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Yassine Zniyeda, Rémy Boyera, André L. F. de Almeidab, Gérard Favierc

aLaboratoire des Signaux et Systèmes (L2S), Université Paris-Sud (UPS), CNRS,
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Abstract

In this work, equivalence relations between a Tensor Train (TT) decomposition
and the Canonical Polyadic Decomposition (CPD)/Tucker Decomposition (TD)
are investigated. It is shown that a Q-order tensor following a CPD/TD with
Q > 3 can be written using the graph-based formalism as a train of Q tensors of
order at most 3 following the same decomposition as the initial Q-order tensor.
This means that for any practical problem of interest involving the CPD/TD, it
exists an equivalent TT-based formulation. This equivalence allows us to over-
come the curse of dimensionality when dealing with the big data tensors. In this
paper, it is shown that the native difficult optimization problems for CPD/TD
of Q-order tensors can be efficiently solved using the TT decomposition accord-
ing to flexible strategies that involve Q− 2 optimization problems with 3-order
tensors. This methodology hence involves a number of free parameters linear
with Q, and thus allows to mitigate the exponential growth of parameters for
Q-order tensors. Then, by capitalizing on the TT decomposition, we also for-
mulate several robust and fast algorithms to accomplish Joint dImensionality
Reduction And Factors rEtrieval (JIRAFE) for the CPD/TD. In particular,
based on the TT-SVD algorithm, we show how to exploit the existing coupling
between two successive TT-cores in the graph-based formalism. The advantages
of the proposed solutions in terms of storage cost, computational complexity and
factor estimation accuracy are also discussed.
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1. Introduction

Low rank tensor approximation is one of the major challenges in the in-
formation scientific community, see for instance [35, 8]. It is useful to extract
relevant information confined into a small dimensional subspace from a mas-
sive volume of data while reducing the computational cost. In the matrix case,5

the approximation of a full rank matrix by a (fixed) low rank matrix is a well
posed problem. The famous Eckart-Young theorem [16] provides both theoret-
ical guarantees on the existence of a solution and a convenient way to compute
it. Specifically, the set of low rank matrices is closed and the best low rank ap-
proximation (in the sense of the Frobenius norm) is obtained via the truncated10

Singular Value Decomposition (SVD). This fundamental result is at the origin
of the Principal Component Analysis (PCA) [18], for instance. PCA is based
on the decomposition of a set of observations into a set of uncorrelated vari-
ables. When the measurements are naturally modeled according to more than
two axes of variations, i.e., in the case of high-order tensors, the problem of ob-15

taining a low rank approximation faces a number of practical and fundamental
difficulties. Indeed, even if some aspects of tensor algebra can be considered
as mature, several algebraic concepts such as decomposition uniqueness, rank
determination, or the notions of singular values and eigenvalues remain chal-
lenging research topics [2, 12]. To illustrate these conceptual difficulties and20

without being too exhaustive, we will address the non-uniqueness of the rank
through the description of the canonical rank and of the multilinear rank.
A natural generalization to high-order tensors of the usual concept of matrix
rank leads to the canonical polyadic decomposition (CPD) [22, 20, 4, 15, 39].
The canonical rank of a Q-order tensor is equal to the minimal number, say25

R, of rank-one tensors that must be linearly combined to reach a perfect re-
covery of the initial tensor. A rank-one tensor of order Q is given by the outer
product of Q vectors. In the context of massive data processing and analysis,
this decomposition and its variants [5, 6] are attractive in terms of compactness
thanks to the minimality constraint on R. In addition, the CPD has remarkable30

uniqueness properties [39] and involves only QNR free parameters for a Q-order
rank-R tensor of size N× . . .×N . Unfortunately, unlike the matrix case, the set
of low-rank tensors is not closed [21]. This singularity implies that the problem
of computing the CPD is mathematically ill-posed. The consequence is that its
numerical computation remains non trivial and is usually done using suboptimal35

iterative algorithms [28]. Note that this problem can sometimes be avoided by
exploiting some natural hidden structures in the physical model [38].
The Tucker decomposition and the HOSVD (High-Order SVD) [11, 41] are two
popular decompositions being an alternative to the CPD. In this case, the no-
tion of canonical rank is no longer relevant and a new rank definition has to be40

introduced. Specifically, the multilinear rank of a tensor is defined as the set
of Q positive integers : {T1, . . . , TQ} where each Tq is the usual (in the matrix
sense) rank of the q-th mode unfolding of this tensor. Its practical construction
is algebraic, non-iterative and optimal in the sense of the Eckart-Young theo-
rem, applied to each matrix unfolding. This approach became popular because45
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it can be computed in real time or adaptively, using very standard algebraic
methods [3]. However, a low (multilinear) rank tensor based on the HOSVD
is generally not optimal regarding the approximation in the Frobenius norm
sense. In other words, there is no generalization of the Eckart-Young theorem
for tensors of order strictly greater than two. This decomposition has a poor50

compactness property compared to the CPD. For a multilinear rank {T, . . . , T},
the number of free parameters is about QNT + TQ for a Q-order tensor of size
N × . . . ×N , and therefore grows exponentially with the order Q. In the con-
text of the massive data processing, this decomposition is irrelevant and cannot
break the curse of dimensionality [33]. Indeed, a generally not sparse core tensor55

must be stored in the Tucker/HOSVD decomposition, leading to a term in TQ.
A new family of tensor decompositions called Tensor Train (TT) [32, 30] has
been recently introduced. This tensor decomposition has a twofold benefit:
first it increases representation compactness with respect to the Tucker model
and exploits a stable numerical estimation procedure which avoids the iter-60

ative algorithms used to compute the CPD. Second, the TT decomposition
breaks the curse of dimensionality by operating on lower (≤ 3) order tensors.
The TT decomposition relies on the estimation of the TT-ranks denoted by
{R1, . . . , RQ−1}, and the number of free parameters is (Q− 2)NR2 + 2NR for
R1 = . . . = RQ−1 = R. Hence, its storage cost is now linear in Q. Unfortu-65

nately, as for the canonical or multilinear ranks, the estimation of the TT-ranks
is a very delicate task.
In this work, we study the equivalence between the TT decomposition and both
CPD and TD for an estimation purpose. Seminal works [32, 7, 19] have shown
some links between these decompositions. Our work is different, since we are70

not aiming to provide algebraic equivalences from a modeling point of view.
Our results are mainly constructive and focused on the TT-ranks and TT-cores
structure when the TT-SVD algorithm is applied to CPD and TD, depending
on the rank conditions of the initial tensors, so they can be exploitable in an
estimation scheme. This work brings the following original contributions:75

• A different TT-based strategy for multilinear projection estimation ap-
plied to TD/HOSVD is proposed.

• We provide an algebraic analysis of the TT-SVD algorithm and propose a
new methodology called JIRAFE for Joint dImensionality Reduction And
Factors rEtrieval to solve a sum of coupled least-square criteria for each80

TT-core.

• New theorems on the analysis of the application of the TT-SVD algorithm
to high-order CPD and TD, regarding the resulting TT-cores structures
and the rank conditions, are given.

• Constructive proofs of the structure of the TT-cores are developped, while85

proposing fast, stable and parallel algorithms which exploit this structure
for both the CPD and TD. A better algorithmic stability refers to ei-
ther proposing fully closed-form solutions replacing the existing iterative
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solutions, or breaking high order iterative solutions by 3-order iterative
ones.90

It is worth noting that this work is essentially centered on the algebraic
analysis of the TT-SVD algorithm and the development of the JIRAFE method-
ology, unlike the publications [32, 7], that discuss the problem in the context
of tensor modeling and not in terms of estimation algorithms. Moreover, our
methodology is different from the one presented in [31, 14] where two (or more)95

tensor models are associated to propose new tensor factorizations. In this work,
new algorithms for breaking the problem of decomposing a large-scale tensor
into coupled small-order tensor factorizations are proposed for standard tensor
models, i.e., for CPD and TD/HOSVD, based on constructive proofs. Also,
one may note that the algebraic rewritings (Theorems 1 and 3 in this work)100

of CPD/TD as TT do not allow to guarantee the minimality of the considered
TT-ranks, and thus the structure of the TT-cores when a decomposition algo-
rithm is applied. On the contrary, the new constructive results, Theorems 2 and
4 in this work, provide guarantees on the minimality of the TT-ranks and the
TT-cores structure, considering additional rank conditions on the initial ten-105

sors, and based on the Eckart-Young theorem when the constructive proofs are
detailed.
All applications using high-order CPD/TD/HOSVD models can be processed
using the proposed JIRAFE framework. For example, but not limited to, the
JIRAFE framework can be applied to the problem of multilinear harmonic re-110

trieval (MHR) [23], high-order CPD probability mass function tensors [25] in
machine learning, and for channel estimation for massive MIMO systems [24]
in wireless communications.
The rest of this paper is organized as follows. Section 2 introduces notations and
some algebraic background that will be used throughout the article. Section 3115

recalls the Tensor Train decomposition and the TT-SVD algorithm. In Section
4, we present the equivalence between TD and TT decompositions, showing
that a high order TD is equivalent to a train of 3-order TDs. In Section 5,
the equivalence between the CPD and the TT decomposition is studied, and
the structure of the new CPD-Train cores is established. Section 6 presents120

different applications of the TD-Train and CPD-Train models. Stable, fast and
scalable algorithms adapted to these new models are also proposed in this sec-
tion. Finally, Section 7 contains the concluding remarks.

