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Abstract

Peripheral vision is strongly limited by crowding, the deleterious influence of neighboring stimuli

on target perception. Many quantitative aspects of this phenomenon have been characterized, but

the specific nature of the perceptual degradation remains elusive. We utilized a drawing technique

to probe the phenomenology of peripheral vision, using the Rey–Osterrieth Complex Figure, a

standard neuropsychological clinical instrument. The figure was presented at 12� or 6� in the right

visual field, with eye tracking to ensure that the figure was only presented when observers

maintained stable fixation. Participants were asked to draw the figure with free viewing,

capturing its peripheral appearance. A foveal condition was used to measure copying

performance in direct view. To assess the drawings, two raters used standard scoring systems

that evaluated feature positions, spatial distortions, and omission errors. Feature scores tended to

decrease with increasing eccentricity, both within and between conditions, reflecting reduced

resolution and increased crowding in peripheral vision. Based on evaluation of the drawings, we

also identified new error classes unique to peripheral presentation, including number errors for

adjacent similar features and distinctive spatial distortions. The multifaceted nature of the Rey–

Osterrieth Complex Figure—containing configural elements, detached compound features, and

texture-like components—coupled with the flexibility of the free-response drawing paradigm and

the availability of standardized scoring systems, provides a promising method to probe peripheral

perception and crowding.
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Introduction

It is well established that visual resolution in the periphery is inferior to resolution in the
fovea, the center of gaze, but a complete understanding of the differences between peripheral
and foveal vision is still lacking (Lettvin, 1976; Strasburger, Rentschler, & Jüttner, 2011). The
ability to discriminate fine spatial details, such as the gap in a capital letter ‘‘C,’’ worsens in
the periphery (Weymouth, 1958), which has often been characterized as ‘‘blurriness’’ (though
see Discussion section). Furthermore, tasks such as identifying the spatial location of objects
(Michel & Geisler, 2011) as well as tasks involving relative spatial localization (Levi, Klein, &
Yap, 1987; Westheimer, 1982) are measurably worse in the visual periphery. Finally, in the
last several decades, interest has coalesced around the phenomenon of ‘‘crowding,’’ which is
the difficulty identifying objects when they are surrounded by other objects, an effect most
pronounced for stimuli located in the periphery (for reviews, see Herzog, Sayim, Chicherov,
& Manassi, 2015; Levi, 2008; Pelli et al., 2007; Strasburger et al., 2011; Whitney & Levi,
2011). Many studies have measured quantitative aspects of the performance deterioration
due to crowding, such as the size and shape of the region within which flankers impair
performance, called the crowding zone (Bouma, 1970; Toet & Levi, 1992). It has been
shown that this zone is elliptical, extending radially toward the fovea, and grows
approximately linearly with increasing eccentricity (Toet & Levi, 1992). Some studies have
examined what basic stimulus factors modulate the magnitude of crowding or the size of the
crowding zone, such as display duration (Chung & Mansfield, 2009; Tripathy & Cavanagh,
2002), the spatial complexity of the stimulus (Bernard & Chung 2011), target size (Pelli,
Palomares, & Majaj, 2004; Strasburger, Harvey, & Rentschler, 1991; Tripathy &
Cavanagh, 2002), or stimulus contrast (Chung, Levi, & Legge, 2001; Coates, Chin, &
Chung, 2013; Pelli et al., 2004; Strasburger et al., 1991). Other studies have looked at
relationships between target and flanker characteristics, such as the effects of target-flanker
similarity (Bernard & Chung 2011; Chung & Mansfield, 2009; Kooi, Toet, Tripathy, & Levi,
1994; Sayim, Westheimer, & Herzog, 2008). Finally, the overall configuration of the target
and flankers, including how much the target and the flankers group with each other, plays a
key role in crowding (Banks & White, 1984; Livne & Sagi, 2007; Malania, Herzog, &
Westheimer, 2007; Manassi, Sayim, & Herzog, 2012, 2013; Sayim et al., 2008; Sayim,
Westheimer, & Herzog, 2010, 2011; Sayim & Cavanagh, 2013; Saarela, Sayim,
Westheimer, & Herzog, 2009; Sayim, Greenwood, & Cavanagh, 2014).

