercells containing 

significant amounts of Fe, while preserving a moderate size for the ASDB. Together 

with short-ranged pair interactions, the latter choice constitutes the second central 

hypothesis underlying our work, the validity of which will also be checked by its 

ultimate consequences on phase diagrams. 

Having established a Hamiltonian to describe the energetics of the system, it is a key-

issue to test its thermodynamic validity by obtaining, by means of statistical physics 

methods, the values of physical observables and comparing them to their counterpart 

known from experiments and/or other kinds of modelings. This is the essential 

difference between the approach developed here and those used in more 

phenomenological (e.g. Calphad-type) methodologies. Our modeling deals only with 

energy coefficients of cluster Hamiltonians, and the free energy (and therefore the 

thermodynamic quantities) are then deduced from it without any further adjustable 

parameters. The accuracy of our results also depends on the choice made to evaluate the 

entropy. In this work, we resort to three levels of approximation: the “Bragg-Williams” 
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point mean-field (PMF) approximation, the CVM method (in the tetrahedron 

approximation) and exact MC simulations. 

This work is organized as follows. The methodology is detailed in section II, which 

deals with the expression of the energy model (cluster Hamiltonian), its relations with 

the ab initio data and thermodynamic application. The results (section III) are gathered 

by subsystems with growing chemical complexity. We first investigate the Fe-Al binary 

alloy, by determining the influence of the pair interaction range and of the ASDB. 

Effective temperature-dependent energy coefficients are introduced in order to take into 

account non-configurational effects (phonons…). The role of manganese is then 

modeled to study the Fe-Al-Mn ternary system, focusing on the influence of the ASDB 

and on temperature effects. Finally, providing the connection with ferritic steels, the 

results for Fe-Al-Mn-C are presented. Two models are proposed for this quaternary 

system: the first one is an extension of ternary models with interactions between 

interstitial and substitutional sites only, while the second one more realistically 

considers interactions among interstitial sites. 

II Methods 

II-1 Choice of cluster Hamiltonians 

The Hamiltonian used to describe the energy of the system has the general form [20,21]: 

� = ∑ �����   (1) 

with �� the so-called cluster occupation numbers, �� the cluster interactions and α an n-

dimensional index referring both to sites and species. We show below that most of the 

physics contained on the Fe-rich side of the ternary Fe-Al-Mn bcc-based phase diagram 

can be captured by limiting pair interactions to second neighbors, and that such second-

neighbor models offer a sound basis for investigating carbon in ferritic steels. To take 

into account the free energy associated to phonons, T-dependent effective cluster 

interactions will also be introduced [38]. 

II-2 Ab initio calculations 

The ab initio calculations were performed using the VASP Package [39,40] with the 

PAW-PBE approximation [41,42]. Particular care was taken to determine the k-point 
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mesh grid and cut-off energy for the plane-wave development of the pseudo-wave 

function. A convergence energy criterion of less than 1 meV/atom was used to 

determine the optimal values of the parameters, i.e. a 20x20x20 k-point grid for a cubic 

bcc cell containing two Fe atoms and a 500 eV cut-off energy. All calculations included 

ion as well as supercell relaxations, and were performed with the standard choice 

µFe(init) = 2.2 µB for initial Fe magnetic moments, leading in all cases to final µFe close 

to this value. 

A large part of the ASDB configurations corresponded as clusters of solutes embedded 

in a bcc Fe supercell. In these cases, the relevant quantity was the so-called “grand 

canonical” substitution (resp. insertion) energy defined as ��	 = �
	 − ��
, with �
	 

the energy of the supercell containing Al and/or Mn in substitution (resp. C in insertion) 

and ��
 the energy of a pure iron supercell with same size. To determine the maximum 

size of the supercell for these situations, it was necessary to balance resource 

consumption and non-interaction of solute atoms with periodic images. On the whole, 

based on considerations described in more detail in the Supplemental Material (Figure 

S2), the ASDB was thus built using 4x4x4 supercells, unless explicitly mentioned. 

II-3 Methodology for phonons and magnons 

Knowing the phonon spectrum for each ASDB configuration allows to include in the 

cluster Hamiltonian vibrational contributions reflecting non-configurational temperature 

effects. Phonons characterize the vibrations of atoms around their equilibrium positions 

and were here calculated at the Γ point (the center of the Brillouin zone), which was 

sufficient to get a good estimate of vibrational contributions to ASDB free energies for 

the supercell size (N=4) used in this work [43]. Since the lattice parameter that 

minimizes the free energy of the system depends on temperature (thermal expansion), it 

would be necessary, in order to refine the thermodynamic description of the system at 

zero pressure, to calculate phonon frequencies for different lattice parameters and take 

those values that minimize the vibration free energy, which constitutes the quasi-

harmonic approximation. However, this kind of study has shown [44] that even at 

relatively elevated temperature (800 K) the free energy difference between the harmonic 

(adopted in this work and that consists in calculating Fvib at fixed volume) and quasi-

harmonic approximation is only a few meV/atom, a degree of refinement of second 
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order with respect to other uncertainties in the ab initio input data. We therefore opted to 

work at constant lattice parameter (the 0 K equilibrium value) to preserve computational 

resources. The force constants related to phonon frequencies were calculated by the 

displacement method, which consists in moving each atom in turn by a small increment 

+/-x= 0.015 Å and +/-2x, and allows to calculate the corresponding Hessian matrix of 

second derivatives of the energy with respect to atomic positions. From the 

eigenfrequencies (eigenvalues of the dynamic matrix), the vibration contribution to the 

configuration free energy of each ASDB member is given by [45]: 

���� =	���∑ ln �2	���ℎ ℏ� !"#
$%&' (",*    (2) 

For a given T, this contribution is added to the energy of each configuration in the 

ASDB, which gives rise to temperature-dependent energy coefficients Jα(T) in equation 

(1). 

The effect of magnetic degrees of freedom has been more or less explicitly taken into 

account by a number of authors, especially in the Fe-Al system [27,28]. At sufficiently 

low temperatures, a first approach consists in assuming that all magnetic moments of 

iron (and Mn) atoms are collinear, which has been confirmed by DFT calculations in 

bcc-based Fe alloys. The low-temperature fluctuations of magnetic moments are well 

described in the magnon treatment of the Heisenberg model. In this approach, the key-

parameter is the exchange integral Jmag between nearest-neighbor spins, which was 

obtained from DFT. For the A2, B32 and D03 compounds, these calculated values lie 

between 120 and 200 meV whereas the expected value should be close to 40 meV [27] 

according to the experimental Curie temperature of pure bcc iron. This disagreement 

between DFT calculated and expected values for Jmag has already been commented in 

the literature [28]. Anticipating on the “Results” section below, it is worth mentioning 

here that using DFT-calculated Jmag leads for Fe-Al to magnon corrections to 

configuration free energies 20 times lower than phonon corrections. This justifies 

including only the phonon contributions in non-configurational free energies. 

II-4 Statistical thermodynamics approaches 

Having established cluster Hamiltonians to describe the energetics of bcc-based Fe-Al-

Mn-C, their thermodynamic validity was investigated by means of statistical methods. 
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In particular, the accuracy of the results depends on the choice made to evaluate the 

configurational entropy. To investigate this important issue, we resorted to various 

mean-field approximations (PMF [33], irregular tetrahedron CVM [46]) and compared 

them, as often as possible, to reference results provided by exact MC simulations. In 

addition, it is worth mentioning that a less standard and somewhat more elaborate PMF 

approach at constant C content was developed in this work, in order to study quaternary 

Fe-Al-Mn-C with atoms occupying both substitutional and interstitial lattices. For this 

kind of system, there is no natural way to include interstitial sites into the standard 

irregular tetrahedron CVM, and therefore this extension was carried out only within the 

PMF framework. 