2. Notations and algebraic background

The notations used throughout this paper are now defined. The symbols
(·)T , (·)† and rank(·) denote, respectively, the transpose, the pseudo-inverse,
and the rank. The Kronecker, Khatri-Rao and n-mode products are denoted

to by ⊗, � and ×n. The symbols 〈·〉, ∆
= and O(·) denote spanned subspace,

an equality by definition, and a dominant term in a complexity expression.
The operator diag(·) forms a diagonal matrix from its vector argument. The
operator vec(·) forms a vector by stacking the columns of its matrix argument,
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while unvecI×J(·) is the inverse operator. e
(N)
n denotes the nth basis vector of

RN . We denote by A(:, i) (resp. A(i, :)) the ith column (resp. row) of the
matrix A. X (i, :, :), X (:, j, :) and X (:, :, k) are the i-th horizontal, j-th lateral
and k-th frontal slices of sizes N2 ×N3, N1 ×N3 and N1 ×N2, respectively, of
the tensor X of size N1 × N2 × N3. Scalars, vectors, matrices and tensors are
represented by x, x, X and X , respectively. unfoldqX refers to the unfolding
of tensor X over its q-th mode. Ik,R denotes the k-order identity tensor of size
R× · · · ×R. It is a hypercubic tensor of order k, with ones on its diagonal and
zeros otherwise, and we have I2,R = IR.
Let A = [a1 a2 · · · aR] and B = [b1 b2 · · · bR]. Their Khatri-Rao product
is defined as

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · aR ⊗ bR].

We now introduce some standard lemmas and definitions that will be useful in125

the sequel, especially for the proofs of our main Theorems 2 and 4.

Definition 1. Let R ≤ N . If matrices A and B of size N × R span the same
R-dimensional column space, then it exists a nonsingular R × R matrix M,
usually called a change-of-basis matrix, such as

B = AM or equivalently BM−1 = A.

In this case, we have the following equality in terms of orthogonal projectors

BB† = AMM−1A† = AA†.

Lemma 1. Let A and B be two matrices of respective sizes I × J and K × J ,
where I ≥ J , and K ≥ J . The Khatri-Rao product of both matrices does not
decrease the rank [36]:

rank(A�B) ≥ max{rank(A), rank(B)},

which implies that, if A or B has full rank, A�B also has full rank, i.e.,

rank(A) = J or rank(B) = J ⇒ rank(A�B) = J.

Definition 2. The contraction product ×p
q between two tensors A and B of

size N1 × · · · × NQ and M1 × · · · ×MP , where Nq = Mp, is a tensor of order
Q+ P − 2 such as [5]

[A×p
q B]n1,...,nq−1,nq+1,...,nQ,m1,...,mp−1,mp+1,...,mP

=

Nq∑
k=1

[A]n1,...,nq−1,k,nq+1,...,nQ
[B]m1,...,mp−1,k,mp+1,...,mP

.

In tensor-based data processing, it is standard to unfold a tensor into matri-
ces. We refer to Eq. (5) in [17], for a general matrix unfolding formula, also

called tensor reshaping. The q-th generalized unfolding X(q), of size (
q∏

s=1
Ns)×
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(
Q∏

s=q+1
Ns), of the tensor X ∈ RN1×N2×···×NQ using the native reshape function

of the MATLAB software, is defined by:

X(q) = reshape

(
X ;

q∏
s=1

Ns,

Q∏
s=q+1

Ns

)
.

Another type of reshaping is the tensor unfolding, that transforms the tensor
X ∈ RN1×N2×···×NQ into a 3-order tensor X q of size (N1 · · ·Nq−1) × Nq ×
(Nq+1 · · ·NQ) where:

X q = reshape

(
X ;

q−1∏
s=1

Ns, Nq,

Q∏
s=q+1

Ns

)
.

The last transformation is the square matrix tensorization, that transforms
a square matrix I ∈ RN×N , with N = N1N2, to a 3-order tensor according to:

X = reshape (I;N1, N2, N) , (1)

or,

X̄ = reshape (I;N,N1, N2) , (2)

where X ∈ RN1×N2×N and X̄ ∈ RN×N1×N2 . These two last reshapings will be
used in Theorem 1 to define a one-to-one mapping between an identity matrix
and a sparse tensor filled with binary values.

2.1. Tucker decomposition130

The Tucker decomposition was proposed in [41]. It decomposes a tensor into
a core tensor of same order, multiplied by a factor matrix along each mode. It
can be seen as a generalization of the CPD [22, 20, 4].

Definition 3. A Q-order tensor of size N1 × . . . × NQ that follows a Tucker
decomposition can be written as:

X = C ×1 F1 ×2 F2 ×3 . . .×Q FQ (3)

where Fq is of size Nq × Tq, 1 ≤ q ≤ Q, and C is the core tensor of size
T1 × . . . × TQ. The multilinear rank [11] of the tensor X is defined as the Q-135

uplet {T1, · · · , TQ}, such that T1 × · · · × TQ is the minimal possible size of the
core tensor C. The storage cost of a Tucker decomposition is O(QNT + TQ),
where N = max{N1, · · · , NQ}, and T = max{T1, · · · , TQ}.
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2.2. HOSVD

Definition 4. The HOSVD [11, 1] is a special case of the Tucker decomposition
(3), where the factors Fq are column-orthonormal. Generally, the HOSVD is
not optimal in terms of low rank approximation, but it relies on the stable (i.e.,
non-iterative), SVD-based algorithm. In the real case, the core tensor can be
expressed as

C = X ×1 FT
1 ×2 FT

2 ×3 . . .×Q FT
Q

Note that the core tensor C obeys to the “all-orthogonality” property [11].140

Lemma 2. The q-th generalized unfolding, denoted by X(q), of a tensor X that
follows (3), of size (N1 · · ·Nq)× (Nq+1 · · ·NQ), admits the following expression:

X(q) = reshape(X ;N1 · · ·Nq, Nq+1 . . . NQ)

= (Fq ⊗ · · · ⊗ F1) ·C(q) · (FQ ⊗ · · · ⊗ Fq+1)T ,

where C(q) = reshape(C;T1 · · ·Tq, Tq+1 . . . TQ).

2.3. CPD

The CPD expresses a Q-order tensor X into a sum of rank-one Q-order
tensors [22, 20]. The canonical rank of a CPD is the minimum number of rank-
one tensors needed for a perfect representation of X .145

Definition 5. A Q-order tensor of size N1 × . . .×NQ belonging to the family
of rank-R CPD admits the following decomposition:

X = IQ,R ×1 P1 ×2 P2 ×3 . . .×Q PQ (4)

where the q-th factor Pq is of size Nq × R, 1 ≤ q ≤ Q. The q-mode unfolded

matrix unfoldqX , of size Nq × N1···NQ

Nq
, is given by:

unfoldqX = Pq · (PQ � · · · �Pq+1 �Pq−1 � · · · �P1)T .

Lemma 3. For the CPD (4), the q-th unfolding, denoted by X(q), of size (N1 · · ·Nq)×
(Nq+1 · · ·NQ), admits the following expression:

X(q) = reshape(X ;N1 · · ·Nq, Nq+1 . . . NQ)

= (Pq � · · · �P1) · (PQ � · · · �Pq+1)T .

3. Tensor Train decomposition

The Tensor-Train decomposition was proposed in [32, 30]. It transforms a
high Q-order tensor into a set of 3-order core tensors. It is one of the simplest
tensor networks that allows to break the “curse of dimensionality”. Indeed, it
has a low storage cost, and the number of its parameters is linear in Q.150
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Definition 6. Let {R1, . . . , RQ−1} be the TT-ranks with bounding conditions
R0 = RQ = 1. A Q-order tensor of size N1 × . . .×NQ admits a decomposition
into a train of tensors if

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 . . .×1

Q−1 GQ−1 ×1
Q GQ, (5)

with the TT-cores of dimensions

G1 : N1 ×R1,

GT
Q : NQ ×RQ−1,

Gq : Rq−1 ×Nq ×Rq, for 2 ≤ q ≤ Q− 1,

where rank(G1) = R1, rank(GQ) = RQ−1 and for 2 ≤ q ≤ Q− 1,

rank(Gq(1)
) = Rq−1,

rank(Gq(2)
) = Rq.