Typically, these aspects of crowding have been studied using forced-choice methods, which
have dominated vision science research, especially since the formalization of signal detection
theory (Green & Swets, 1966). Specifically, in order to control for response bias factors,
experimental subjects are forced to choose from a set of possible responses for a trial, such
as ‘‘signal absent’’ or ‘‘signal present,’’ the orientation of a tilted element, or one of the letters
of the alphabet. In addition, experiments typically utilize stimuli such as simple shapes,
Roman letters, oriented gratings, or Gabor patches (Levi, 2008). With the combination of
forced-choice techniques and impoverished stimuli, important aspects of phenomenological
experience are lost. For example, subjects attempting to identify a crowded letter may
perceive a visual form that does not match any of the set of possibilities. Similarly,
gratings may assume a warped or distorted appearance, a quality that has been observed
for very high-frequency (aliased) gratings at the fovea (Williams, 1985) or in amblyopic vision
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(Barrett, Pacey, Bradley, Thibos, & Morrill, 2003; Hess, Campbell, & Greenhalgh, 1978).
Crowded stimuli have been described as ‘‘jumbles’’ of their constituent features (Pelli et al.,
2004), with subjects reporting that features seem indeterminately located among the multiple
proximal stimuli (Korte, 1923).

The important (but often overlooked) treatise by Korte (1923) is an early study of the
phenomenological aspects of word perception in the periphery (summarized in Strasburger,
2014 and Strasburger et al., 2011). In his experiments, Korte carefully noted the impressions
of subjects reporting the appearance of indirectly presented words. He enumerated a variety
of errors that occurred using qualitative descriptions, such as incorrect absorption of features
into adjacent letters or the ‘‘buzzing around’’ of small spatial features that could not be stably
localized.

Recent work from our group using crowded peripheral letter-like shapes introduced
several error categories observed in crowded displays (Sayim & Wagemans, 2013). In that
study, we asked subjects to draw simple letter-like stimuli viewed peripherally, in order to
examine the effects of crowding on the perception of shapes comprising several line segments.
Using these simplified stimuli and a free-response paradigm yielded meaningful parametric
stimulus dimensions and permitted the quantification of explicit error types, such as the
diminishment of target features.

Observer drawings have been used to illustrate effects such as the grating distortions
described earlier (Barrett et al., 2003; Hess et al., 1978; Williams, 1985) or as
demonstrations of crowded percepts (Pelli & Tillman, 2008), but few researchers have
quantitatively evaluated drawings themselves. Johnson and Uhlarik (1974) asked subjects
to draw geometric shapes such as squares and triangles presented briefly in the fovea, and
evaluated the presence or absence of edges in the drawings to probe the microgenesis of visual
perception. We have analyzed drawings of crowded letters and letter-like shape (Sayim &
Wagemans, 2013) and used a drawing method to investigate the effects of prior knowledge on
crowded color appearance in the periphery (Sayim, Myin, & Van Uytven, 2015).

In clinical neuropsychology, on the other hand, drawing tasks are heavily used, for a
variety of reasons. Subjective experience is of primary interest, as patients may have
completely unexpected interpretations of their visual input. Many drawing tests are
straightforward, typically requiring the copying of a geometric shape, and easy to
administer, requiring only score sheets and pens. Standardization and scoring is the
primary challenge that has faced clinical researchers. A variety of drawing tasks have been
introduced, including the Rey–Osterrieth Complex Figure (ROCF; Osterrieth, 1944; Rey
1941) and the Taylor Complex Figure (Taylor, 1969). Here, we focus on the ROCF, which
is the most widely used drawing figure in neuropsychological practice (for a recent review, see
Shin, Park, Park, Seol, & Kwon, 2006). Evaluation of drawings of this figure have been
shown to reveal deficits in visual-spatial processing and visual working memory (Shin
et al., 2006), including particular types of spatial errors that are sensitive to hemispheric
lateralization of lesions (Loring, Lee, & Meador, 1988). In addition, the organizational
strategies used to draw these figures can reveal subtle aspects of development maturity in
children (Waber & Holmes, 1985, 1986), including a shift in preference from local features to
global aspects of the figure.

Many of these same issues in visual-spatial processing (such as spatial mislocalization
errors, local vs. global distortions, different types of integration problems, etc.) are also
germane to the study of peripheral vision. To understand the nature and limits of
peripheral vision requires more than the measurement of performance in identification
tasks. In particular, it is important to understand the characteristics, for example, the
types of distortions exhibited in the perception of complex spatial forms viewed
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peripherally. Several results using traditional stimuli and forced-choice methods have
revealed clues that target appearance is modulated by flankers in crowded conditions.

For example, one study (Greenwood, Bex, & Dakin, 2010) used noise
‘‘targets’’—themselves lacking distinctive features—flanked by oriented Gabors, showing
assimilation of the flanker orientation and tilt aftereffects from adaptation. These authors
concluded that the flankers biased target appearance as a general-purpose mechanism in the
periphery that regularizes adjacent spatial forms. Similarly, Sayim and Cavanagh (2013), using
rotated letter targets and flankers, showed that flankers perceptually bias target appearance by
shape-specific assimilation, in a dissociable fashion for crowding and grouping. How to
extrapolate these results to more complex multidimensional targets is unclear, since the
structure of such stimuli may resist decomposition based on averaging or assimilation.