III Results 

III-1 Binary Fe-Al 

III-1.1 Optimization of configuration models 

Following the methodology described previously, the first step consists in building an 

ab initio-based cluster model for bcc-based Fe-Al. The most “natural” model to 

consider, noted BCC-FeAl-SS2c0, is a “one-to-one” model in so far as the numbers of 

ASDB elements and required energy coefficients are equal. BCC-FeAl-SS2c0 attempts 

to describe the Fe-Al binary system using first- and second-neighbor pair interactions, 

the four coefficients �+, 	�,-. 	, 	�$,,-.-. and �$$,-.-. (subscript and superscript refer to cluster 

type, either point or pair, and interaction range) being determined from the ab initio 

energies of four supercells containing pure bcc iron, a single Al substitutional atom, and 

Al pairs either in first- or second-neighbor shells. A second model, labelled BCC-FeAl-

SS2c1, is also characterized by the same four energy coefficients mentioned above, the 

values of which are however obtained adding ordered compounds (B2-FeAl, B32-FeAl 

and D03-Fe3Al) as complementary structures into the ASDB. The values of the energy 

coefficients for both models are reported in Table 1. While the interaction energies of 

BCC-FeAl-SS2c0 directly correspond to the binding energies of Al pairs, the 

coefficients for the overdetermined BCC-FeAl-SS2c1 model are different from these 

binding energies. As mentioned above, these coefficients are therefore referred to as 

effective coefficients. 
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 BCC-FeAl-

SS2c0 

BCC-FeAl-

SS2c1 

BCC-FeAl-

SS3c1 

BCC-FeAl-

SS4c1 

BCC-FeAl-

SS5c1 

�+ 

�,-. 

�$,,-.-. 

�$$,-.-. 

�$/,-.-. 

�$0,-.-. 

�$1,-.-. 

-16.6105 

3.7933 

0.0882 

0.1131 

- 

- 

- 

-16.6100 

3.7602 

0.1963 

0.0463 

- 

- 

- 

-16.6104 

3.7837 

0.1961 

0.0462 

-0.0038 

- 

- 

-16.6104 

3.7818 

0.1312 

0.0462 

-0.0035 

0.0217 

- 

-16.6104 

3.7781 

0.1348 

0.1079 

-0.0029 

0.0205 

-0.0463 

Table 1: Ab initio-based pair energy coefficients (eV) of the various cluster models 

considered in this work for bcc Fe-Al, including the effect of the ASDB (first two 

columns) and the pair interaction range. 

A first glance on the respective merits of these models is conveniently obtained from 

their ground-state properties. To this aim, for second-neighbor pair models such as 

those presented here, it is common to display the stable 0 K structure map as a function 

of the first- and second-neighbor pair coefficients [33]. Plotting these coefficients on 

this ground-state diagram (Figure 1) shows that BCC-FeAl-SS2c0 predicts as a ground 

state the B32 compound instead of B2 observed experimentally. Conversely BCC-FeAl-

SS2c1 is in reasonable agreement with the experimental phase diagram at moderate 

temperature. It is however important to keep in mind that comparison with experiments 

can only be done if temperature effects are taken into account. As mentioned 

previously, PMF offers a convenient way to easily estimate the validity of an energy 

model with respect to temperature, at least as concerns relative phase stabilities. 

Although the solubility limit is significantly underestimated and no two-phase domain is 

found, PMF confirms that the BCC-FeAl-SS2c1 model indeed provides reasonable 

agreement with the experimental phases for Fe-Al (Figure S3 in Supplemental 

Material). 

While the content of the ASDB is therefore clearly a key-parameter to obtain models 

with good predictive capability, a second aspect requiring special attention concerns the 
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choice of the relevant clusters included in the Hamiltonian. Having chosen to restrict 

ourselves to pair interactions, and following the abundant literature on this topic [47-

51], we focus on the effect of extending the range of these interactions up to fifth 

neighbors. The energy coefficients of the corresponding models are listed in Table 1. 

(Note that due to the presence of the complementary structures in the ASDB, all pair 

coefficients for these models differ from the binding energies displayed in the first 

column of Table 1.) Considering as previously the PMF phase diagrams (Figure S4 in 

Supplemental Material) reveals no significant difference between the various models. 

On the whole, we are led to the couple of conclusions that (i) relevant ordered 

compounds are required in the ASDB, and (ii) interactions between substitutional 

elements can reasonably be restricted to second neighbours, which suggests that the 

BCC-FeAl-SS2c1 model is optimal for our purpose. To confirm this point, it should be 

recalled that, while PMF gives reasonable qualitative trends, more quantitative results 

can be obtained using the CVM and MC approaches. The latter approaches appear to be 

in remarkable agreement, both predicting solubility limits close to experiments and 

reproduce the A2-D03 two-phase domain (see Figure S5 in Supplemental Material). 

Conversely, the maximum D03 � B2 transition temperature consistently lies around 

600 K in CVM and MC, namely an underestimated prediction with respect to 

experiments, which demonstrates that the good PMF prediction of the D03 � B2 

transition temperature was fortuitous. Having thus identified for Fe-Al an energy model 

with good qualitative / semi-quantitative capabilities, we are thus in good position for 

our main task of increasing the chemical complexity towards Fe-Al-Mn-C. However, 

before pursuing in this direction, it is of particular relevance to conclude this study of 

Fe-Al by examining the influence of non-configurational temperature effects, in order to 

investigate their ability to provide a quantitatively more realistic description of the Fe-

Al phase diagram. 

III-1.2 Non-configurational temperature effects 

Phonon contributions 

As seen previously, ab initio-based first- and second-neighbor pair interactions are able 

to describe with a reasonable accuracy the bcc-based Fe-rich side of the Fe-Al phase 

diagram. However, these models underestimate the D03 � B2 transition temperature. In 
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order to determine if this effect is due to intrinsic deficiencies of the approach or to the 

lack of description of non-configurational effects, it is useful to investigate the influence 

of phonons and magnons on the predicted phase diagram. Adding these non-

configurational free energy contributions to ASDB energies leads to temperature-

dependent effective energy coefficients J(T). 

As for phonons, the spectrum calculated by DFT yields the vibration contribution to the 

free energy Fvib for each configuration included in the ASDB. Figure 2a, which presents 

these contributions obtained according to equation (2) in the framework of the harmonic 

approximation, shows that structures having similar compositions have similar Fvib 

contributions. Following this idea, we propose to attribute to the B32 compound the 

same vibration free energy as that calculated for B2, our harmonic analyses having 

revealed that B32 may be dynamically unstable (presence of imaginary vibration 

modes). Taking into account these assumptions, the temperature-dependent energy 

coefficients J(T) are displayed on Figures 3a and 3b, the corresponding model being 

labelled BCC-FeAl-SS2c1T. It should be noted that the four energy coefficients have 

monotonous temperature dependence, with an increasing (resp. decreasing) profile for 

pairs (resp. point and empty cluster). 

The CVM phase diagram obtained using this approach is displayed on Figure 4a. 

Firstly, it is important to note that including phonons allows to preserve the phase 

diagram topology (same nature of domains and phases), which in itself constitutes a 

non-trivial result. Similarly, the A2 � B2 phase limit is also weakly modified. 

Conversely, a major change concerns the D03 � B2 transition temperature, which 

becomes overestimated with respect to the experimental value (1160 K instead of 820 

K). When drawing such conclusions, it is important to keep in mind that in this work, 

the effect of phonons was only partially accounted for, since anharmonic effects and 

hence lattice expansion were overlooked. Taking these factors fully into account should 

probably induce enhanced mixing trends, thus promoting the A2 solid solution with 

respect to ordered phases. 

On the whole, these trends suggest that including vibrational degrees of freedom gives a 

physical guide to produce more predictive phenomenological models by controlling 

(attenuating in the present case) phonon effects, as illustrated on Figure 4b, which 

displays the CVM phase diagram for a BCC-FeAl-SS2c1T390 model built by freezing 
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phonon contributions to their 390 K value (temperature-independent coefficients). This 

model is characterized by a D03 � B2 transition temperature remarkably close to the 

experimental one. 