A graph-based representation of the TT decomposition of a Q-order tensor
is given in Fig. 1. The TT-cores can be computed using the TT-SVD algo-

Figure 1: TT decomposition of a Q-order tensor

rithm [32]. It is a sequential algorithm based on the extraction of the dominant
subspaces of sequential matrix-based reshapings. The complete algorithmic de-
scription is given in [32]. It is also worth noting that the TTD of X in (5) is
not unique, since we can always replace two successive TT-cores Gq and Gq+1 ,
respectively, by G′q and G′q+1 such that

G′q = Gq ×1
3 M−1

q ,

G′q+1 = Mq ×1
2 Gq+1,

to recover the same tensor X , where Mq is a nonsingular matrix of size Rq×Rq.
This means that the multiplicative ambiguities in the TTD correspond to post-
and pre-multiplications by nonsingular matrices.
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4. TD-Train model: Equivalence between a high-order TD and a train
of low-order TDs155

In Theorem 1, we present a new algebraic equivalence between the Tucker
and TT decompositions. We show how the matrix factors and the core tensor
of a TD can be recast into the TT format.

Theorem 1. Assume that tensor X follows a Q-order Tucker model of mul-
tilinear rank-(T1, · · · , TQ), given by eq. (3). A TT decomposition (5) of X is
then given by

G1 = F1,

Gq = T q ×2 Fq, (1 < q < q̄)

with T q = reshape
(
IRq

;T1 · · ·Tq−1, Tq, T1 · · ·Tq)

G q̄ = Cq̄ ×2 Fq̄,

with Cq̄ = reshape
(
C;Rq̄−1, Tq̄, Rq̄)

Gq = T̄ q ×2 Fq, (q̄ < q < Q)

with T̄ q = reshape
(
IRq−1 ;Tq · · ·TQ, Tq, Tq+1 · · ·TQ)

GQ = FT
Q,

where T q and T̄ q result from the tensorization as defined in (1) and (2), re-
spectively, and160

• q̄ is the smallest q that verifies
q∏

i=1

Ti ≥
Q∏

i=q+1

Ti,

• The TT-ranks verify: Rq = min(
q∏

i=1

Ti,
Q∏

i=q+1

Ti
)
.

Proof. It is straightforward to verify that the TT decomposition of the Q-order
Tucker core C takes the following expression:

C = IR1 ×1
2 T 2 ×1

3 · · · ×1
q̄−1 T q̄−1 ×1

q̄ Cq̄ ×1
q̄+1 T̄ q̄+1 ×1

q̄+2 · · · ×1
Q−1 T̄ Q−1 ×1

Q IRQ−1

(6)

where tensors T q and T̄ q have been defined in the Theorem and thanks to the
reshaping eq. (1) and eq. (2), respectively. Replacing the TT decomposition of
C in eq. (3), the q-th 3-order tensor in eq. (6) is multiplied in its second mode165

by its corresponding factor Fq. By identifying the final TT-cores, the theorem
is proved.

Note that all the TT-cores follow a 3-order Tucker1 model, whose the second
factor is the q-th factor of the original TD, hence the name TD-Train. More
specifically, for q < q̄ and q > q̄, the corresponding TT cores have Tucker1170

structures whose core tensors have fixed 1’s and 0’s patterns. We recall that
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a Tucker1 model is a 3-order Tucker decomposition with two factor matrices
equal to identity matrices. For q = q̄, the associated TT-core has a Tucker1
structure with a core tensor Cq̄ obtained from the core tensor of the original
TD. To illustrate this result, consider the TT decomposition of the core tensor175

C in eq. (3). Note that q̄ corresponds to the smallest q such that C(q) has at
least as many rows as columns. For example, if C is a 5-order tensor of size
2× 3× 2× 4× 2, then q̄ = 3, since 2× 3× 2 > 4× 2. Another example where
C is of size 2× 2× 3× 4× 4 corresponds to q̄ = 4.
The cores of the TD-Train can be recovered by using the TT-SVD algorithm180

[32] in practice. However, the application of this algorithm will recover the
cores up to nonsingular transformation matrices according to definition 1. In
the following theorem, the structures of the TT-cores associated with a TD-
Train are given.

Theorem 2. Applying the TT-SVD algorithm on the tensor (3), under the as-185

sumptions that

• Fq is a full column rank matrix of size Nq × Tq,

• C(q) = reshape
(
C;

q∏
i=1

Ti,
Q∏

i=q+1

Ti
)

has full rank,

allows to recover TT-cores according to

G1 = F1M
−1
1 , (7)

Gq = T q ×1 Mq−1 ×2 Fq ×3 M−T
q , (1 < q < q̄)

G q̄ = Cq̄ ×1 Mq̄−1 ×2 Fq̄ ×3 M−T
q̄ ,

Gq = T̄ q ×1 Mq−1 ×2 Fq ×3 M−T
q , (q̄ < q < Q)

GQ = MQ−1F
T
Q, (8)

where Mq is a Rq × Rq nonsingular change-of-basis matrix, and the quantities
T q, T̄ q, Cq̄ and Rq are defined in Theorem 1.190

Proof. See Appendix 8.1

Note that the TT-cores follow Tucker models with nonsingular transforma-
tion matrices along their first and third modes. These matrices compensate
each other due to the train format. The proof relies on the TT-SVD algorithm
applied to a Q-order Tucker decomposition.195

Remark 1. One may note that, in Theorem 1, no assumptions on the rank
of the Tucker core nor the factors are made, thus there is no guarantee that
the considered TT-ranks are minimal, i.e., applying a decomposition algorithm
such as TT-SVD may estimate different (lower) TT-ranks and provide different
TT-cores’ structure. In Theorem 2, additional rank assumptions are made, es-200

pecially on the Tucker core C, allowing to guarantee the minimality of the given
TT-ranks and to provide constructive/exploitable results from an estimation
point of view.
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5. CPD-Train model: Equivalence between a high-order CPD and a
train of low-order CPD(s)205

Following the same reasoning as in the previous section, we will draw results
about the relation between the CPD and the TT decomposition. The CPD-
Train equivalence turns out to be very useful and of broad interest, due to the
various applications of the CPD. Note that the idea of rewriting a CPD into the
TT format was briefly introduced in seminal works [32, 7]. In [7], Section 4.3210

presents a similar result as Theorem 3 without discussing the TT-cores struc-
ture after the application of a decomposition algorithm such as the TT-SVD
algorithm. In this paper, we exploit this idea to propose a new CPD factor
retrieval algorithm. Indeed, in Theorem 4, which is the main result to derive
the structure of all the proposed algorithms, we discuss and expose the TT-215

cores structure after the application of the TT-SVD algorithm on a CPD tensor
when the factor have full column rank. Moreover, we give a rigorous demonstra-
tion for the relation between TT and CPD in an algebraic point of view, and
more important, we expose, for the first time, as a constructive proof an useful
relation between TT and CPD in the context of the TT-SVD algorithm. Specif-220

ically, the coupling factors between consecutive TT-cores takes its explication
in the TT-SVD. This important property totally inspires the architecture of the
proposed algorithms. To the best of the authors’ knowledge, this is the first
CPD algorithm that exploits such a link. In the following theorem, we provide
an algebraic equivalence between the two decompositions.225

Theorem 3. If the tensor X follows a Q-order CPD of rank-R according to
(4), then a TT decomposition (5) is given by [32, 7]:

G1 = P1,

Gq = I3,R ×2 Pq (3-order CPD), where 2 ≤ q ≤ Q− 1,

GQ = PT
Q,

and the TT-ranks are all identical and equal to the canonical rank R.

Proof. The TT decomposition of the Q-order identity tensor IQ,R of size
R× · · · ×R involved in the CPD given by (4) is

IQ,R(i1, i2, · · · , iQ) =

R∑
r1,··· ,rQ−1=1

IR(i1, r1)I3,R(r1, i2, r2)I3,R(r2, i3, r3) · · ·

· · ·I3,R(rQ−2, iQ−1, rQ−1)IR(rQ−1, iQ),

i1, . . . , iQ, ∈ [1, R], which can be rewritten in a train format using identity
matrices and tensors as

IQ,R = IR ×1
2 I3,R ×1

3 · · · ×1
Q−1 I3,R ×1

Q IR.