Peripheral vision has sometimes been described as statistical summarization in terms of
texture (Balas, Nakano, & Rosenholtz, 2009; Freeman & Simoncelli, 2011). This
interpretation is likely relevant for many aspects of visual perception, such as natural
scenes, but not necessarily for all stimuli, such as alphabetic text or well-defined objects
and shapes. We are interested in the perception of both ‘‘textures’’ and ‘‘objects,’’ or
equivalently ‘‘stuff’’ and ‘‘things’’ (Adelson & Bergen, 1991).

Therefore, we used the rich, multipart ROCF to study peripheral perception directly by
asking subjects to portray what they saw, using drawing. While line drawings are generally
suited to depict a large range of visual features (Sayim & Cavanagh 2011), the ROCF has the
particular advantage of containing both object-like and texture-like components. It
comprises a variety of elements in nontrivial configurations, unlike stimuli that are simple
figures like Gabors, gratings, or simple geometric figures. In contrast to studies with simple
stimuli, the phenomenon known as ‘‘internal crowding’’ can be revealed. Internal crowding,
or ‘‘within-object’’ crowding, refers to the effect whereby the parts of a complex object crowd
each other, an effect that has been observed with cartoon faces (Martelli, Majaj, & Pelli,
2005) and Chinese characters (Zhang, Zhang, Xue, Liu, & Yu, 2009). Complicated multipart
objects, such as the ROCF, are essential to show this effect, rather than simple letter-like
stimuli with few edges. While the deleterious effects of within-object crowding is clear (as
shown by the previous studies), more detailed understanding of what ‘‘happens’’ to the parts,
such as whether they can be duplicated, or whether the overall form loses all organization,
remains lacking.

As far as we know, this is the first time this clinical instrument has been used to
systematically study the spatial distortions of form perception in the periphery of normal
subjects. Although our intent is not to make a link between peripheral vision and cognitive
impairment, our goals are surprisingly similar to clinical researchers. Specifically, we seek to
find specific patterns of errors that reveal differences in visual perception between
conditions—in our case location in the visual field. However, whereas the primary purpose
of clinical instruments is to provide differential diagnoses, our focus is on investigating the
spatial distortions themselves, in order to better understand the underlying mechanisms of
peripheral vision.

Clinical researchers have developed specialized scoring schemes based on the careful
examination of the types of errors made by different subject groups. For example, Rey
(1941) and Osterrieth (1944) were interested in the coarse dichotomy between spatial
details and structural components, and recommended attention to organizational qualities
of reproduction (such as the drawing order) rather than specific item errors. The Boston
Qualitative Scoring System (BQSS; Stern et al., 1994) made the component hierarchies more
explicit and added qualitative measures such as ‘‘fragmentation’’ and ‘‘planning.’’ On the
other hand, Loring et al. (1988) developed novel classifications of specific types of spatial
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distortions (such as mislocations of particular elements of the ROCF, or additions of certain
lines) that could discriminate between left and right epilepsy patients. Waber and Holmes
(1985) studied the drawings of children using sophisticated evaluation metrics and statistical
methods, determining sets of spatial features that created meaningful developmental
classifications in concordance with subjective evaluations. In this spirit, we also propose
new error types based on observations culled from the peripheral drawings.

Methods

Observers

Eight observers participated in the experiment. Observers were art students recruited from an
art school and were naive to the purpose of the experiment. Art students were used since they
would presumably be more able to accurately render their percepts due to drawing
proficiency. All observers reported normal or corrected-to-normal visual acuity. The
experiments were carried out according to ethical standards specified in the Declaration of
Helsinki and were approved by the Ethics Committee of KU Leuven. Participants gave
informed consent prior to beginning the experiment.

Apparatus

Stimuli were presented on a Sony Trinitron GDM-F520 CRT monitor with a resolution of
1152 by 864 pixels and a refresh rate of 120Hz. Subjects were seated 57 cm from the monitor,
with their heads supported by a chinrest and headrest. Eye movements were monitored using
an EyeLink 1000 eye tracker (SR Research Ltd., Mississauga, Ontario) at a 1000Hz sampling
rate. In front of the chinrest, there was an elevated drawing board, with the drawing booklet
set on top. Subjects were able to move their gaze between the screen and the drawing booklet
without head movements, and drew in the booklet using an electronic pen. The use of an
electronic pen allowed immediate visual feedback of drawings, unlike traditional drawing
tablets. The experimental setup is shown in Figure 1. The experiment was programmed in
MATLAB (Mathworks, Natick Massachusetts, USA) using the Psychophysics toolbox
(Brainard, 1997).

