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ABSTRACT 

Over the past years, pyrolysis models have moved from thermal models to comprehensive models 

with great flexibility including multi-step decomposition reactions. However, the downside is the 

need for a complete set of input data such as the material properties and the parameters related to 

the decomposition kinetics. Some of the parameters are not directly measurable or are difficult to 

determine and they carry a certain degree of uncertainty at high temperatures especially for 

materials that can melt, shrink or swell. One can obtain input parameters by searching through the 

literature, however, certain materials may have the same nomenclature but the material properties 

may vary depending on the manufacturer thereby inducing uncertainties in the model. Modelers 

have resorted to the use of optimization techniques such as gradient-based and direct search 

methods to estimate input parameters from experimental bench-scale data. As an integral part of 

the model, a sensitivity study allows to identify the role of each input parameter on the outputs. 

This work presents an overview of pyrolysis modeling, sensitivity analysis and optimization 

techniques used to predict the fire behavior of combustible solids when exposed to an external heat 

flux. 
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Nomenclature 
𝑚 Mass (kg) Greek  

𝑄 Heat of decomposition (kJkg-1) 𝜀 emissivity (-) 

�̇�" Volatile mass flux (kgm-2s-1) 𝜎 Stefan Boltzmann constant (Wm−2K−4) 

�̇�𝑒𝑥𝑡
"  External radiant heat flux (kWm-2) 𝜆 Thermal diffusivity (m2s-1) 

�̇�𝑓
"  Flame heat flux (kWm-2) 𝛿𝑐  Depth of char layer or pyrolysed material 

(m) 

𝜌 Density (kgm-3) ∅ Porosity (-) 

𝑐𝑝 Specific heat capacity (Jkg-1K-1) 𝜇 Viscosity of volatile gases (Pa.s) 

𝑘 Thermal conductivity (Wm-1 K-1) 𝜅 Permeability(m2) 

𝑇𝑟 Average cone surface temperature (K) 𝛽 Inertial term of the non-linear darcy 

equation 

𝑇𝑎 Ambient temperature (K) α Conversion rate 

ℎ𝑐 Convective heat transfer coefficient (Wm-2 

K-1) 
𝛾 local concentration ratio of char to 

unreacted solid 

ℎ𝑔 Enthalpy of gases (kJkg-1) 𝛿 Thermal penetration depth (m) 

𝑇𝑃 Pyrolysis temperature (K) 𝛿𝑝 Distance of the front surface from the 

initial position after pyrolysis (m) 

T Temperature (K)   

𝑇𝑠 Surface temperature (K)   

𝑇∞ Ambient temperature (K)   

L Thickness (m)   

𝑡𝑝 Time when pyrolysis starts   

𝐴 Pre-exponential factor (s-1)   

𝐸 Activation energy (kJmol-1)   

    

ℎ𝑠 Enthalpy of solid (kJkg-1)   

ℎ𝑇  Convective heat transfer coefficient (Wm-2 

K-1) 

  

𝑀 Molecular mass (kgmol-1)   



𝑛 Reaction order   

𝐴𝑠 Surface area (m2)   

subscripts   

v virgin   

c char   

g gas   

s solid   

 

I. INTRODUCTION 
The term pyrolysis often refers to the thermal degradation of the solid-phase caused by external 

heating under inert atmospheric conditions or in the absence of oxygen [1]. It is a major process 

contributing to the solid ignition, flame spread and fire growth involving complicated phenomena 

such as heat transfer through the material, thermal decomposition resulting in the mass transfer 

that produces combustible or non-combustible gases [2].  

The fire behavior of a material can be experimentally investigated at different scales [3, 4]. 

Thermogravimetric analysis (TGA) [5] and microscale combustion calorimetry (MCC) [6] are 

often used to study the behavior of the material at matter scale while tests such as the fire 

propagation apparatus (FPA - ASTM E2058) [7-9], cone calorimeter (CC - ASTM E1354) [10]  

and radiant panel apparatus [11] are used at bench scale. Moreover, at product scale, medium 

single burning item and room corner test are commonly used. Fire tests at real-scale can also be 

conducted for example in an apartment with a single bedroom [12].  