Replacing the above TT decomposition in (4), and identifying the TT-cores, we
can deduce the result of Theorem 3.
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It is worth noting that both decompositions have the same number of free pa-
rameters. All the TT-cores follow a 3-order rank-R CPD structure, whose the230

second factor is the q-th factor of the original CPD, the other factors being
equal to the identity matrix IR. The result of Theorem 3 means that comput-
ing a CPD via its associated TT decomposition maintains the model structure
while reducing its complexity. In addition, we know the whole structure of the
CPD-Train cores, as well as the ranks of the associated 3-order CPDs.235

In the same perspective, the application of the TT-SVD algorithm to (4) al-
lows to recover TT-cores up to nonsingular matrices following Definition 1, as
established in Theorem 4. It is very important to note that the non-uniqueness
property of the TT decomposition suggest that there exists some indeterminate
invertible matrices, but in the following theorem, we rigorously, show that these240

matrices in the context of the TT-SVD algorithm are in fact a set of change-of-
basis rank-R matrices essentially linked to the fundamental problem of singular
subspace estimation via the SVD. Moreover, it is also important to note that
the structure of the TT-cores presented in Theorem 4 is essentially related to
the assumption that the factors have full column rank. For instance, in the case245

of full row rank factors, the structure of the TT-cores will completely change,
and we may have 2 factors that are absorbed in the same TT-core, unlike the
case we consider and demonstrate in Theorem 4, which shows that the structure
of the resultant TT-cores is not trivial and that each seperate case needs a new
analysis.250

Theorem 4. Applying the TT-SVD algorithm to the Q-order CPD (4) allows
to recover TT-cores of (4) when the factors Pq have full column rank, yielding

G1 = P1M
−1
1 ,

Gq = I3,R ×1 Mq−1 ×2 Pq ×3 M−T
q , where 2 ≤ q ≤ Q− 1

GQ = MQ−1P
T
Q

where Mq is a nonsingular R×R change-of-basis matrix.

Proof. See Appendix 8.2

From Theorem 4, we can see that all TT-cores have a 3-order CPD structure,
whose two matrix factors are nonsingular transformation matrices. Note that
the CPD does not belong to the cases of Theorem 2, since the generalized255

unfolding I(q) of the CPD core tensor I is not a full rank matrix (as supposed
in Theorem 2), due to the sparsity of the core tensor. In other words, Theorem
4 is not a special case of Theorem 2. Figure 2 depicts the CPD of the TT-core
Gq.

Remark 2. Once again, we should mention that the algebraic equivalence of260

Theorem 3 does not guarantee the minimality of the given TT-ranks, i.e., the
algebraic equivalence of Theorem 3 remains true even if some factors are rank
deficient (rankPq < R), but the estimated TT-ranks and the TT-cores’ struc-
ture will not be the same when the TT-SVD is applied in that case. Thus,

12



Figure 2: CPD of the q-th 3-order core of the associated Q-order CPD-Train.

additional rank assumptions on the factors are made in Theorem 4 guarantee-265

ing the minimality of the given TT-ranks.

5.1. Symmetric CPD
A special case of the CPD is the fully symmetric CPD tensor, which has

found several applications, e.g. in signal processing using high-order statistics
[9].270

Definition 7. A Q-order symmetric tensor of size N × . . . × N belonging to
the family of rank-R CPD admits the following decomposition:

X = IQ,R ×1 P×2 P×3 . . .×Q P

where P is of size N ×R.

Theorem 5. If a Q-order symmetric tensor admits a rank-R CPD, and P has
full column rank, we have:

X CPD
= IQ,R ×1 P×2 P×3 . . .×Q P (9)

TT
= G1 ×1

2 G2 ×1
3 G3 ×1

4 . . .×1
Q−1 GQ−1 ×1

Q GQ,

where

G1 = PM−1
1 (10)

Gq = I3,R ×1 Mq−1 ×2 P×3 M−T
q for 2 ≤ q ≤ Q− 1 (11)

GQ = MQ−1P
T , (12)

and Mq is a R × R matrix that follows Definition 1 (1 ≤ q ≤ Q − 1). We can
then conclude that:

〈P〉 = 〈G1〉 = 〈Gq(:, :, i)〉 = 〈Gq′(j, :, :)〉 = 〈GT
Q〉 (13)

for 2 ≤ q ≤ Q− 1, 2 ≤ q′ ≤ Q− 1, 1 ≤ i ≤ R, 1 ≤ j ≤ R, and we have:

rank(P) = rank(G1) = rank(Gq(:, :, i)) = rank(Gq′(j, :, :)) = rank(GT
Q) (14)

which means that, in the symmetric case, the horizontal and frontal slices of the
TT-cores span the same subspaces.

Proof. See Appendix 8.3.
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5.2. Permutation and scaling ambiguities275

It is known that matrix decompositions are not unique unless structural
constraints are imposed on the factor matrices. The usual approach is to as-
sume orthonormality by means of the SVD. However, the CPD enjoys essential
uniqueness under mild conditions. Specifically, the factors of the 3-order CPD
can be identified in a unique manner up to trivial (column permutation and280

scaling) ambiguities [39].

Theorem 6. The factors of the Q CPDs associated with a CPD-Train are
unique up to the following ambiguities:

1. common column permutation matrix denoted by Π;

2. diagonal scaling matrices satisfying the following relation:

Λ1Λ2 · · ·ΛQ−1ΛQ = IR, (15)

where Λk is the scaling ambiguity for the k-th factor Pk.285

Proof. 1. It is straightforward to check that if a change-of-basis matrix
M−T

k can be determined up to a column permutation matrix Π and a
diagonal scaling matrix Γk, then Mk can also be determined up to the
same permutation matrix and inverse scaling Γ−1

k . We can deduce that the
column permutation matrix is unique and common to all the TT-cores due290

to the recursion property. This proves the first point of the above theorem.

2. We have

G1 = P1ΠΛ1(M1ΠΓ−1
1 )−1

G2 = I3,R ×1 M1ΠΓ−1
1 ×2 P2ΠΛ2 ×3 M−T

2 ΠΓ2 (16)

G3 = I3,R ×1 M2ΠΓ−1
2 ×2 P3ΠΛ3 ×3 M−T

3 ΠΓ3 (17)

...

GQ−1 = I3,R ×1 MQ−2ΠΓ−1
Q−2 ×2 PQ−1ΠΛQ−1 ×3 M−T

Q−1ΠΓQ−1

GQ = MQ−1ΠΓ−1
Q−1(PQΠΛQ)T .

Based on the above expressions, we have Γ−1
1 Λ2Γ2 = IR from (16) and

Γ2 = Λ3Γ3 from (17). From these relations, we deduce Γ−1
1 Λ2Λ3Γ3 = IR.

Following the same reasoning for the k-th step we have

Γ−1
1 Λ2 . . .ΛkΓk = IR,

Γ−1
k Λk+1Γk+1 = IR.

As Γ−1
1 = Λ1, and ΓQ−1 = ΛQ, combining the above relations for a

Q-order tensor allows to obtain (15).
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The result of Theorem 6 is important from an estimation viewpoint. It
means that the CPD-Train offers a way to retrieve the factors of a CPD un-295

der the same uniqueness properties but at lower complexity, thanks to dimen-
sionality reduction and the change-of-basis matrices Mq. This is particularly
important for high-order tensors, where the direct computation of the factor
matrices by means of traditional algorithms such as ALS may be impractical
due to processing and storage limitations. Otherwise, not considering the ma-300

trices Mq in the estimation will not guarantee the same permutation for the
estimated factors, nor verify the equation (15) between the scaling matrices.
Moreover, these matrices will be used to reduce the complexity by assuming
the knowledge/pre-estimation of Mq−1 when decomposing Gq in an estimation
scheme. Hence the importance of these matrices.305

6. Estimation algorithms for the CPD-and TD-Trains

In this section, several algorithms for Joint dImensionality Reduction And
Factors rEtrieval (JIRAFE) are presented. These solutions are based on the
results of Theorem 4 for the CPD-Train and of Theorem 2 for the TD-Train. So,
the JIRAFE methodology can be described by the following two step procedure.310

1. Reduce the dimensionality of the original factor retrieval problem by
breaking the difficult multidimensional optimization problem into a col-
lection of simpler optimization problems on small-order tensors. This step
is carried out using the TT-SVD algorithm.

2. Design a factor retrieval strategy by exploiting (or not) the coupled struc-315

ture existing in the 1st and 3rd factors for two consecutive TT-cores. Here,
the goal is to minimize a sum of coupled least-squares criteria.

6.1. Fast Multilinear Projection (FMP) based on TD-Train

In many important applications, it is crucial to extract the dominant singular
subspaces associated to the factors while the computation of the core tensor is
not a primary goal. This scenario is usually known as a multilinear projection
as described in [29] for instance. Indeed, in the context of multilinear analysis
for facial recognition [43], the physical informations, i.e. people × expression
× view × illumination are encoded in the factors. Specifically, assume that we
dispose of Q matrices F̂q (1 ≤ q ≤ Q), with F̂T

q F̂q = I. The tensor-to-tensor
multilinear projection is formulated according to

X proj = X data × F̂T
1 ×1 · · · ×Q F̂T

Q.