Stimulus

The stimulus presented to the subjects was an 823� 615 pixel bitmap of the ROCF
subtending 9� by 7� (see Figure 2). Subjects were allowed to move their gaze between the
screen and drawing booklet as often as they wanted. The stimulus was only presented when
observers fixated the central fixation dot. First, subjects were shown the stimulus centered at
12� in the right visual field and were instructed to draw as accurately as possible how the
stimulus appeared, that is, how it looked. After finishing the first drawing, subjects were
shown the stimulus centered at 6� in the right visual field and created a new drawing based on
this presentation. Finally, subjects were allowed to freely view the figure with their foveal
vision, constituting a normal copy task. Subjects S2 and S7 did not perform the foveal
condition and are omitted from the respective analyses. The order of eccentricities was
used for all subjects in order to keep them as naive as possible about the presented figure.

The drawings were scored using two different scoring metrics by two independent
experienced raters, naive to the purpose of the experiment. The scorers evaluated each
drawing based on the original Osterrieth scoring system (Osterrieth, 1944) and the BQSS
(Stern et al., 1994).
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Figure 2. The Rey-Osterrieth Complex Figure.

Figure 1. Experimental setup, showing (from left to right) the CRT monitor, eye tracking camera, drawing

board, booklet, drawing pen, and head/chin rest.
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Scoring Measures

Spatial elements: Osterrieth scoring. The original Osterrieth scoring system divides the figure into
18 spatial elements, as shown in Figure 3. Each element is given a score of 0, 1/2, 1, or 2. A
score of 2 indicates correct reproduction and placement. A score of 1 indicates either of two
possibilities: correct reproduction, but improper placement; or a distorted reproduction
placed correctly. A score of 1/2 indicates items that are recognizable but possess both
distorted appearance and improper placement. Zeros indicate items that are completely
absent.

Specific guidelines exist for scoring each item (Osterrieth, 1944; Taylor, 1969; summarized
by Duley et al., 1993). For example, for the circle with the three dots, there are prescribed
penalties for ‘‘resembling a face,’’ and ‘‘incorrect placement of dots.’’ For the five parallel
slanted lines, there are penalties for not crossing the large diagonal, being too long or too
short, and so forth.

Boston Qualitative Scoring System. Each drawing was also evaluated using the BQSS. In this
system, the drawing is divided into three categories of spatial elements: configural elements,
clusters, and details (see Figure 3). Each of these categories is scored in aggregate, including
evaluations of presence of the constituent elements, accuracy, and correct placement, all on a
1 to 5 scale. Global characteristics of the drawings, such as ‘‘neatness’’ and ‘‘fragmentation’’
are also scored.

Figure 3. Osterrieth and Boston scoring systems. For the Osterrieth system (upper left), each numbered

spatial element is given a score as described in the text. The Boston system (remaining three panels) is

composed of three types of feature categories. For each of the 3 categories, scores from constituent

elements are aggregated and counted based on accuracy and placement.
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Statistical Analyses

The primary methods we used to perform post hoc statistical testing comprised parametric
and nonparametric Monte Carlo methods. Specifically, observed data were resampled (with
replacement), generating new data for use in computing p-values and confidence intervals.
These analyses were performed in IPython with the Numpy/Scipy libraries (Oliphant, 2007;
Pérez & Granger, 2007).

Results

A summary of the total scores for each of the two major scoring systems is given in Tables 1
and 2, respectively. Individual participant data are plotted in the two panels of Figure 4. As
expected, subjects performed nearly perfectly (35.1/36 for RO and 81.1/82 for BQSS) when

Table 1. Summary of Total Osterrieth Scores at Each Eccentricity.

Eccentricity Score (mean) Standard deviation Range

Fovea 35.1 0.534 34.5–36

6� 20.2 6.07 10–31.5

12� 11.8 6.57 6.25–26.5

Table 2. Summary of Total BQSS Scores at Each Eccentricity.

Eccentricity Score (mean) Standard deviation Range

Fovea 81.1 2.85 76.5–84.5

6� 65.9 6.94 56–79

12� 52 7.02 42–68

BQSS: Boston Qualitative Scoring System.

Figure 4. Total scores for each observer at all three eccentricities. Points and error bars indicate mean and

standard deviation between raters. Right-most columns shows mean and standard deviation across subjects.
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they were allowed to use their fovea to view the figure. Total scores declined in the periphery.
The correlation coefficient between the two raters for the summed scores was 0.97 for the
Osterrieth system and 0.94 for the Boston system.