To numerically predict the fire behavior of a material, pyrolysis should be modeled. Pyrolysis 

models allow for example, to understand the fire behavior of a material without having to conduct 

expensive experimental tests. Once the pyrolysis model is validated against experimental data, a 

sensitivity study can be performed to identify the material properties governing the phenomenon, 

thereby helping in the optimization of the material behavior during development. Pyrolysis 

modeling has become a useful predictive tool in understanding the complex physical and chemical 

processes. Although the modeling of these processes remains a great challenge, significant 

advancements have been made in the fire community. Due to the increasing interest in the fire 

safety of combustible materials used in various applications, significant research work has been 

reported on pyrolysis models [13-21].  

These models vary from thermal to comprehensive models depending on their complexity [22-25]. 

The modeled materials can be divided into non-charring and charring solids depending on their 

ability to form char after fire exposure. Some charring materials can expand or intumesce to form 

a porous carbonaceous char when subjected to external heat flux. 

A number of reviews on pyrolysis models for different materials exist in literature. A 

comprehensive review on pyrolysis models was presented by Di Blasi [17] in 1993. The models 

took into account both the solid and gas phase combustion processes and they were used to describe 

the physical and chemical phenomena occurring in charring materials such as wood as well as a 

non-charring material such as poly(methyl methacrylate). The author also outlined how pyrolysis 



modeling had generally helped in understanding the combustion of solid materials. However, the 

author concluded that the lack of accurate thermophysical properties and kinetic parameters 

hindered the accuracy of the model predictions even when a comprehensive model was used. In 

1994, Kashiwagi [26] presented a discussion on polymer combustion. At this time, Kashiwagi 

stated that basic understanding of polymer combustion had progressed for the gas phase thanks to 

the previous conducted significant research work. However, more research work was required to 

understand the combustion phenomena in the solid phase. Later in 2000, Di Blasi [19] presented a 

review on the pyrolysis modeling of charring materials including intumescent materials. The 

author concluded that comprehensive modeling including complex reaction kinetics for wood had 

progressively advanced but more work was still needed for charring polymers and intumescent 

materials. 

The same year, Sinha et al. [1] outlined the advances in wood pyrolysis models and focused on 

issues such as wood composition and morphology. The authors then identified the need for input 

parameters when dealing with even such complex issues. They recommended that there should be 

closer interaction between the modeling and experimental efforts. In 2001, Moghtaderi [22] also 

reviewed the pyrolysis models involving charring materials from over three decades. The 

improvement of the models in terms of the included physical and chemical processes was 

presented. They also demonstrated how the input parameters influenced the model outputs and 

pointed out the difficulty of improving the predicted results without accurate material properties. 

The same author [23] reviewed in 2006, the numerical models for the thermal decomposition of 

lignocellulosic materials.  The author came up with the similar conclusions as from the previous 

review in terms of input parameters, except that the complexity of the models was dependent on 

the modeler making the pyrolysis models non-uniform. In 2005, Lyon and Janssens [27] presented 

an overview based on the combustion of polymers. Several experimental techniques used in the 

understanding of the fire behavior of polymers were also presented.  From these experimental 

techniques, several hypotheses were made and mathematical formulations were derived from the 

properties of the gas and solid phase thereby, providing the experimentalists with information for 

the design of new materials. Three years later, Laughtenberger and Fernandez-Pello [24] presented 

pyrolysis models based on non-charring, charring and intumescent materials. Since the 

conservation equations on which the pyrolysis models were based could be applied universally, 

they suggested the possibility to formulate a generalized pyrolysis model. The generalized 

pyrolysis model (Gpyro) was later developed and is presented in [14, 28]. They also provided a 

database of input parameters of different combustible solids collected from literature. At the same 

time, Stoliarov and Lyon [13] also developed a generalized pyrolysis model named ThermaKin 

which was also capable of taking into account  a wide range of materials [29]. 

In 2013, Shi and Chew [30] also presented a review on pyrolysis models based on the same class 

of materials as those mentioned previously. In their study, the ways in which the physical and 

chemical phenomena involved in pyrolysis were numerically described were explicitly detailed. 