6.1.1. Algorithmic description

A fast computation of the orthonormal factors F̂1, · · · , F̂Q is presented in
this section. Our scheme is based on an alternative interpretation of equations
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(7)-(8) such as

unfold2Gq = Fq unfold2T ′q, (1 < q < q̄),

unfold2G q̄ = Fq̄ unfold2C′q̄,

unfold2Gq = Fq unfold2T̄
′
q, (q̄ < q < Q)

where

T ′q = T q ×1 Mq−1 ×2 I×3 M−T
q , (1 < q < q̄),

C′q̄ = Cq̄ ×1 Mq̄−1 ×2 I×3 M−T
q̄ , (q = q̄),

T̄ ′q = T̄ q ×1 Mq−1 ×2 I×3 M−T
q , (q̄ < q < Q).

In other words, after the dimensionality reduction based on the TT-SVD algo-320

rithm, each projector matrix can be recovered thanks to a truncated SVD of
the 2nd unfolding of the corresponding TT-core. A pseudo-code of this new
approach is given in Algorithm 1.

Algorithm 1 Fast Multilinear Projection algorithm based on JIRAFE

Input: Q-order tensor X
Output: Estimated orthonormal factors: F̂1, · · · , F̂Q.

1: Dimensionality reduction:

[G1,G2, · · · ,GQ−1,GQ] = TT-SVD(X ).

Orthonormal Factors retrieval:
2: for q = 2 · · ·Q− 1 do
3: F̂q = Matrix of the left singular vectors of SVD(unfold2Gq) {This step

can be done in a parallel way}
4: end for

6.1.2. On the difference with the HOSVD

It is important to note that using Definition 4, the core tensor Ĉ generated by
the above algorithm is given by Ĉ = X ×1 F̂T

1 ×2 · · ·×Q F̂T
Q. Let be the HOSVD

of a tensor X = S ×1 U1 ×2 · · · ×Q UQ with UT
q Uq = I. Using Definition 4,

the core tensor for the HOSVD is given by S = X ×1 UT
1 ×2 · · · ×Q UT

Q. It is
well-known that the core tensor, S, of the HOSVD satisfies the all-orthogonality
and pseudo-diagonality properties [11]. On the contrary, we have no guaranty
that Ĉ satisfies these properties. Indeed, the TT-SVD algorithm provides an
orthonormal matrix F̂q which span the same subspace as the factor Uq. This
means that there exists a change-of-basis matrix (see Definition 2.1), denoted
by Jq for instance, such as Jq = UT

q F̂q. The link between the two core tensors
is given by

S = X ×1 UT
1 ×2 · · · ×Q UT

Q = Ĉ ×1 J1 ×2 · · · ×Q JQ.
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6.1.3. Analysis of the computational cost and execution time325

The computation of the native HOSVD for a Q-order Tucker tensor X of
size N × · · · × N involves the computation of Q dominant left singular basis
thanks to truncated-SVDs on the unfolding matrices of size N × NQ−1, other
methods, such as ST-HOSVD [42], may use different truncation strategies, while
the proposed strategy consists of computing Q left and right dominant singular330

basis in the TT-SVD algorithm and Q − 2 left dominant singular basis of the
TT-cores. We recall that based on the QR-orthogonal iteration (QR-OI) [18],
the r-truncated SVD computational cost for a single iteration and for the left
dominant singular basis for a n×m matrix is evaluated to 2rmn+2r2 min(n,m)
flops. The computation of the left and the right dominant singular basis is eval-335

uated to 2rmn+ 2r2(n+m) flops.

As an illustrative example, the computational cost of the HOSVD factors of
(T, · · · , T )-multilinear rank for a 4-order tensor is 8TN4 + 8T 2N . For the TT-
SVD, the TT-ranks are (T, T 2, T ) and q̄ = 2. Note that the TT-ranks may be340

large with respect to the multilinear rank so as shown on Fig. 3, it makes sense to
consider the case where N � T . Note that this is a standard assumption when
using the HOSVD. The complexity cost for the TT-SVD is 2TN4+2T 2(N+N3)
for the first SVD of a N ×N3 matrix of rank T . The complexity of the second
SVD of a (TN) × N2 matrix of rank T 2 is 2T 3N3 + 2T 4(TN + N2). Finally,345

the last SVD of a (T 2N) × N matrix of rank T is 2T 3N2 + 2T 2(T 2N + N).
Finally, we have to perform two SVDs of the 2nd unfolding matrices of G2 and
G3 of size T × N × T 2 and T 2 × N × T , respectively for the extraction of the
left dominant basis. The total cost is 4NT 4 + 4T 2 min(N,T 3).

0 5 10 15 20 25 30 35 40 45 50
1012
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1014

1015

Figure 3: Number of flops vs the multilinear rank 4-order tensor with N = 500.

If we generalize this analysis to a Q-order tensor, we find 2QTNQ flops for350

the factors computation of the HOSVD and 2TNQ for the proposed algorithm.
So, the proposed algorithm computational cost is reduced by a factor Q. In
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other words, the cost of the computation of the Q factors by Algo.1 is compa-
rable to the cost of a single factor computation for the HOSVD.
Although the proposed method remains less complex than the HOSVD. The355

computation of the TT-SVD algorithm still requires the computation of the
SVD of a N ×NQ−1 matrix, with a complexity O(TNQ), which can be expen-
sive for large Q. This means that the computation of the TT decomposition of
an unstructured tensor is a challenging problem in high dimension.

360

In Table 1, an hypercubic tensor with N = 10 was generated, with a multi-
linear rank given by T1 = · · · = TQ = T = 2. Its entries are randomly drawn
from a Gaussian distribution with zero mean and unit variance for several tensor
orders in a noiseless scenario. The average execution time was evaluated for 20
Monte Carlo realisations. Note that in these simulations, we compute the thin365

SVD [18].

Table 1: Computation times for (T = 2, N = 10)

Tensor order Fast Multilinear Projection Q-th order HOSVD Gain
Q = 6 0.14 (s) 0.66 (s) 4.71
Q = 7 1.31 (s) 7.34 (s) 5.6
Q = 8 15.25 (s) 101.87 (s) 6.68

Note that the gain increases when the order increases and is of the order of
Q as remarked before. It is also worth noting that the TT-ranks can actually be
large, but, as demonstrated by the complexity cost analysis, Algorithm 1 is less
complex to a native implementation of the HOSVD and faster as demonstrated370

in the simulations.
The robustness to an i.i.d. Gaussian noise is evaluated thanks to the Normalized
MSE defined according to NMSE =

||X̂−X ||2F
||X ||2F

, where X̂ refers to the estimated

tensor. In Fig. 4, the NMSE measurements averaged over 300 noise realisations
are given for the proposed Fast Multilinear Projection and the native HOSVD375

algorithms for a 6-order hypercubic tensor, with N = 4, and T = 2. Note that
for a computational gain approximately equal to the tensor order Q, the same
robustness to noise is observed for both algorithms. This result is important
since the HOSVD is intensively exploited in numerous applications.

6.2. Fast CPD with CPD-Train380

In this section, we provide several algorithms adapted to the CPD-Train.
Before presenting the new algorithms, we give hereafter a list of advantages of
the proposed CPD-Train equivalence:

1. The CPD-Train has the same number of free parameters as the CPD for
large Q.385

2. The TT-cores follow a 3-order CPD with canonical rank equal to the rank
of the initial Q-order CPD.
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Figure 4: NMSE vs SNR in dB with Fast Multilinear Projection for a 6-order Tucker with
N = 4, T = 2, 300 runs

3. Based on the TT-SVD algorithm, a dimensionality reduction is carried out
thanks to a non-iterative SVD-based algorithm instead of the standard
iterative ALS algorithm.390

4. Due to the CPD structure of the TT-cores, the optimization in a high di-
mensional (Q) space is replaced by a collection of much simpler optimiza-
tion problems, i.e., we have to solve (Q−3) optimizations in bi-dimensional
spaces and a single optimization in a tri-dimensional space.

6.2.1. CPD-Train based on low-order ALS algorithm395

The goal of the JIRAFE approach is to optimize the following criterion:

min
M,P

{
||G1 −P1M

−1
1 ||+ ||GQ −MQ−1P

T
Q||

+

Q−2∑
q=2

||Gq − I3,R ×1 Mq−1 ×2 Pq ×3 M−T
q ||

}
where M = {M1, · · · ,MQ} and P = {P1, · · · ,PQ}.