The distributions of the individual element scores for each of the three eccentricities are
shown in Figure 5. Most elements at the fovea are scored perfectly (2 for Osterrieth and 5 for
BQSS), with a shift in the entire distribution to lower scores as the figure is placed further in
the periphery. The non-Gaussian shapes of these distributions are an additional motivation
for the use of Monte Carlo methods for determining confidence intervals.

As shown by Figure 4, the data separate fairly well based on their total scores. For each
scoring system, a simple classifier can be constructed that thresholds the total score and
estimates the eccentricity. For the Osterrieth scoring system, scores below 16 are estimated
to result from 12�, scores above 34 are estimated to be from the fovea, and anything in
between is assumed to be from 6�. This classifier is 95% accurate. It misclassifies S8’s 12�

score as a 6� score and S2’s 6� score as a 12� score. A classifier based on the BQSS scores is
similarly effective, with thresholds of <55 (for 12�) and >75 (fovea). Only the scores of S8 are
outside the range—these scores are significantly higher than those of the other subjects.
Figure 6 illustrates the classification boundaries by replotting the data from Figure 4.

Quantifiable differences in the drawings reflect the influence of presentation eccentricity on
drawing. Next, spatial features from the Osterrieth scoring scheme are analyzed. Table 3 lists
the average score for each feature across observers at all three retinal locations, averaged
across the two raters. Figure 7 illustrates these data by showing the average score across
observers and raters for each spatial feature. Table 4 lists the scores from the Boston system
at each of the three eccentricities.

To determine which scores differed significantly from other scores at each of the two
peripheral eccentricities, we performed Monte Carlo simulations of the data. Simulated
feature scores were drawn with replacement from the observed per-rater scores at each
eccentricity. Most of the feature occurrence rates did not differ from the mean. However,
some features did have a frequency that was outside the 95% confidence intervals determined
by the Monte Carlo procedure. Table 5 summarizes the results of this analysis, showing only
those features that were present in the drawings with a statistically different frequency (i.e.,
higher or lower than the 95% confidence intervals for that eccentricity).

Figure 5. Distribution of scores at each eccentricity for each of the two rating systems. Dots represent the

proportion of all scores for an eccentricity that possess the given rating, across both raters and all feature

types.
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For the Osterrieth features (see Figure 3), identification of the small line directly above the
left-side square (Feature #7) differed from the other features, at both 6� and 12�. At 6�, the
small vertical line in the top-right corner (#10) and the larger interior vertical line on the right
(#15) are also significantly omitted. At 6�, the left-side cross (#1) and the left-bottom square
(#18) are identified more correctly than other features.

Figure 6. Data of Figure 4, re-ordered by eccentricity to better show classification boundaries. Each dot

represents the total score (averaged across raters) for a subject at a given eccentricity.

Table 3. Osterrieth Feature Scores Averaged Across Raters.

Feature Fovea 6� 12�

O1 1.92� 0.29 1.81� 0.40 0.91� 0.64

O2 2.00� 0.00 1.00� 0.80 0.38� 0.62

O3 2.00� 0.00 1.31� 0.57 0.81� 0.66

O4 2.00� 0.00 1.22� 0.80 0.69� 0.85

O5 2.00� 0.00 1.16� 0.65 0.84� 0.87

O6 2.00� 0.00 1.44� 0.63 0.78� 0.80

O7 1.67� 0.49 0.22� 0.52 0.12� 0.34

O8 2.00� 0.00 1.03� 0.62 0.44� 0.40

O9 2.00� 0.00 1.09� 0.58 0.59� 0.66

O10 2.00� 0.00 0.56� 0.87 0.31� 0.70

O11 2.00� 0.00 1.16� 0.70 0.81� 0.57

O12 1.92� 0.29 1.19� 0.51 0.50� 0.61

O13 1.58� 0.51 1.06� 0.63 0.81� 0.63

O14 2.00� 0.00 1.25� 0.77 0.53� 0.62

O15 2.00� 0.00 0.41� 0.71 1.00� 0.88

O16 2.00� 0.00 1.19� 0.91 0.50� 0.82

O17 2.00� 0.00 1.34� 0.62 0.75� 0.63

O18 2.00� 0.00 1.72� 0.52 1.03� 0.74

Mean 1.95� 0.12 1.12� 0.40 0.66� 0.25

Note. Numbers indicate average and standard deviation across observers for each eccentricity. See

Figure 3 for feature key.
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For the Boston scores, ‘‘detail presence’’ is the only score which differs significantly at 6�.
At 12�, this score, as well as ‘‘cluster accuracy’’ is significantly outside the 95% confidence
intervals. Several features are significantly greater than the other scores at 12�. Those are
vertical and horizontal expansion, rotation, and perseveration (inappropriate repetitions).
These error types did not occur as often as the other errors.