Magnon contributions 

A comprehensive description including magnetic degrees of freedom and their 

interactions with phonons drastically raises the complexity of configurational 

energetics. Up to now, attempts towards this highly challenging issue have been carried 

out only for pure iron (fcc vs bcc competition) or binary alloys at a given composition. 

Having in mind to provide predictive models for chemically more complex systems 

(quaternary alloys with a significant composition range), we adopt here a more simple 

spin-wave description of spin fluctuations around the ferromagnetic ground-state of 

ASDB configurations. Within this description, the key-parameter is the exchange 

integral Jmag between nearest-neighbor spins, calculated here by DFT by comparing the 

energies of magnetic and non-magnetic configurations for each ASDB structure. Using 

these values and following the magnon approach [27] yields the ASDB magnetic free 

energies, which can then be included in the model in exactly the same way as phonons, 

thus bringing a magnetic correction to the temperature-dependent effective energy 

coefficients J(T). The results for these magnetic corrections are represented on Figure 

2b, which clearly shows that magnetic free energies are negligibly small compared to 

vibration contributions, and thus must have no influence on the predicted Fe-Al phase 

diagram. 

III-2 Ternary Fe-Al-Mn 

The previous results have demonstrated the good ability of short-range pair interactions, 

determined from ab initio calculations, to capture the main features of the 

thermodynamics of Fe-Al alloys with bcc structure. Following our route towards Fe-Al-

Mn-C alloys more representative of currently used steels, the next step is now to include 

manganese, as a supplementary substitutional element competing with aluminium. The 

task of providing a reliable energy model for Fe-Al-Mn is made more difficult by the 

lack of experimental results on this system, especially phase stability, which strongly 

contrasts with the wealth of data available for bcc Fe-Al. As second-neighbour 

interactions between substitutional sites were found to be sufficient for Fe-Al, the same 
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interaction range is retained in presence of Mn. As before, the validity of this 

assumption will be checked through its consequences on the thermodynamic properties 

of Fe-Al-Mn. Care will also be taken to ensure that the ternary model constitutes a 

“natural” extension of the previous binary one, in particular by preserving a good 

predictive ability for Fe-Al. 

III-2.1 Choice of ASDB 

As already pointed out for Fe-Al, it remains essential to ensure the correctness of the 

choice of the ASDB in presence of Mn. Following our methodology, the initial ASDB 

for Fe-Al-Mn is thus built by providing the ab initio input data required exactly for the 

determination of the clusters involved in the model, namely the Mn point, the Al-Mn 

and the Mn-Mn pairs. This procedure guarantees that the binary Fe-Al part of the model 

is left unchanged when switching to the ternary system. Here again, this raises the issue 

of choosing the right magnetic state for these input data involving Mn. To this aim, 

assuming that the surrounding Fe atoms keep ferromagnetic order (magnetic moments 

close to 2.2 µB), we performed a detailed analysis of the influence of the initial Mn 

magnetic moments on the final energy and magnetic state for an isolated Mn atom in 

bcc Fe. This analysis shows that a final antiferromagnetic state is reached for Mn (µMn = 

-2 µB) while the magnetic moments of surrounding Fe remain almost unaltered. This 

final state is reached from different initial µMn including µMn = 0, and the latter initial 

value was therefore adopted as a starting point for all alloy configurations involving 

Mn. 

The pair energy model built from these ab initio magnetically optimized data is labelled 

BCC-FeAlMn-SS2c1, and its validity must be tested against the few experimental data 

available, namely the aforementioned L21 � B2 � A2 order-disorder sequence 

occurring at Fe2AlMn composition. To check this point, we employ canonical (NVT) 

MC simulations (12x12x12 bcc supercell) at this composition, and monitor the 

occupancies of the four usual bcc sublattices (displayed on Figure 1b) as function of 

temperature. These results (not shown for brevity) point out erroneous phase stability, 

with the low-temperature emergence of an XA ordered compound not observed 

experimentally. It should be noted that the competition between L21 and XA orderings 

in Heusler alloys is a well-documented fact. This disagreement confirms the necessity, 
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already noted for binary Fe-Al, to feed the energy models with complementary ordered 

structures, which is fully consistent with the procedure generally employed to build 

cluster expansions. Adding the L21 and XA compounds, together with pure bcc Mn, to 

the ASDB results in a new energy model labelled BCC-FeAlMn-SS2c2. With this 

model, the MC study of thermal phase stability at Fe2AlMn composition (Figure 5) 

shows that the right disordering sequence is now obtained. The predicted transition 

temperatures (1100 K for L21 � B2 and 1500 K for B2 � A2) are in reasonable 

agreement with their experimental counterparts, respectively 898 K and 1577 K 

determined from calorimetry measurements [4]. It is also noticeable that the B2 � A2 

temperature predicted from BCC-FeAlMn-SS2c2 takes a much more reasonable value 

than previously obtained (4000 K) for BCC-FeAlMn-SS2c1. On the whole, the BCC-

FeAlMn-SS2c2 ternary model appears to be quite satisfactory, which confirms that 

second-neighbour interactions are indeed sufficient for substitutional Fe-Al-Mn. 

Finally, it is instructive to compare the energy coefficients for the two previous ternary 

models. As shown in Table 2, adding the L21, XA and bcc Mn complementary 

structures to the ASDB has a negligible influence on the binary Fe-Al part of the 

energetics, which offers a satisfactory picture for the proposed modelling, in the same 

line as used in more phenomenological (Calphad-type) approaches, for which higher-

order systems are built from lower-order ones. Conversely, the ternary model itself, as 

expected, is very sensitive to the energies of ASDB structures containing Mn atoms. 

 BCC-FeAlMn-

SS2c1 

BCC-FeAlMn-

SS2c2 

�+ 

�,-. 
�,23 

�$,,-.-. 

�$,,-.23 

�$,,2323 

�$$,-.-. 

-16.6100 

3.7602 

-0.5691 

0.1963 

-0.0289 

0.1441 

0.0463 

-16.6102 

3.7605 

-0.4926 

0.1962 

0.0161 

-0.0174 

0.0462 
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�$$,-.23 

�$$,2323 

0.1445 

0.1536 

-0.0284 

-0.0032 

Table 2: DFT-based pair interactions (eV) for bcc Fe-Al-Mn, for two different ASDBs 

noted c1 and c2. 

 

To complete our investigations of the ternary BCC-FeAlMn-SS2c2 model, the 973 K (a 

temperature chosen due to its practical interest) isothermal section of the ternary phase 

diagram is built by means of PMF and CVM calculations, and the results are displayed 

on Figure 6. Comparing both approaches shows that the PMF predictions (Figure 6a), 

although quantitatively insufficient, roughly respect the presence of the various phases, 

except the B32 domain on the Al-Mn line, which is peripheral for our work. The Fe-Al 

line of the ternary phase diagram totally agrees with the binary one (Figures S3b and 

S5a in Supplemental Material). Finally, the accuracy of these thermodynamic 

calculations is checked by means of exact grand canonical MC simulations. Due to the 

computational time required for such simulations, an exhaustive MC plot of the phase 

diagram is not possible, and we thus focus on a single isopotential line performed by 

varying the Al effective chemical potential µAl at constant µMn. Figure 6b, which shows 

this isopotential superposed to the CVM phase diagram, clearly demonstrates the 

accuracy of the latter approach to investigate the thermodynamic properties of this 

ternary system. 

III-2.2 Influence of phonons 

 T(L21 � B2) T(B2 � A2) 

BCC-

FeAlMn-

SS2c2 

PMF 

CVM 

MC 

1350 

1100 

1100 

2600 

1600 

1500 

BCC-

FeAlMn-

SS2c2T 

PMF 

CVM 

MC 

1000 

850 

850 

1200 

2500 

2550 

Experimental [4] 898 1677 
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Table 3: Order-disorder transition temperatures (K) at composition Fe2AlMn, as 

predicted by the various present models and compared with earlier experimental 

measurements. 