Our first proposition is based on the popular ALS-CPD algorithm [4, 20]
applied in a sequential way on the CPD-Train cores to jointly retrieve the CPD
factors and the change-of-basis matrices M. A pseudo-code is presented in
Algorithm 2, where Tri-ALS stands for the ALS algorithm applied to a 3-order
tensor, while Bi-ALS denotes the ALS algorithm applied to a 3-order tensor
using a priori knowledge of one factor. Note that the ALS approach fixes all
but one factor to estimate this latter solving the following least squares problem.

min
Pq

∥∥∥unfoldqX −Pq ·
(
PQ � · · · �Pq+1 �Pq−1 � · · · �P1

)T∥∥∥2
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This procedure is repeated several times until a convergence criterion is satisfied.
When one of the 3-order tensor’s factors is known, the ALS algorithm only has
two steps, which we referred to with the Bi-ALS.

Algorithm 2 JIRAFE based on CPD-Train

Input: Q-order rank-R CPD tensor X
Output: Estimated factors: P̂1, · · · , P̂Q.

1: Dimensionality reduction:

[G1,G2, · · · ,GQ−1,GQ] = TT-SVD(X , R).

2: Factor retrieval:

[M̂1, P̂2, M̂
−T
2 ] = Tri-ALS(G2, R).

3: for k = 3 · · ·Q− 1 do
4: [P̂k, M̂

−T
k ] = Bi-ALS(Gk, M̂k−1, R)

5: end for
6: P̂1 = G1M̂1, and P̂Q = GT

QM̂−T
Q−1

The usual strategy is based on the brute force exploitation of a Q-order
ALS-CPD on the original tensor. We note that TT-SVD(X , R) refers to the
conventional TT-SVD algorithm with all TT-ranks set to R. For the complexity
analysis, it is assumed that the pseudo-inverse and the SVD have the same
complexity order. Note that a single iteration of the Q-order ALS-CPD requires
Q SVDs of rank-R matrices of size N ×NQ−1. The complexity is evaluated as
Q ·O(R2 ·NQ−1), whereas the TT-SVD applied to the original Q-order tensor
(Q� 1) has a complexity O(R2 ·NQ−1).
In addition, the R-truncated SVD [18] using the orthogonal iteration algorithm
is faster to compute than the full rank SVD. The complexity of a R-truncated
SVD for a m× n matrix is O(R2 max(m,n)). Thus, we have

κ(1 · iteration of Q-order ALS)� κ(Q-order TT-SVD) = O(R2 ·NQ−1)

� κ(1 · iteration of 3-order ALS) = O(3 ·R3 ·N).

This means that the proposed strategy is approximately (Q.number of iterations)-400

times less complex than the Q-order ALS-CPD. In Table 2, the computation
times of the two methods are given for N = 6 and for different tensor or-
ders. To manage the convergence of the ALS-CPD, the stopping criterion is∣∣∣f(X̂ (t)

)
−f
(
X̂ (t+1)

)∣∣∣
f
(
X̂ (t)

) < ε, where f
(
X̂

(t))
= ||X − X̂

(t)
||F , in which X̂

(t)
denotes

the estimated tensor at the t-th iteration and ε is the convergence threshold. In405
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addition, the number of iterations is limited to 1000. It is clear that the gain
strongly increases when the order of the initial tensor grows.

Table 2: Computation times for (R = 3, N = 6)

Tensor order Alg. 2 Q-order ALS-CPD Gain
Q = 6 0, 63 (s) 7, 48 (s) 11, 87
Q = 7 1, 07 (s) 62, 57 (s) 58, 47
Q = 8 1, 31 (s) 431, 95 (s) 329, 73

In Table 3, we fix the order at Q = 8 and vary the tensor dimensions.
Here again, the gain of Alg. 2 over ALS-CPD in terms of computation time is
measured.410

Table 3: Computation times for (R = 3, Q = 8)

Tensor dimension Alg. 2 Q-order ALS-CPD Gain
N = 4 0, 79 (s) 19, 26 (s) 24, 37
N = 5 0, 91 (s) 114, 16 (s) 125, 45
N = 6 1, 31 (s) 431, 95 (s) 329, 73

One may note that in both Tables 2 and 3 the results are given in the case
where the tensor dimensions are larger than its rank. This usually happens in
big data applications, where the data tensor is of high order, and its rank is
smaller than its dimensions (N > R). This assumption is valid in a number
of applications in wireless communications, spectral analysis, MIMO radar and415

image compression. Note also that the result of Theorem 4 can not be directly
applied in the case R > N , since the structure of the TT-cores and the TT-
ranks are totally different according to the ranks of the factors Pq, as mentioned
before.

To evaluate the noise robustness, an 8-order, rank-2 CPD tensor of size420

N × · · · × N is generated with N = 3. In Fig. 5, we plot the NMSE obtained
with Algorithm 2, the Q-order ALS algorithm and the popular HOSVD-based
preprocessed ALS for 8-order hypercubic CPDs, with N = 3 and R = 2. The
preprocessing step is done thanks to the HOSVD with multilinear ranks T = 2.
The association of a preprocessing (HOSVD) to the ALS algorithm generally425

improves its robustness to noise while increasing the convergence speed. The
NMSEs were averaged over 300 i.i.d. realisations of a Gaussian noise. To elimi-
nate ill-convergence experiments and outliers from our results, 5% of the worst
and 5% of the best NMSE values are discarded.

According to the NMSE results, the Q-order ALS algorithm is the least ro-430

bust scheme for SNR lower than 20 dB for a high computational cost. The ALS
scheme with the preprocessing step shows an improved noise robustness for a
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Figure 5: NMSE vs SNR in dB with JIRAFE for an 8-order CPD

very high computational cost. Finally, the proposed algorithm has the highest
accuracy, or equivalently, the best noise robustness with the lowest computa-
tional cost.435

6.2.2. Improved CPD-Train

In this section, an improved CPD-Train based factor retrieval algorithm is
proposed. In Algorithm 2, by exploiting the repetition of the matrices {M̂1, . . . , M̂Q−1}
in the TT-cores, it is possible to replace the iterative Bi-ALS algorithm by the
non-iterative Khatri-Rao factorization (KRF) algorithm proposed in [27]. The440

KRF algorithm is a closed-form algorithm that recovers 3-order CPD factors
assuming that one factor is known and has a full-column rank. It computes R
SVDs of rank-one matrices to recover the remaining two other factors. These
assumptions match exactly to our case. Note that the matrix M̂q by definition
is invertible and thus satisfies the full-column rank assumption. A pseudo-code445

of the proposed strategy is given in Algorithm 3. Note that Algorithm 3 is
thus less sensitive to potential ill-convergence problems than Algorithm 2. In
addition, it is worth noting that the complexity of the KRF corresponds to
κ(KRF) = O(R · N) � κ(1 · iteration of Bi-ALS) = O(R3 · N), which means
that the non-iterative KRF is much less complex than the iterative Bi-ALS450

algorithm.
In Fig. 6, we plot the NMSE of Algorithm 3 for an 8-order hypercubic CPD

with N = 3 and R = 2. The NMSEs were averaged in the same way as in Fig.
5. It is worth noting that Algorithm 3 has an equivalent robustness to noise
as Algorithm 2, using a closed-form, non sensitive to ill-convergence problems,455

KRF method instead of the iterative Bi-ALS algorithm.
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Algorithm 3 Improved CPD-Train algorithm

Input: Q-order rank-R CPD tensor X ,
Output: Estimated factors: P̂1, · · · , P̂Q.

1: Dimensionality reduction:

[G1,G2, · · · ,GQ−1,GQ] = TT-SVD(X , R).

2: Factor retrieval:

[M̂1, P̂2, M̂
−T
2 ] = Tri-ALS(G2, R).

3: for q = 3 · · ·Q− 1 do
4: [P̂q, M̂

−T
q ] = KRF(Gq, M̂q−1, R)

5: end for
6: P̂1 = G1M̂1, and P̂Q = GT

QM̂−T
Q−1
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Figure 6: NMSE vs SNR in dB with improved CPD-Train for an 8-order CPD
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6.2.3. Non-iterative CPD-Train algorithm in the case of a known factor

In some applications, a factor among Q can be supposed to be known [17, 44].
In this case, a fully non-iterative algorithm can be derived. Indeed, assume
without loss of generality1 that the first factor, P1, is known. The recovery of460

M1 is straightforward thanks to the pseudo-inverse of the first TT-core. The
rest of the method remains identical as for Algorithm 3. A pseudo-code is given
in Algorithm 4.

Algorithm 4 Non-iterative CPD-Train algorithm in case of a known factor

Input:Q-order rank-R CPD tensor X , P1.
Output: Estimated factors: P̂2, · · · , P̂Q.