Previous qualitative scoring systems were based on careful characterization of error types
from different subject populations. For example, Loring et al. (1988) identified particular
types of spatial errors (e.g., ‘‘misplacement of upper left cross’’) that were diagnostic of the

Figure 7. Graphical depiction of average feature scores listed in Table 3. Left panel shows 6� results, and

right panel shows 12� results. Brighter colors indicate higher scores.

Table 4. BQSS Scores Averaged Across Raters.

Feature Fovea 6� 12�

B1 (Configural elements presence) 5.00� 0.00 4.31� 0.87 2.94� 1.06

B2 (Configural elements accuracy) 4.83� 0.39 3.31� 1.14 2.31� 1.20

B3 (Cluster presence) 5.00� 0.00 4.50� 0.63 2.88� 1.15

B4 (Cluster accuracy) 4.67� 0.49 3.12� 0.89 1.88� 0.96

B5 (Cluster placement) 4.92� 0.29 3.94� 0.93 2.94� 1.34

B6 (Detail presence) 4.92� 0.29 2.75� 0.93 1.81� 0.83

B7 (Detail accuracy) 4.58� 0.51 3.50� 1.59 2.25� 1.69

B8 (Fragmentation) 5.00� 0.00 4.19� 0.83 2.75� 1.24

B9 (Planning) 4.92� 0.29 3.44� 1.09 1.81� 1.17

B10 (Size reduction) 4.83� 0.39 3.94� 1.18 3.25� 1.53

B11 (Vertical expansion) 4.75� 0.45 4.44� 0.89 4.06� 1.06

B12 (Horizontal expansion) 4.50� 0.67 4.38� 0.81 4.19� 0.98

B13 (Rotation) 4.83� 0.39 4.38� 1.26 4.81� 0.40

B14 (Perseveration) 4.92� 0.29 4.12� 1.26 4.06� 0.85

B15 (Confabulation) 4.92� 0.29 4.31� 0.70 3.62� 0.89

B16 (Neatness) 4.83� 0.39 3.75� 1.00 2.94� 1.29

B17 (Asymmetry) 4.00� 1.18 3.56� 1.41 3.50� 1.10

Mean 4.79� 0.25 3.88� 0.52 3.06� 0.89

BQSS: Boston Qualitative Scoring System. Numbers indicate average and standard deviation across observers for each

eccentricity.
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hemispheric lateralization of seizures in epileptic patients. Motivated by this approach, we
identified new types of errors observed in the peripheral drawings. Table 6 lists the error
types and indicates which subjects exhibited the errors at each eccentricity. None of these
errors occurred in foveal drawings. The errors fall into two broad categories: depiction of an
inaccurate number of adjacent similar items (number errors) and specific spatial
deformations (distortion errors).

Figure 8 reproduces all subjects’ drawings from the two peripheral locations. Note that
drawings are not shown in equal scale. For display purposes, each drawing was digitally
scaled to yield similar sizes.

Discussion

As far back as Ptolemy and Alhazen, it has been noted that peripheral vision lacks the clarity
of foveal vision (Strasburger & Wade, 2015). Since then, researchers have sought to more
fully characterize the nature of the deficiencies in peripheral perception. Experiments with
traditional psychophysical methods have yielded important findings about the effects of
spatial undersampling, the loss of phase information, or the deleterious effect of
neighboring contours on identification of a target (for a review of pattern vision in the
periphery, see Strasburger et al., 2011).

Increasingly, however, researchers are interested in determining more fully the
phenomenological nature of peripheral distortions. What do objects actually ‘‘look like’’ in
the periphery? For example, the common intuition is that peripheral objects should appear
blurrier than foveal objects, due to the declining sampling resolution in the periphery.

Table 5. For Each Scoring System and Eccentricity, the Features That Are Listed Are Those With a

Proportion That Differs Statistically From the Population Mean.

Feature type Eccentricity Smaller than CI Larger than CI

Osterrieth 6� #7, #10, #15 #1, #18

12� #7

BQSS 6� #6 (detail presence)

12� #6, #4 (cluster accuracy) #11, #12, #13, #14

Note. BQSS: Boston Qualitative Scoring System.These features were either higher or lower than the 95% confidence

intervals determined by Monte Carlo simulation using all feature scores from all subjects and both raters. The first two

rows indicate Osterrieth features (see Figure 3), and the last two rows indicate BQSS features (see text).

Table 6. Feature Errors for a New Qualitative System Based on the Observed Error Patterns.