As for binary Fe-Al, the influence of atomic vibrations on the ternary energy 

coefficients (i.e. those involving Mn) was investigated using the harmonic 

approximation (Figures 3c and 3d, and insert of Figure 3a). Contrary to Al ones which 

remain unchanged with respect to those determined for the binary model, the 

temperature variation of those coefficients associated to Mn displays some dispersion 

due to numerical noise, which however is not critical for our purpose. Interestingly, for 

Mn as well as Al, the effect of temperature on pair coefficients (increase) is opposite to 

that obtained for point and empty clusters (decrease). As previously for Fe-Al, phonons 

in ternary Fe-Al-Mn have a non-negligible effect, which gives rise to a new 

temperature-dependent BCC-FeAlMn-SS2c2T energy model tested against phase 

stability at Fe2AlMn composition by PMF, CVM and canonical MC simulations (not 

shown for brevity). The results for the transition temperatures are gathered in Table 3, 

which indicates that the T-dependent model allows for a better description of the L21 � 

B2 transition, whereas it clearly overestimates the B2 � A2 order-disorder temperature. 

This contrasts with binary Fe-Al presented previously: in the latter case, phonons were 

found to have a strong influence on ordering, the D03 � B2 transition temperature lying 

respectively around 600 K and 1150 K for the BCC-FeAl-SS2c1 and BCC-FeAl-

SS2c1T models (experimental value ~ 800 K), whereas they led to only slight 

modifications of the B2 � A2 transition temperature, around 1600-1700 K for both 

models at Fe3Al composition (experimental value ~ 1200 K), by extrapolating at higher 

T the data of Figures S5a and 4a. This strikingly detrimental role of phonons on the 

modelling of the B2 � A2 transition in the ternary alloy suggests that phonons may not 

be well taken into account in the A2 solid solution including Mn, possibly in reason of 

strong anharmonicities induced by this element (neglected in the present harmonic 

approach). Alternatively, this disagreement may also be interpreted as an effect, 

overlooked in the present approach, of Mn-induced magnon-phonon interactions. 

Further studies devoted to the coupling between phonons and magnetic partial disorder 

may be useful in elucidating these intricate issues, and should thus help reach more 

realistic thermodynamic description of Al- and Mn-doped steels. On the whole, whereas 
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this panel of intricate trends on phonon and magnon effects in Fe-Al and Fe-Al-Mn 

clearly illustrates that a long way still has to be gone until non-configurational degrees 

of freedom are reliably handled in alloy energetics, these effects do not appear to 

critically question the overall phase stability deduced from the present modelling, which 

is a non-trivial result a priori. As a consequence, the BCC-FeAlMn-SS2c2 model can 

reasonably be regarded as sufficiently realistic to provide a sound basis for tacking the 

addition of carbon, the topic of the next section. 

III-3 Quaternary Fe-Al-Mn-C and influence of C-C interactions 

Having achieved a reliable model for ternary bcc Fe-Al-Mn, the following step consists 

in taking into account carbon, in order to reach a thermodynamic modeling of Al- and 

Mn-doped steels with bcc ferritic structure. For several reasons, the introduction of C 

however significantly raises the level of difficulty of such modeling. Firstly, as concerns 

the required ab initio input data, the interplay between supercell size and range of pair 

interactions is probably more critical in presence of C, since such interstitial elements 

are expected, more than substitutional ones, to induce severe elastic long-range strain 

fields, possibly difficult to capture in ab initio methods using periodic systems with 

limited size. Secondly, the lack of experimental data, already pointed out for ternary Fe-

Al-Mn, becomes even more drastic in quaternary Fe-Al-Mn-C, as for (i) the role of C 

and C-C interactions in bcc iron, (ii) the interactions between C and substitutional 

elements. This strikingly contrasts with the abundant literature devoted to studying the 

fcc-based κ-Fe3AlC “kappa” phase in austenite, including subtle features such as C off-

stoichiometry, Fe-Mn competition in presence of Mn, or the stabilizing effect of its 

coherent interfaces with the matrix [52]. In this context, it becomes highly non-trivial to 

achieve realistic thermodynamic models for the ferritic steels considered here. To 

maintain a sufficient degree of internal consistency in the present work, we thus decide 

to go further in our choice of limiting as much as possible the range of pair interactions. 

For clarity reasons, the study of the role of C will be performed in two steps, namely (i) 

by considering solely “S-I” interactions between substitutional elements and interstitial 

C, and (ii) by including “I-I” interactions between interstitial atoms. 

In presence of carbon, obtaining reliable ab initio input data for the ASDB may become 

more intricate. Firstly, it is clear from Figure 7 that, even for an isolated C atom in bcc 



18 

 

iron, the grand canonical insertion energy for this interstitial species does not converge 

with supercell size as easily as for substitutional ones. To maintain tractability with the 

available computational resources, we however decide to keep for ab initio supercells 

with carbon the same 4x4x4 size as used previously for binary and ternary alloys. 

Moreover, as detailed below, while the ab initio calculations of Al-C and Mn-C pair 

energies suggest that the second-neighbour range can be adopted for S-I interactions (in 

agreement with the previous S-S part of our modeling), this hypothesis will be more 

questionable for I-I interactions between C atoms, probably in reason of the larger 

elastic field associated with interstitial species. In a first step, we however limit C-C 

interactions to the second-neighbour range. This leads to build two distinct models for 

quaternary Fe-Al-Mn-C, respectively labelled BCC-FeAlMnC-SS2SI2c2 and BCC-

FeAlMnC-SS2SI2II2c2. In a second step, we will then examine the validity of this 

assumption about C-C interactions, by adding the S-centered 4th-neighbor C pair (i.e. 

centered by a substitutional site), a choice justified by previous theoretical studies [7].  

 BCC-

FeAlMnC-

SS2SI2c2 

BCC-

FeAlMnC-

SS2SI2II2c2 
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- 

- 

-16.6102 
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0.1962 
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-0.0174 

0.0462 

-0.0284 

-0.0032 

0.6575 

-0.0903 

0.3652 

0.0145 

1.8852 

0.7659 

Table 4: Pair interactions (eV) for bcc Fe-Al-Mn-C, either neglecting (left column) or 

including (right column) C-C interactions between interstitial carbon atoms, as deduced 

from ab initio calculations and pair models. 

In this framework, before investigating more generally the C behaviour in quaternary 

Fe-Al-Mn-C, it is an instructive preliminary task to explore the ground-state 0 K 

properties of bcc Fe-C, using the aforementioned set of pair interactions. It is 

noteworthy that such theoretical information about C in ferrite, to our knowledge, has 

never been provided hitherto, in spite of its basic and informative character. Indeed, the 

contrast is striking with its austenite counterpart (C in fcc Fe) for which theoretical 
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studies have been performed, leading to useful results on carbides in fcc transition 

metals [53]. This difference of treatment can be attributed to two reasons, (i) the low C 

solubility in ferrite before the emergence of other competing phases, and (ii) the 

somewhat more complex crystallography involved in the bcc case. More precisely, 

since fcc-based compounds containing C (and more generally interstitial elements) have 

a NaCl structure consisting of two interpenetrating fcc lattices, the same fcc ground-

state analysis, already described in the literature [54], applies to both S and I elements, 

which greatly simplifies the problem. Conversely, in the bcc case the I sites (a set of six 

I octahedral sites in the two-site bcc cubic cell, as displayed on Figure 1) do not have a 

bcc structure, hence requiring for I sites a specific analysis absent from the previous 

studies. In our work, we do not attempt to provide the formal developments for such an 

analysis, but instead we restrict to explore numerically the ground-state properties of 

bcc Fe-C using first- and second-nearest neighbor C-C interactions. The determination 

of ground states for bcc Fe-C is carried out by exhaustive scan of the energetics among 

the 26 = 64 configurations possible for C in a single bcc unit cell with six I sites, hence a 

maximum carbon content xC equal to 0.75 (formula Fe2C6). Figure 8 displays the results 

of this ground-state analysis, namely the C content and the filled I sites as a function of 

the C chemical potential. To be more informative, we perform this analysis (i) using 

only the first-neighbour C-C interaction, and (ii) by including also the second-neighbour 

one. In the first case (Figure 8a), the only intermediate composition allowed is xC=0.6 

(Fe2C3), with two equivalent variants obtained by filling either the interstitial sublattices 

(I1,I2,I3) or (I4,I5,I6). Including the second-neighbour interaction (Figure 8b) allows a 

second intermediate composition xC=0.5 to emerge, with three equivalent variants, since 

crystal symmetry (see Figure 1) implies the equivalence of filling with C either of the 

(I1,I5), (I2,I6) and (I3,I4) pairs of sublattices. This simple picture should be kept in 

mind when performing more elaborate investigations (see below). Remarkably, the 

second-neighbour interaction provides a filling of I sites by pairs, contrary to the 

“triplet” filling due to first-neighbour C-C interactions. 