1: Dimensionality reduction:

[G1,G2, · · · ,GQ−1,GQ] = TT-SVD(X , R).

2: Factor retrieval:
M̂1 = G†1P1

3: for q = 2 · · ·Q− 1 do
4: [P̂q, M̂

−T
q ] = KRF(Gq, M̂q−1, R)

5: end for
6: P̂Q = GT

QM̂−T
Q−1

6.2.4. Parallel and non-iterative CPD-Train algorithm in case of Toeplitz fac-
tors465

For structured tensors, several algorithms have been proposed by exploiting
the structure of the factors in [13, 1]. In some applications [26, 37], the factors of
the CPD are Toeplitz. Recall that for a vector a = (a0 · · · aL−1)T of length L, we
denote by T(a) the (L+R−1)×R Toeplitz matrix that verifies T(a)i,j = ai−j ,
where by convention ai−j = 0 if i − j < 0 or i − j > L − 1. The choice of this470

convention is related to applications like Wiener-Hammerstein systems [27], the
generalization to the general case is straightforward. Thanks to Theorem 5.2,
the TT-cores inherit from this structure. Thus, it makes sense to exploit the
TOMFAC algorithm, for TOeplitz Matrix FActor Computation, proposed in
[27]. This leads to the proposition of Algorithm 5. TOMFAC is an algorithm475

that allows to recover a CPD factor in a closed-form way, considering that it has
a Toeplitz structure. As a consequence, Algorithm 5 is fully non-iterative and
thus the convergence problem due to the use of an alternated estimation scheme

1Remark that the choice of the index of the factors is totally arbitrary and is meaningless
relatively to the model.
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is completely avoided. In addition, the estimation of the Toeplitz factors can
be done via a parallel processing.480

Algorithm 5 Parallel and non-iterative CPD-Train algorithm in case of
Toeplitz factors

Input: Q-order rank-R CPD tensor X
Output: Estimated factors: P̂1, · · · , P̂Q.

1: Dimensionality reduction:

[G1,G2, · · · ,GQ−1,GQ] = TT-SVD(X , R).

2: for q = 1 · · ·Q do
3: P̂q = TOMFAC(Gq, R) {This step can be done in a parallel way}
4: end for

In Table 4, the computation times of the native TOMFAC method applied to
a Q-order CPD tensor with Toeplitz factors and of Algorithm 5 are compared.
Note that the complexity of the Q-order TOMFAC is of the same order as
the complexity of a Q-order HOSVD. Here again, interesting gains in terms of
computation times are obtained.485

Table 4: Computation times for (R = 3, N = 4)

Tensor order CPD-Train-TOMFAC TOMFAC Gain
Q = 6 0.0296 (s) 0.1206 (s) 4.0743
Q = 7 0.2906 (s) 1.6447 (s) 5.6593
Q = 8 5.1253 (s) 39.7964 (s) 7.7647

Figure 7 depicts the NMSE performance for the Q-order TOMFAC and
Algorithm 5, referred to here as CPD-Train-TOMFAC, for an 8-order hypercubic
CPD with N = 6 and R = 3. The NMSE curves are plotted with respect to the
SNR in dB. Note that thanks to the dimensionality reduction step, the CPD-
Train-TOMFAC algorithm shows a comparable robustness, for severe SNRs, to490

the native TOMFAC for a much smaller computational complexity cost.

7. Conclusion

We have discussed the joint dimensionality reduction and factor retrieval
problem for high-order tensors. We have shown that a Q-order tensor following
a CPD/TD (Q > 3) can be written as a train of Q 3-order tensors with a coupled495

structure. Exploiting this model equivalence property, we have introduced new
tensor models, namely the CPD-Train and the Tucker Decomposition (TD)-
Train. A two-step JIRAFE methodology has been proposed to overcome the
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Figure 7: NMSE vs SNR in dB with CPD-Train-TOMFAC for an 8-order CPD with Toeplitz
factors, N = 6, and R = 3

“curse of dimensionality” for high-order tensors. The initial step, called “dimen-
sionality reduction”, consists of splitting the high-order tensor into a collection500

of graph-connected core tensors of lower orders, at most equal to three. The
second step consists of factors retrieval. Several algorithms specialized for the
CPD-Train/TD-Train have been proposed, which have a low computational
cost and a storage cost that grows linearly with respect to the order of the
data tensor. The advantages in terms of storage cost, computational complex-505

ity, algorithmic stability, and factor estimation robustness to noise have been
demonstrated by means of Monte Carlo simulations. JIRAFE can then be seen
as a new concept of a more general framework for joint dimensionality reduction
and factor retrieval, where different solutions for the factor retrieval step can be
considered, such as Gauss-Newton [40] for fitting the CPD, gradient descent [10],510

or improved versions of ALS such as those based on enhanced line search [34],
for instance. Perspective for future works include the application of JIRAFE
to big data tensors for multilinear harmonic retrieval problem, massive MIMO
systems and coupled matrix-tensor factorizations, besides the investigation of
the TT-cores structures when the rank exceeds the dimensions.515

8. Appendix

8.1. Proof of theorem 2

In this constructive proof, the TT-SVD algorithm is applied “step by step”
to a TD presented in (3), under the two assumptions that

• all the factors Fq have full column rank, and520

• C(q) = reshape
(
C;

q∏
i=1

Ti,
Q∏

i=q+1

Ti
)

has full rank.
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The first unfolding X(1) of size N1 × (N2 · · ·NQ), using Lemma 2, is given by:

X(1) = reshape
(
X ;N1,

Q∏
q=2

Nq

)
∆
= F1C(1)(FQ ⊗ · · · ⊗ F2)T

SVD
= U(1)V(1).

Note that rank(X(1)) = rank(F1) = R1 = T1 (R1 is the first TT-rank), which

means that U(1) is of size N1 × R1, and V(1) is of size R1 × (N2 · · ·NQ). It
exists a R1 ×R1 nonsingular change-of-basis matrix M1 that verifies

U(1) = F1M
−1
1 (18) V(1) = M1C(1)(FQ ⊗ · · · ⊗ F2)T (19)

Following the methodology of the TT-SVD algorithm, the first TT-core G1 is
given by eq. (18), i.e.,

G1 = U(1) = F1M
−1
1 . (20)

Applying the same methodology to a reshaped version, denoted by V
(1)
(2), of

V(1), of size (R1N2)× (N3 · · ·NQ), provides from eq. (19)

V
(1)
(2) = reshape

(
V(1);R1N2,

Q∏
q=3

Nq

)
∆
= (F2 ⊗M1)C(2)(FQ ⊗ · · · ⊗ F3)T (21)

SVD
= U(2)V(2)

Once again, we have rank(V
(1)
(2)) = rank(F2 ⊗M1) = R2 = T1T2. In addition,

U(2) of size (R1N2)×R2, and V(2) of size R2 × (N3 · · ·NQ) are defined by

U(2) = (F2 ⊗M1)M−1
2 , (22) V(2) = M2C(2)(FQ ⊗ · · · ⊗ F3)T ,

where M2 is a R2 × R2 nonsingular change-of-basis matrix. From eq.(22), the
2nd TT-core G2 is expressed as

G2 = reshape
(
U(2);R1, N2, R2) = T 2 ×1 M1 ×2 F2 ×3 M−T

2 , (23)

where T 2 = reshape
(
IR2

;R1, T2, R2).
This strategy can be continued to obtain the q-th TT-cores for 3 ≤ q ≤ q̄ − 1
since C(q), defined in Theorem 1, has always a full row rank and can always be

absorbed in V(q), when applying the SVD. Let us now see what happens when

we express V
(q̄−1)
(2) of size (Rq̄−1Nq̄)× (Nq̄+1 · · ·NQ). From (21), we obtain

V
(q̄−1)
(2) = reshape

(
V(q̄−1);Rq̄−1Nq̄,

Q∏
q=q̄+1

Nq

)
∆
= (Fq̄ ⊗Mq̄−1)C(q̄)(FQ ⊗ · · · ⊗ Fq̄+1)T

SVD
= U(q̄)V(q̄)
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Note that here we have rank(V
(q̄−1)
(2) ) = rank

(
(Fq̄ ⊗ Mq̄−1)C(q̄)

)
= Rq̄ =

Tq̄+1 · · ·TQ, since C(q̄) has a full column rank, and we can write

U(q̄) = (Fq̄ ⊗Mq̄−1)C(q̄)M
−1
q̄ (24) V(q̄) = Mq̄(FQ ⊗ · · · ⊗ Fq̄+1)T (25)

From eq.(24), the q̄-th TT-core can be expressed as:

G q̄ = reshape
(
U(q̄);Rq̄−1, Nq̄, Rq̄) = Cq̄ ×1 Mq̄−1 ×2 Fq̄ ×3 M−T

q̄ , (26)

where Cq̄ = reshape
(
C;Rq̄−1, Tq̄, Rq̄) is absorbed in G q̄.