Error type Feature 6� 12�

Number Incorrect number of dots in circle S1–S5 S1–S8

Diagonal lines under-counted S1, S4, S5, S6, S7 S2, S4, S7

Horizontal lines under-counted S1, S2, S4, S6, S7 S1–S8

Extra down/rightward diagonal element S3, S7 S1, S2, S3

Distortion Diagonal lines become zig-zag ‘‘staircase’’ S1, S5, S6, S7

Rounded upper right-hand perimeter S2 S1, S2, S5–S7

Note. Subjects exhibiting the error at each eccentricity are indicated.
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Paradoxically, the opposite is true: In matching experiments, subjects perceive peripheral
objects to be sharper than corresponding foveal objects (Galvin, O’Shea, Squire, & Govan,
1997). Hence, alternate characterizations of peripheral appearance, such as localized spatial
disorder (Koenderink & van Doorn, 2000), are needed. Furthermore, composite nonfoveal
objects like words are ambiguous in very specific ways related to mislocalization of features
and symbols, as described by Korte (1923) and further clarified by Strasburger (2014). Even
before Korte’s (1923) treatise, scientists such as James Jurin and Alhazen were aware of this
indistinct mode of vision that hinders recognition of compound objects. However, the
categorical difference in phenomenology between indistinct vision and the straightforward
loss of resolution (as apparent even with simple objects) has not always been appreciated
(Strasburger & Wade, 2015).

An understanding of the phenomenology of peripheral vision is crucial, particularly for
building models designed to capture the so-called metamers of spatial vision (Koenderink &

Figure 8. The top two rows reproduce the drawings made when subjects viewed the figure at 6�, and

bottom two rows are from 12� presentations. Drawings were spatially scaled for presentation consistency.
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van Doorn 1996). Impoverished stimuli and limitations of forced-choice methods may mask
the shortcomings of models of peripheral vision. For example, a recent study demonstrated
that highly sensitive psychophysical methods are necessary to evaluate the peripheral
information available to observers (Wallis, Bethge, & Wichmann, 2016). Specfically, these
authors found that subjects could make better discriminations than those predicted by
texture-based models of crowding (Balas et al., 2009; Freeman & Simoncelli, 2011). Here,
we chose to use the method of drawing to directly capture the visual distortions in peripheral
percepts. For task standardization, we used a mature method from neuropsychology that has
been employed for over 50 years.

Using the Rey–Osterrieth drawing task and standard scoring methods, we showed how
accurate reproduction of spatial features predictably declined as the target was presented
further in the visual periphery. Furthermore, the more foveal elements of each drawing, such
as the left-most cross (Feature #1), were often more accurately depicted in the drawings.
However, eccentricity was not the only factor involved. Specifically, in agreement with
crowding explanations, the proximity and similarity of an element to nearby features also
had an impact on difficulty. For example, the detection rate of Feature #7 was relatively low,
presumably because it is very close to the upper line of Item #6, which is similar in length and
of the same orientation as Feature #7. Korte (1923) noted that features which were not
integrated into an overall form were more likely to elicit ambiguous percepts. This would
be the case for Feaures #7, #10, and #15 of the ROCF, which were often excluded by our
subjects. On the other hand, features on the exterior of the figure, such as the cross mentioned
earlier (Feature #1), or Feature #14, which hangs off of the right side of the figure, are flanked
with fewer elements than interior features, and are identified more accurately. To precisely
decouple the role of eccentricity, crowding and grouping in the ROCF would require
additional experiments, such as showing a mirror-image of the figure.

The outline of the shape was often identified correctly, although interestingly the upper-
right corner often assumed a curved shape. Most drawings retained overall configural
structure (the outline rectangle and its diagonal elements) at 6�. At 12�, only some of the
drawings retained the configural structure. Interestingly, Feature #15 (the medium-sized
vertical line in the right-hand of the figure) was identified poorly at 6� but more accurately
at 12�. Looking at the drawings, there is an intuitive explanation. At 6�, the outline rectangle
was identified relatively accurately, but this vertical line was often missed. At 12�, the outline
rectangle was typically distorted or absent, but there was some vertical line feature for most
subjects. This vertical line was generally scored as Feature #15.

Observations from several other components of the figure strengthen the proposal that it is
difficult to individuate items in structured repeating patterns (Intriligator & Cavanagh, 2001).
For example, the sets of parallel lines were recognizable in the drawings, but typically
undercounted. This is in contrast to most previous observations with the figure in
neuropsychological settings, which have observed additional parallel lines, especially with
damage to the right-temporal lobe (Loring et al., 1988). This reduction in featural elements
agrees well with our recent account of crowding (Sayim & Wagemans, 2013; see also Liu &
Arditi, 2000). Another example is the circle and its constituent dots. The overall pattern was
often depicted, but the particular number of dots and their spatial relationships were often lost.