When going to thermodynamic modelling, the CVM approach cannot be used in 

presence of interstitial carbon, since no CVM formalism including octahedral interstitial 

and substitutional sites is currently available. We therefore resort to the PMF 

approximation, since the latter has demonstrated for Fe-Al and Fe-Al-Mn its ability to 
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reveal reasonable semi-quantitative trends on phase stability and competition. As shown 

below, the validity of our PMF calculations will however be controlled by means of 

exact MC simulations. In order to keep as close as possible to more phenomenological 

thermodynamic modellings of steels, in which isothermal sections of phase diagrams 

are performed at constant C content, we make use of a mixed canonical/grand canonical 

PMF formalism developed for this purpose, allowing to control the atomic fraction of 

carbon, while the other elements Al and Mn remain, as previously, controlled through 

their chemical potentials. 

The energy coefficients of the two quaternary models are displayed on Table 4. As a 

consequence of the absence of ordered compound involving C in the ASDB, the 

“ternary” coefficients of each model are not affected by the presence of C (compare 

with Table 3). While Al-C interactions moderately decrease while remaining repulsive 

both for first- and second-neighbour shells, the first-neighbour Mn-C interaction is 

attractive and decays strongly when reaching the second-neighbour shell. Noticeably, 

this behaviour justifies the aforementioned hypothesis of limiting Al-C and Mn-C 

interactions to second-neighbour range. Moreover, in agreement with earlier theoretical 

results [7], the interactions between C atoms are expected to be strongly repulsive. Their 

effect is investigated through their consequences on thermodynamic properties, 

especially their influence on the stability of the previously mentioned bcc-based phases 

(via isothermal sections of quaternary phase diagrams), and on carbon site occupancies. 

In absence of I-I interactions (model BCC-FeAlMnC-SS2SI2c2), the form of the PMF 

equations implies (and it will be confirmed by the exact MC simulations, see below) 

that only two kinds of I sublattices have to be distinguished. More precisely, the I1, I2 

and I3 sublattices necessarily have identical C occupancies, and a similar remark holds 

for I4, I5 and I6. The study can therefore be restricted to I1 and I4. Whereas 

experimentally, due to competing phases such as austenite and cementite, the solubility 

limit of C in ferrite is low, it is instructive to keep a larger window of exploration for the 

C content, thus allowed to reach ~10 at.%. Keeping the same temperature as previously 

(973 K), isothermal sections at fixed C content can easily be obtained from PMF 

calculations, and the results for 5 at.% C are displayed on Figure 9. It is striking to 

remark that the presence of C (5 at.%) does not modify significantly the stability of the 

phases previously detected in ternary Fe-Al-Mn (compare Figure 9 and Figure 6a). 
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Conversely, the C occupancies on the I sublattices are (I1=I2=I3)≠(I4=I5=I6), showing 

that C in Al- and Mn-doped ferrite is characterized by long-range order throughout the 

whole composition domain (Figure 9b), which reflects the strongly different Al-C and 

Mn-C interactions. It is worth noting that C ordering is also present on the binary limits 

of the phase diagram, in particular the Fe-Al one of high practical importance. More 

precisely, while our PMF calculations at 973 K (insert of Figure 9b) indicate that C in 

pure bcc Fe should form a solid solution (identical occupancies for all I sites), they also 

reveal that a critical Al content ~5 at.% entails C ordering. Comparing Figure 9a and the 

insert of Figure 9b shows that this critical Al content also corresponds to the A2 � B2 

transition, hence there is a correlation between the orderings for substitutional atoms 

and for interstitial C. Due to the lack of information on such coupling effects from 

phenomenological (Calphad-type) approaches [17], experimental investigations of Fe-

Al-C would be useful to check these features and the accuracy of the present modelling. 

Because of the limited predictive power of the PMF approach, the validity of these 

results must be checked by means of exact MC simulations at 973 K and composition 

FeAlCx, using a 6x6x6 supercell containing 432 substitutional sites and 1296 interstitial 

sites (6 million steps for equilibration, 12 million steps for thermal averages). The Al 

and C site occupancies are monitored as a function of the C content between 0 and 12 

at.%. In agreement with the PMF phase diagram of Figure 9a drawn for 5 at.% C, the 

B2 compound remains stabilized throughout the entire composition range explored 

(Figure 10a, top). Moreover, although the MC results on C occupancies (Figure 10a, 

bottom) show a non-negligible dispersion (due to difficult MC sampling), they are in 

good agreement with the PMF trends pointing out two groups of three equivalent I 

sublattices. Finally, it is worth noting that increasing the amount of C entails a lowering 

of the long-range B2 order on S sites. On the whole, these consistent PMF vs MC trends 

for the BCC-FeAlMnC-SS2SI2c2 give good confidence when extending the PMF 

analysis in presence of C-C interactions. 

The effect of including the interactions between interstitial C, which corresponds to the 

BCC-FeAlMnC-SS2SI2II2c2 model, is thus investigated along the same lines as 

previously, namely by determining by PMF the isothermal phase diagrams at constant C 

atomic fraction. The negligible effect of C on S-site ordered compounds is confirmed 

(not shown since very similar to Figure 10a), a satisfactory feature since the S-I part of 
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the model is not changed when including I-I coefficients (see Table 4). Conversely, the 

behaviour of C is substantially modified by the presence of I-I interactions (Figure 11a), 

only two sublattices (I1 and I5) being then occupied. Other features previously noted for 

S-I interactions alone are however unchanged, in particular the C ordering through the 

major part of the composition domain at 973 K, and the Al critical level required for C 

ordering in Fe-Al-C (insert of Figure 11a). PMF calculations also offer a convenient 

way to compare the order-disorder behaviours on S and I sites as a function of 

temperature. Figure 12 thus displays the loss of C ordering across the transition 

temperature (for 5 at.% C), the latter being found between 1400 and 1450 K for PMF. 

The two main kinds of C orderings already mentioned are also depicted, namely “2-

interstitial-sublattice” (2Isl) ordering, i.e. preferential occupancy of I1 and I5 sublattices 

(or other equivalent variants (I3,I4) and (I2,I6) of the same C ordering), and “3-

interstitial-sublattice” (3Isl) ordering, i.e. I1=I2=I3 and I4=I5=I6. 

Using the same conditions as previously for BCC-FeAlMnC-SS2SI2c2, the validity of 

these PMF predictions including I-I interactions is then investigated via MC simulations 

providing the C occupancies in the various I sublattices of FeAlCx (Figure 10b). It 

confirms that S occupancies, as expected, remain unaltered by I-I interactions. 

Moreover, the presence of a pair (I1 and I5) of occupied sublattices is also noticed. This 

demonstrates that this feature is really induced by I-I interactions, thus not being a PMF 

artifact, which emphasizes the relevance of the latter approach. On the whole, PMF 

thermodynamics, in spite of its simplicity, offers a convenient way to investigate bcc 

Fe-Al-Mn-C. 