Applying the same computation to the reshaping of V(q̄), denoted by V
(q̄)
(2) of

size (Rq̄Nq̄+1) × (Nq̄+2 · · ·NQ), and considering an identity matrix IRq̄×Rq̄
in

(25) such as V(q̄) = Mq̄IRq̄×Rq̄
(FQ ⊗ · · · ⊗ Fq̄+1)T , we obtain

V
(q̄)
(2) = reshape

(
V(q̄);Rq̄Nq̄+1,

Q∏
k=q̄+2

Nq

)
∆
= (Fq̄+1 ⊗Mq̄)I(q̄+1)(FQ ⊗ · · · ⊗ Fq̄+2)T

SVD
= U(q̄+1)V(q̄+1)

where I(q̄+1) = reshape
(
IRq̄×Rq̄

;Rq̄ · Tq̄+1,
Rq̄

Tq̄+1
). Matrices U(q̄+1) and V(q̄+1)

are then expressed as

U(q̄+1) = (Fq̄+1 ⊗Mq̄)I(q̄+1)M
−1
q̄+1, (27)

V(q̄+1) = Mq̄+1(FQ ⊗ · · · ⊗ Fq̄+2)T .

From eq.(27), G q̄+1 is expressed as:

G q̄+1 = reshape
(
U(q̄+1);Rq̄, Nq̄+1, Rq̄+1)

= T̄ q̄+1 ×1 Mq̄ ×2 Fq̄+1 ×3 M−T
q̄+1, (28)

where T̄ q̄+1 = reshape
(
IRq̄×Rq̄ ;Rq̄, Tq̄+1, Rq̄+1). From (28), the result can be

generalized to the Q− q̄ last TT-cores giving

Gq = T̄ q ×1 Mq−1 ×2 Fq ×3 M−T
q , (q̄ < q < Q). (29)

Given the expressions of the TT-cores in (20), (23), (26) and (29), we can
therefore deduce the result of Theorem 2.

8.2. Proof of theorem 4

To prove Theorem 4, a constructive proof based on the TT-SVD algorithm525

is given for (4). We assume that the factors have full column rank. For that
aim, we will follow step by step the methodology of the TT-SVD algorithm.
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• The first unfolding X(1) of size N1× (N2 · · ·NQ), using Lemma 3, is given
by:

X(1) = reshape(X ;N1, N2 · · ·NQ) = P1(PQ �PQ−1 � · · · �P2)T .

Note that, according to Lemma 1, (PQ �PQ−1 � · · · �P2)T is a full row
rank matrix of size R × (N2 · · ·NQ), since the factors Pq are assumed to
be full column rank.530

• Applying the SVD to X(1), the following expression holds:

X(1) = U(1)V(1) = G1V
(1)

where G1 = U(1) contains the left singular vectors, and is the first TT-core
of size N1×R1. V(1) contains the singular values and the the right singular
vectors. It is of size R1 × (N2 · · ·NQ). From the above two relations, we
can conclude that

rank(X(1)) = rank(P1) = rank(G1) = R = R1.

and we can express G1 and V(1) as:

G1 = P1M
−1
1 , (30)

V(1) = M1(PQ �PQ−1 � · · · �P2)T

where M1 is a R×R matrix that follows definition 1.

• Applying the TT-SVD algorithm, we have to reshape the matrix V(1) as
a matrix of size (RN2)× (N3 · · ·NQ), according to Lemma 3, which gives:

V
(1)
(2) = reshape(V(1);RN2, N3 · · ·NQ) = (P2 �M1)(PQ �PQ−1 � · · · �P3)T .

(31)

Note that, according to Lemma 1, the matrix P2�M1 of size (RN2)×R
is full column rank, and (PQ�PQ−1� · · · �P3)T of size R× (N3 · · ·NQ)
is full row rank.

• The SVD of V
(1)
(2) gives:

V
(1)
(2) = U(2)V(2) (32)

where U(2) of size (RN2)×R2 is the reshaping of the 2nd TT-core G2

From (31) and (32), we can conclude that:

rankV
(1)
(2) = rank(P2 �M1) = rankU2

Lemma1
= R

TT
= R2
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and we can write U(2) and V(2) as:

U(2) = P2 �M1)M−1
2 , (33)

V(2) = M2(PQ �PQ−1 � · · · �P3)T

where M2 is a R × R matrix that follows definition 1. Reshaping U(2),
and from (33), we obtain the expression of G2 according to

G2 = reshape
(
U(2);R,N2, R) = I3,R ×1 M1 ×2 P2 ×3 M−T

2

• Based on the same methodology, we find at the q-th step:

V
(q−1)
(2)

Reshaping
= (Pq �Mq−1)(PQ �PQ−1 � · · · �Pq+1)T

SVD
= U(q)V(q)

(34)

where V
(q−1)
(2) is of size (RNq) × (Nq+1 · · ·NQ), and according to Lemma

1, (Pq �Mq−1) is a full column rank matrix of size RNq × R, (PQ �
PQ−1 � · · · �Pq+1)T is a full row rank matrix of size R× (Nq+1 · · ·NQ),
and Mq−1 is a R×R matrix that follows definition 1.
From (34), we can conclude that the relation between the factor matrices
Pq and the TT-cores Gq is given by:

U(q)Mq = Pq �Mq−1

or equivalently

U(q) = (Pq �Mq−1)(M−T
q )T for 2 ≤ q ≤ Q− 1 (35)

where Mq is aR×Rmatrix that follows definition 1, and U(q) = reshape(Gq;RN,Rq).
We can write:

rankV
(q−1)
(2) = rank(Pq �Mq−1) = rankU(q) Lemma1

= R
TT
= Rq,

for 2 ≤ q ≤ Q− 1.
From (35) and considering U(q) = reshape(Gq;RNq, Rq), we can see that
Gq follows a 3-order CPD according to:

Gq = I3,R ×1 Mq−1 ×2 Pq ×3 M−T
q (36)

• At the last step, we have:

V
(Q−2)
(2)

Reshaping
= (PQ−1 �MQ−2)PT

Q
SVD
= U(Q−1)V(Q−1) = U(Q−1)GQ.

We then have for the last core:

GQ = MQ−1P
T
Q. (37)

Given (30), (36) and (37), we then have a proof for Theorem 4.535
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8.3. Proof of theorem 5

The first part of the proof of Theorem 5 is obtained by the use of Theorem 4.
In other words, assuming the factors in (9) have full column rank, expressions
(10), (11), and (12) are obtained in a straightforward way thanks to Theorem
4.
To prove that two matrices span the same range space, it is equivalent to show
the equality of their orthogonal projectors. This is the methodology used to
prove (13) and (14). More precisely, assuming a full column rank for factor P
the following equalities hold:

G1G
†
1 = (PM−1

1 )(PM−1
1 )†

= PP†

Gq(:, :, i)†Gq(:, :, i) =
((

M−T
q (i, :)�Mq−1

)
PT
)†((

M−T
q (i, :)�Mq−1

)
PT
)
(38)

= PT†
((

M−T
q (i, :)�Mq−1

)†(
M−T

q (i, :)�Mq−1

))
PT (39)

= (PP†)T

= PP†

We recall that the i-th frontal slice of the q-th TT-core can be expressed as
Gq(:, :, i) =

(
M−T

q (i, :)�Mq−1

)
PT . Note that, using Lemma 1, we can see that

the product
(
M−T

q (i, :) �Mq−1

)
of size R × R, is of rank R, since all Mq are

of rank R. This justifies the passage from (38) to (39). The same argument
is used for the following equalities. Considering the j-th horizontal slice of the

q′-th TT-core Gq′(j, :, :) = P
(
M−T

q′ �Mq′−1(j, :)
)T

, we have

Gq′(j, :, :)Gq′(j, :, :)
† =

(
P
(
M−T

q′ �Mq′−1(j, :)
)T)(

P
(
M−T

q′ �Mq′−1(j, :)
)T)†

= P
((

M−T
q′ �Mq′−1(j, :)

)T (
M−T

q′ �Mq′−1(j, :)
)T†)

P†

= PP†

GT
QGT†

Q = (PMQ−1)(PMQ−1)†

= PP†

which justifies the equalities

〈P〉 = 〈G1〉 = 〈Gq(:, :, i)〉 = 〈Gq′(j, :, :)〉 = 〈GT
Q〉,

and

rankP = rankG1 = rankGq(:, :, i) = rankGq′(j, :, :) = rankGT
Q,

for 2 ≤ q ≤ Q− 1, 2 ≤ q′ ≤ Q− 1, 1 ≤ i ≤ R, 1 ≤ j ≤ R.
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