Clearly, there was great individual variability in the drawings, from being quite sparse and
unusual at 12� (Subjects S1, S4, S5, and S6) to being nearly perfect at both eccentric locations
(Subject S8). It has previously been noted that subjects may have very different crowding
zone extents (Pelli et al., 2007) and can exhibit other idiosyncratic individual differences in the
strength of crowding effects, such as the ‘‘inner/outer’’ anisotropy due to the flanker position
relative to the target and the fovea (Petrov & Meleshkevich, 2011). Furthermore, when the
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visual input is highly ambiguous, which is often the case for peripheral objects, factors such
as imagination may affect visual perception more than for direct vision. Some subjects
reported that the figure looked like a ‘‘face’’ or a ‘‘fish,’’ which could have influenced
perception by ‘‘filling-in’’ missing details. The extent to which low-level perception may be
affected by cognition is an active and controversial topic (Firestone & Scholl, 2015; Pylyshyn,
1999). It has also been proposed that the processes involved in depiction utilize schemata
influenced by culture, training, and experience (Gombrich, 2000). At minimum, previous
exposure to this particular figure may have enhanced the reproduction for some subjects.

Since drawing is a learned proficiency, we opted to use student artists for this study. This
population should be more able to accurately depict their percepts, counteracting the sources
of noise inherent in the procedure such as motor ability or visual memory limitations. On the
other hand, the visual perception of artists may differ from that of average observers. For
example, it has been observed that skilled artists may differ in aspects of visual cognition
(Chamberlain & Wagemans, 2015, 2016; Kozbelt, 2001; Perdreau & Cavanagh, 2013a, 2014,
but see Perdreau & Cavanagh, 2013b). Chamberlain, McManus, Brunswick, Rankin, and
Riley (2015) found that in a large population of student artists greater drawing ability was
correlated with higher ROCF copy scores, and Gallagher and Burke (2007) found differences
in raw ROCF scores based on factors such as IQ and gender. Future studies with a more
general population would be required to investigate the generality of our observations, albeit
with the cost of reduced overall drawing skills.

Interestingly, our foveal results (averaging 35.1 out of 36 on the Osterrieth rating) seem
better than those found in a recent large study that also used artists as observers
(Chamberlain et al., 2015), which had an average Osterrieth rating of 31.88. There are
several possible reasons for the difference. While it could be that our sample of artists was
biased toward more skilled artists, we suggest that the difference in time allotment underlies
this finding. In Chamberlain et al. (2015), observers were only given 4min to copy the figure,
whereas we allowed unlimited time.

A further methodological aspect of our experiment differs from typical crowding studies. In
this experiment, viewing time was unlimited and subjects were permitted to view the stimuli as
many times as necessary by allowing unrestricted gaze shifts between the drawing book and
the monitor. In most crowding experiments, display duration is brief (usually 100–200ms),
ostensibly to avoid undesired eye movements to the peripheral target. Stimulus duration has a
measurable effect on the magnitude and extent of crowding (Chung & Mansfield, 2009;
Tripathy & Cavanagh, 2002; Tripathy, Cavanagh, & Bedell, 2014), though there are few
studies testing unlimited duration with gaze-contingent displays (i.e., Wallace, Chiu,
Nandy, & Tjan, 2013). Importantly, the stability and persistence of crowded percepts has
not been previously characterized, a topic that warrants future direct study.

Finally, besides a better theoretical understanding of how peripheral visual perception
differs from foveal perception, there is a translational aspect to this study as well. Age-
related macular degeneration is a condition whereby the fovea becomes unusable due to
disease, is a leading cause of visual impairment (Congdon, 2004; de Jong, 2006), and is
growing in prevalence amongst older adults (Congdon, 2004). Since peripheral viewing is
mandatory for subjects with a disorder such as this, visual crowding is a limiting factor
(Chung, 2014). Proper application of the ROCF test in such a patient group requires an
understanding of how perception of the ROCF changes in the periphery. For example, the
ROCF has been shown to be sensitive to the laterality of stroke (Binder, 1982; Lange,
Waked, Kirshblum, & DeLuca, 2000). For a stroke patient with age-related macular
degeneration, ROCF results may differ from the normative population due to visual
factors rather than neurocognitive factors.
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While the difficulties processing complicated forms in the periphery have been studied by
researchers for nearly a century, it is only recently that the specific characteristics of the form
and shape degradations are becoming understood. We believe that more diverse stimuli are
crucial to pursue this goal, and the use of the ROCF opens up promising new avenues
to explore this question. The task of drawing presents a way for subjects to give a precise
account of their peripheral percepts, providing a rich amount of information complementing
forced-choice methods.
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