To conclude this analysis of the second-neighbour quaternary model for Fe-Al-Mn-C, it 

is useful to explore the respective effects of S-I and I-I interactions on C ordering in Al- 

and Mn-doped ferrite. To this aim, Al-C and/or Mn-C interactions were selectively 

switched off, leading to the results summarized on Figure 11. Firstly, cancelling all S-I 

interactions (Figure 11b) consistently leads to C atoms insensitive to the content of 

substitutional species, hence constant I1 and I5 occupancy levels. Conversely, 

selectively switching off Mn-C interactions (Figure 11c) leads to an S-induced 

modulation of C occupancy close to that obtained for the full quaternary model (Figure 

11a), which can be easily understood from the moderate value of Mn-C interactions 

(Table 4). Finally, retaining only Mn-C interactions proves to have a much more 
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significant effect on C (Figure 11d), with a complete change of the modulation profile, 

however keeping only the I1 and I5 sublattices occupied, in agreement with the above 

ground-state properties (Figure 8b) for the chosen C content (figured out by the dashed 

line on Figure 8). 

As recalled on Figure 13a, previous ab initio calculations [7] of the binding energy of 

the C-C pair with various neighbourhoods have pointed out that the role of the 4S 

interaction (4th-neighbor pair centered with an S site) might be unexpectedly large. It 

seems therefore logical to explore the influence of 4S interactions on the results 

deduced from the 2nd-neighbour models presented above. Firstly, the influence of the 4S 

interaction on the 0 K ground-state properties of bcc Fe-C is thus investigated similarly 

to Figure 8 (using +0.8 eV and +1.7 eV as test-values suggested by earlier work [7]), 

showing that the 4S effect with respect to the SS2SI2II2 model (Figure 8b) is rather 

small, limited to a chemical potential offset without change of the type of C 

occupancies. Turning to PMF calculations, the effect of gradually switching on the 4S 

interaction on the C behaviour at 973 K is displayed on Figure 13b. A threshold is found 

for J(4S) ~1 eV, with strong enhancement of C occupancies on two supplementary 

sublattices (I2 and I3 for the I1-I5 variant shown on Figure 13). This leads to the 

emergence, clearly visible along the Fe-Al axis, of a domain with I1=I2=I3 and 

I4=I5=I6, namely a behaviour already detected in absence of I-I interactions (Figure 

9b). This domain gradually extends up to the whole composition range for J(4S) ~1.3 

eV. For values > 1.3 eV (consistent with the results of [7]), the behaviour is not 

significantly affected by further increase of J(4S). On the whole, while our results 

suggest that C-C interactions beyond second neighbor may play a role in the behaviour 

of C in ferrite, the large 4S value previously proposed [7] should deserve further 

confirmation, due to the presence of long-range elastic effects possibly interfering with 

the limited supercell used in the ab initio calculations. 

IV Discussion 

The objective of this work was to produce an energy model at the atomic scale able to 

predictively describe the thermodynamics of “realistic” systems as complex as ferritic 

steels containing four chemical elements placed in two types of atomic sites, 

substitutional and interstitial ones. The method most widely employed to study such 
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complex systems is probably the Calphad method, which presupposes for the free 

energy a functional form which is then adjusted to available experimental or 

computational data. In this work we chose an approach based on the construction of a 

Hamiltonian that directly describes the chemical interactions between atoms, and from 

which measurable quantities (phase diagrams, short- and long-range order,…) can be 

determined. In its current form, the model allowed us to study the ordering of carbon in 

a quaternary Fe-Al-Mn-C ferritic alloy. Beyond this point, the success in building this 

tool makes it possible to envisage an extension of the methodology to determine kinetic 

properties such as atomic migration energies in similarly complex systems. 

Building a Hamiltonian able to accurately and predictively describe a quaternary system 

at the atomic scale appears to be a delicate task requiring a sufficient control of the 

different approximations that must necessarily be introduced. A first main choice of this 

work was to use DFT energy calculations to determine the energy coefficients of the 

model. In itself, using DFT involves various approximations inherent to this method, the 

far-reaching consequences of which are difficult to measure. Only the intensive use of 

these methods since their development has allowed establishing their real predictive 

character in the field of metallic alloys. However, sources of inaccuracy remain on the 

choice of the exchange-correlation functional and practically tractable computational 

conditions (size of supercells, bases for development of Kohn-Sham orbitals, 

discretization of reciprocal space). A second level of approximation in the present work 

concerns the choice of the type of Hamiltonian (pairs, triplets ...) to describe 

configurational (free) energies, which remains delicate and requires a confrontation with 

experimental data to determine its predictive character. In this context, faced with a 

rather large chemical complexity, we chose to restrict our study to pair Hamiltonians, 

which proved sufficient to produce reasonably predictive models for bcc Fe-Al-Mn-C 

alloys. 

The study of the Fe-Al binary system first allowed us to verify that combining DFT 

calculations with pair Hamiltonians to build phase diagrams was successful. In this 

system, for which there is an abundant literature, we showed that sufficiently predictive 

models can be obtained by limiting the range of interactions to second neighbors. 

Taking into account non-configurational effects through the harmonic approximation 

for phonons has a significant effect on the phase diagrams and shows a way to produce 
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“phenomenological Hamiltonians” which describe more quantitatively experimental 

data. 

The same framework for energy model construction also proved its efficiency in the 

more complex case of ternary Fe-Al-Mn alloys, by preserving the gains of the binary 

model and showing a good predictive character with regard to the little available 

experimental information. 

As a further step towards more realistic ferritic steels, the development, along the same 

methodology, of quaternary models including carbon in interstitial position, allowed us 

to study in a wide range of chemical composition the correlation between the ordering 

of substitutional atoms and that of interstitial carbon, taking into account the strongly 

repulsive interactions between neighbouring carbon atoms. 

In particular, our model predicts a fairly complex ordering of interstitial carbon at 

temperatures of practical interest, in interplay with the content of substitutional 

elements. These results obtained by PMF calculations were confirmed by exact MC 

simulations over a narrower compositional range. While no experimental data allow to 

measure their degree of validity, these predicted trends are at odds with current 

phenomenological modellings by the Calphad approach, since the latter generally 

consider a unique interstitial lattice for C.  

While our second-neighbor pair modelling has proved to be robust for Al and Mn 

substitutional elements, its relevance could nevertheless be questioned in presence of 

interstitial C, because of the high repulsive fourth-neighbor C-C interactions highlighted 

by previous ab initio calculations [7]. Given the uncertainties of the fourth-neighbor 

interactions due to unavoidably limited supercell sizes, we performed a parametric study 

of the influence of this interaction, which showed that the ordering of interstitial C 

remains, although possibly changing of nature. Experimental measurements of C 

ordering would be a useful way of clarifying this important issue of fourth-neighbor C-

C interaction in ferrite. 

While this work is mainly concerned with chemically complex alloys, it should be noted 

that the intricacy level is raised further by the presence of magnetic interactions, clearly 

illustrated on the Fe-Al diagram (figure S1) by the presence of a ferromagnetic (FM) � 

paramagnetic (PM) transition line, which crosses the various domains of chemical 
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order. In particular, from figure S1, it appears that a large part of the Fe-Al equilibria 

investigated in this work lie in the paramagnetic domain. For our purpose, the 

consequences of neglecting PM phases might be more critical on the main solid- solid 

equilibria (D03-B2 and B2-A2, and to a lesser extent the A2 + D03 two-phase domain), 

since the energetic and magnetic models proposed in our work are based on DFT 

energetics using FM Fe for the ordered phases, while B2 is fully PM in its stability 

domain, and so is D03 except at low temperature. In this context, our choice of building 

our approach upon the ab initio energetics of FM A2, B2 and D03 phases lends itself to 

justification. Indeed, it is consistent with the general framework of configurational 

thermodynamics, in which non-configurational (magnetic, vibrational and electronic 

degrees of freedom) are neglected, at least in a first step. In this framework, it is logical 

to build the energy models (cluster Hamiltonians) from 0 K ab initio energetics, which 

in the present case implies to select FM A2-Fe, B2-FeAl and D03 Fe3Al for this task. 

The opposite choice would obviously consist in introducing PM (free) energies into the 

ASDB. However, the procedure in this case would be then less well-defined and less 

easy to apply, requiring some extra modelling of the PM state for each element of the 

ASDB. Since we are interested in solid phase equilibria at moderate temperatures, it is a 

reasonable assumption that the FM vs PM free energy difference for the ordered 

compounds may not be too high at these temperatures. Although some checking of this 

hypothesis would be welcome, this is however beyond the scope of our work and does 

not question the global validity of our approach. Our choice ensures that the modelling 

is correct at low T and allows more or less phenomenological refinements for larger T, 

by adding T-dependent contributions such as phonons and magnons to lead T-dependent 

cluster models, as proposed in this work. Strictly speaking, restricting non-

configurational factors to harmonic phonons and magnons is insufficient, but further 

refinements are challenging enough to offer much room for future investigations. 

Moreover as shown above for Fe-Al and below for Fe-Al-Mn, our work suggests that 

valuable information can also be obtained from such “first-order” corrections. 

A cornerstone of our approach was the ab initio structure database, as regards both the 

relevant structures that it should include and the energies that should be affected to 

them. The latter point was found especially critical for isolated clusters (points, pairs) in 

otherwise pure bcc Fe, since these configurations correspond to a tricky interplay 
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between two effects, namely the convergence with respect to the ab initio supercell size, 

and the intuitive decay of pair energies with increasing neighbor range. Indeed, these 

two effects are really difficult to disentangle: even for reasonably large supercells such 

as those used above, the expected decay of binding energies with the pair distance could 

not always be evidenced without ambiguity, and performing elasticity corrections did 

not really clarify the situation. From this point of view, it is likely that the quality of the 

energy spectrum from the ab initio database could be refined, by resorting to much 

larger computational resources (thousands of atoms). This was however not the scope of 

the present study, since our primary goal was rather to proceed to an a posteriori check 

of the modelling through its merits for thermodynamic properties. Keeping this in mind, 

the selected methodology was successful. 

Our study also pointed out the remarkable accuracy of the CVM approach for the 

modelling of Fe-Al and Fe-Al-Mn substitutional alloys. In view of this success, an 

appealing extension of our work would doubtlessly be to design a more general CVM 

scheme including the interstitial sites occupied by C. The difficulty of this task should 

however not be underestimated, since it would imply to take into account S-I as well as 

I-I interactions, hence the requirement to determine the relevant clusters including S 

and/or I sites, which probably constitutes a difficult crystallography issue. Moreover, 

the elegant formulation of the tetrahedron CVM approximation for substitutional alloys 

should no longer be valid in presence of interstitial sites, which may oblige to resort to a 

completely new formulation. In this context, the Point Mean-Field scheme proposed in 

the present work offers a convenient way to overcome these difficulties, while 

remaining a rather reliable guide for qualitative and semi-quantitative trends. 

While our work was dedicated to bcc-based ferritic steels, the same methodology could 

obviously be applied to fcc-based austenitic alloys. Achieving this task would offer the 

tools required to investigate equilibria between bcc and fcc phases, hence providing 

information directly comparable to “realistic” equilibrium phase diagrams obtained 

either from experiments or from Calphad-type simulations. However, modelling fcc-

based systems would imply to correctly handle the magnetic states of Fe in austenitic 

steels, which is by no means a trivial task. Previous studies have already demonstrated 

the intricacy of this issue in pure fcc iron: (i) considering only non-magnetic (NM), 

ferromagnetic (FM) and antiferromagnetic (AFM) states, ab initio calculations [55] 



29 

 

indicate that the most stable state is probably FM, (ii) when double-layer AFM ordering 

is taken into account, the latter becomes the new ground state [56], although this result 

is still matter of debate [57]. 

Our results about carbon behaviour in ferritic steels may usefully be compared with 

those of several earlier theoretical works on Fe-C, as described above in the 

introduction, predicting the existence of diluted Fe-C compounds stabilized by long-

range elastic interactions. Our model, relying on shorter-range C-C interactions (up to 

fourth neighbours), is not designed to provide all the elements to discuss the stability of 

these diluted Fe-C compounds. However, predicting a strong energy increase above ~25 

at.% C, it leads to an overall convex 0 K energy-composition curve for bcc Fe-C (see 

Figure S6 in Supplemental Material), and is thus qualitatively consistent with the 

previously pointed out trends of possible stability for such compounds, a similar 

agreement being obtained if 4S-type C-C interactions are switched on. It should 

however be noted that previous thermodynamic investigations of Fe-C were usually 

carried out using the “three sublattice” description, each sublattice itself consisting of 

two classes of sites (e.g. I1 and I5 in the above notation), whereas our work points out 

the possibility of distinct occupancies for each site of the pair, as illustrated above by 

mean-field and Monte-Carlo simulations. Such features, which appear to be entailed by 

the presence of substitutional elements (as suggested by Figure 11), may require further 

studies. Finally, while acquiring a more refined knowledge of the C-C interactions in Fe 

is indeed an interesting and challenging issue, our primary interest in the present work is 

somewhat different, being concerned with the effect of C in a ternary substitutional 

alloy, in order to investigate how interstitial C does interact with the substitutional 

elements, an issue scarcely investigated hitherto. 

V Conclusion 

In this work, we have demonstrated the good ability of ab initio-based pair models for 

building, from the atomic scale, a reasonable thermodynamic description of chemically 

complex alloys including substitutional and interstitial elements. To this aim, we have 

considered the specific case of Al- and Mn-doped ferritic steels of interest in automobile 

industries. As a main advantage, our approach allows to control the relevance of the 

various approximations added gradually (selection of ab initio database, range of pair 
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interactions, approximation for the entropy, phonon and magnon non-configurational 

degrees of freedom…). The modelling for bcc-based Fe-Al and Fe-Al-Mn substitutional 

alloys could be conveniently achieved by limiting pair interactions to second-neighbour 

range, which provided results in remarkably good agreement with experiments, for 

highly documented Fe-Al as well as for the more scarcely studied Fe-Al-Mn system. 

While the accuracy of the Cluster Variation Method (CVM) was checked by 

comparison with exact Monte-Carlo simulations, the much more tractable Point Mean 

Field (PMF) approximation was also used, and despite its limited predictive power for 

quantitative values, it proved to be a valuable guide, due to its good potential to provide 

quickly the main trends as regards phase stability. In absence of a CVM scheme for the 

more intricate case of Fe-Al-Mn-C ferritic steels, this type of quaternary system was 

thus investigated successfully with PMF, leading to a clear-cut description of C ordering 

and its coupling with the substitutional elements. These predictions should be useful in 

refining the widely used Calphad-type phenomenological models for these ferritic 

steels. 
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FIGURE CAPTION 

Figure 1: Predicted ground-state diagram of the various Fe-Al, Fe-Mn and Al-Mn 

systems considered. The insert displays the labelling of sublattices in bcc structure, 

including substitutional (four sublattices) and interstitial octahedral (six sublattices) 

sites. 

Figure 2: (a) Ab initio harmonic vibration free energies and (b) magnon free energies of 

structures from the Fe-Al ASDB (using ab initio magnetic exchange parameters). 

Figure 3: Temperature dependence of pair interactions for bcc Fe-Al-Mn: (a) empty 

cluster and Al point, (b) Al-Al pairs, (c) Al-Mn pairs, (d) Mn-Mn pairs. The insert of 

Figure (a) displays the behaviour of Mn point (for comparison, the Al point coefficient 

is also recalled). 
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Figure 4: CVM-predicted Fe-Al phase diagrams for models with temperature-dependent 

pair interactions: (a) BCC-FeAl-SS2c1T with fully T-dependent interactions, (b) BCC-

FeAl-SS2c1T390 with interactions frozen at 390 K. 

Figure 5: Predicted sublattice occupancies at Fe2AlMn composition, using the BCC-

FeAlMn-SS2c2 model and Monte-Carlo simulations. 

Figure 6: Predicted 973 K isothermal sections of the bcc Fe-Al-Mn phase diagram, 

using the BCC-FeAlMn-SS2c2 model and (a) PMF, (b) CVM calculations. The 

isopotential on Figure (b) was obtained from Monte-Carlo simulations for purpose of 

checking the accuracy of our CVM results. 

Figure 7: Grand canonical insertion energy of octahedral interstitial C in bcc Fe as a 

function of supercell size, from ab initio calculations. 

Figure 8: Ground-state analysis (i.e. C content versus C chemical potential at 0 K) of 

bcc Fe-C using (a) first-neighbour C-C interactions only, (b) first- and second-

neighbour C-C interactions. Also indicated are the C occupancies (0 or 1) of the six 

interstitial sublattices, including obvious degeneracies entailed by crystal symmetry (cf. 

Figure 1b). 

Figure 9: Using the BCC-FeAlMnC-SS2SI2c2 model (no I-I interactions), PMF-

predicted isothermal section (973 K) of Fe-Al-Mn-C with 5 at.% C: (a) S-site ordering, 

(b) I-site ordering. The insert of Figure b displays the behaviour on the Fe-Al axis. 

Figure 10: Monte-Carlo simulations (T = 973 K) of sublattice occupancies in B2-

FeAlCx using (a) the BCC-FeAlMnC-SS2SI2c2, (b) the BCC-FeAlMnC-SS2SI2II2c2 

model (top: Al on S sites, bottom: C on I sites). 

Figure 11: Influence of selective C-X (X=Al,Mn) interactions on C sublattice 

occupancies in Fe-Al-Mn with 5 at.% C: (a) fully interacting BCC-FeAlMnC-

SS2SI2II2c2, (b) BCC-FeAlMnC-SS2SI0II2c2 with no C-X interactions, (c) BCC-

FeAlMnC-SS2SI2(Al)II2c2 (Al-C only, no Mn-C) and (d) BCC-FeAlMnC-

SS2SI2(Mn)II2c2 (Mn-C only, no Al-C). 

Figure 12: C ordering on I sites ordering across the PMF I-site order-disorder transition 

temperature (from PMF calculations with 5 at.% C). The map displays (i) “2-sublattice” 
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ordering (i.e. type I1-I5 and other variants) (green), “3-sublattice” ordering (i.e. 

I1=I2=I3 and I4=I5=I6) (blue), the disordered solid solution (red) and other kind, less 

definite ordering (black) for interstitial C. 

Figure 13: (a) C-C binding energy in bcc Fe for various neighbor range of the C-C pair, 

as obtained in the present work, and compared with earlier ab initio calculations [7]. 

Two kinds of fourth-neighbour pairs have to be distinguished, according to their being 

centered by an S site (labelled 4S) or by an I site (labelled 4I); (b) Influence of 

increasing J(4S) on C site occupancies (PMF). 
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APPENDIX 

Point Mean Field for A-B-C-D alloys 

with A-B-C on substitutional (S) sites and D on interstitial (I) sites 

In the general formulation, we consider an ensemble of S and I sites occupied by 

chemical species, the indexes for sites and species being respectively n and i. The site 

occupancy variables 53�  are defined such as 	5�� = 1 if site n is occupied by species i, 53� = 0 

otherwise. The basic PMF approximation consists in assuming that the density matrix 

can be written as a product over sites 8 = ∏ 833  with 83 = ∑ 〈5�� 〉5��� . This 

approximation readily allows to obtain expressions, as functions of the site variables 

〈53� 〉 =< =3� , for the entropy as well as for statistical averages of useful quantities such as 

the site occupancy products 53� 5>*  appearing in the Hamiltonian. Moreover, while all 

these site variables =3� 	 can in principle be regarded as independent, tractability of the 

PFM formalism requires to group them into classes with equal values, i.e. to define 

several sublattices. For instance, in the present case of S-site bcc alloy, the well-known 

decomposition into four sublattices S∈{ α, β, γ, δ} was used, hence =3� = =
�  for all sites n 

belonging to sublattice S. A similar assumption was used for I sites, leading to a set of six I 

sublattices. 

The PMF is best formulated in grand canonical form, adding to the Hamiltonian a chemical 

potential term proportional to the amounts of chemical species. The linear term of the 

Hamiltonian is thus: 

〈�, − ?�@�〉A2�

= BCD�,� − @� + @-F?G=GH + D�,	 − @	 + @-F?G=GIJ



+BD�,K − @KF
4

?L=LM 

with ?
 the number of sites of type S in the system. The sums run over the various types of S 

and I sublattices. 

For interactions between S sites, the B-B pair part of the PMF hamiltonian is: 

〈�$��〉A2� = 1
2B�"N�� B?
O
P!
#"N


,
P"
=
�=
P�  
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with O
P!
#"N  the number of S’ neighbor sites in the qth neighbor shell of a given S site. The 

〈�$		〉A2� part is written along the same lines, and: 

〈�$�	〉A2� = B�"N�	 B?
O
P!
#"N


,
P"
=
�=
P	  

For interactions between S and I sites, the pair hamiltonian is: 

〈�$�K〉A2� = B�"N�K B?
O4!
#"N


,4"
=
�=4K 

and similarly for 〈�$	K〉A2�. 

Finally, for interactions between I sites: 

 

〈�$KK〉A2� = 1
2B�"NKK B?4PO4P!4#"N

4,4P"
=4K=4PK 

From the PMF approximation, the entropy is: 

−GA2�
� = B?
D=GH ln =GH + =GH ln =GH + !1 − =GH − =GI# ln!1 − =GH − =GI#F




+B?4D=LM ln =LM + !1 − =LM# ln!1 − =LM#F
4

 

The PMF free energy functional is thus: 

�A2� = 〈�2HH〉QR� + 〈�2HI〉QR� + 〈�2II〉QR� + 〈�2HM〉QR� + 〈�2IM〉QR� + 〈�2MM〉QR�
+ 〈�, − ?�@�〉A2� − �GA2� 

Minimizing this functional with respect to the PMF variables S=GH, =GI, =LMT yields an 

implicit equation for each GU ∈ G: 

BB OG!G0#
W? ��W?HH=GH + �W?HI=GI(



+BB OL!G0#

W? �W?HM=LM
4""

+ �,� − @� + @- + ��ln =G0H
1 − =G0H − =G0I

= 0 

also written as : 
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X
Y
� !S=GH, =GI, =LMT# + ��ln =G0H

1 − =G0H − =G0I
= 0 

which can be inverted to yield : 

=
Y� = ZG0
H

1 + ZG0
H + ZG0

I  

with Z
Y
� !S=GH, =GI, =LMT# =< [\�]Y& /%'	.	 Similar expressions hold for =
	. 

Implicit equations for =4K are obtained for each LU ∈ L as: 

BB OG!L0#
W? ��W?HM=GH + �W?IM=GI(



+BB OL!L0#

W? �W?MM=LM
4

+ �,K − @K
""

+ ��ln =L0M
1 − =L0M

= 0 

which can be written as: 

X4Y
K!S=GH, =GI, =LMT# + ��ln =L0M

1 − =L0M
= 0 

and inverted to yield : 

=4YK = ZL0
M

,`ZL0
M  with Z4Y

K!S=GH, =GI, =LMT# = [\�aYb /%' 

The composition constraint on D is : 

B?4
4

=LM = cM
1 − cM B?G

G
 

with xD the imposed D atomic fraction. The @K chemical potential thus becomes an 

additional variable which has to be handled the same way as the PFM set S=GH, =GI, =LMT. 
