They also gathered several input parameters for different materials. They observed that most 

pyrolysis models focused on wood whereas relatively few models focused on other combustibles 

as shown in Figure 1. From Figure 1, it can also be noticed which pyrolysis processes have been 



included in models based on literature. However, no information is given by the authors over how 

many years the statistics were conducted. 

 

Figure 1. Statistics on 1D models based on different combustible materials [30]. 

Recently in 2016, Lundström et al. [25] presented a survey of different types of pyrolysis models 

and focused on their similarities and differences. They also discussed in which cases the models 

could be applied. They supported the other previous reviews by noting that, when increasing the 

complexity of the model, more parameters are required. Some of these parameters are difficult to 

measure and if used as model inputs they may induce uncertainties in the model. 

Although this work does not extensively focus on smoldering combustion or composites, 

noteworthy reviews concerning these topics were presented by Ohlemiller [31] and Mouritz et al. 

[32].  Ohlemiller [31] extensively reviewed numerical models involving coupled physical and 

chemical phenomena that take place in self-sustained smoldering combustion. During smoldering, 

the polymer pyrolysis is involved and was considered to be endothermic and competing with the 

exothermic oxidative polymer degradation amongst other processes such as char oxidation, 

thereby making smoldering combustion process complex. As a result, the author concluded that 

the models that existed at that time were greatly simplified and that more work was needed to 

approach reality. The reader is referred to more recent review papers on smoldering combustion 

by Rein [33, 34]. Mouritz et al. [32] reviewed the progress in modeling the fire behavior of polymer 

composites. At that time, the authors concluded that significant progress had been made, although 

a number of issues such as experimental validation of models that take into account fire-induced 

damage (e.g. delamination) still needed to be given attention.  

Considering the complexity of these comprehensive models and that most of the model input 

parameters can carry some degree of uncertainty, a sensitivity analysis is required to understand 

the role and the influence of the input parameters on the modeling outputs of interest. This step, 

aiming at simplifying the problem, allows checking whether a small change to an input parameter 

value has an effect on the modeling results. In general, a sensitivity analysis is useful in identifying 

the parameters that play a major role in the overall pyrolysis process [35]. Understanding the role 

of the parameter also helps in reducing the number of parameters that need to be estimated or 

measured, consequently reducing the calculation time during optimization and the complexity of 



the problem. Several sensitivity analysis techniques have been used in pyrolysis modeling, from 

local to global sensitivity analyses [36]. The first comprehensive sensitivity analysis using a 

generalized pyrolysis model was conducted by Stoliarov et al. [37] in the ThermaKin framework. 

Comprehensive pyrolysis models have proven to be flexible in describing the pyrolysis of a 

combustible solid as compared to thermal models by considering the actual thermal degradation 

processes and transport phenomena taking place. However, these models require a significant 

number of input parameters [1, 17, 25]. These parameters can be extracted from direct 

measurement by thermal analysis (e.g. the thermal conductivity from Hot Disk thermal constant 

analyzer experiments, based on a Transient Plane Source method [15, 38, 39]), searching through 

the literature or through optimization techniques [40]. Determining parameters this way can be 

difficult in certain conditions especially at high temperatures, when the material begins to 

thermally degrade and the same applies to materials that shrink, expand or melt [15]. For example, 

very few papers deal with the measurement of thermal conductivity of intumescent materials at 

high temperature [39, 41]. Errors from each of the measured parameters may result in considerable 

uncertainty [42]. Moreover, in many cases the measured properties are effective and not intrinsic 

[40]. Obtaining input parameters by searching through the literature can be inexpensive, however, 

although certain materials may have the same nomenclature, the material properties may vary 

depending on the manufacturer and a wide range of values can be observed [37]. The other 

approach for determining input parameters is to use optimization techniques.  In this case, the 

pyrolysis model is coupled with an optimization technique to solve an inverse problem.  Gradient-

based and direct search methods such as evolutionary algorithms have been implemented to 

numerically obtain material pyrolysis properties. For example, Meunders et al. [43] used a 

gradient-based method to estimate the kinetic and thermophysical parameters of polyurethane 

foam based on small-scale experiments (TGA and cone calorimeter). Some anomalies were 

observed, for example some values were equal to the values used as bounds which probably 

indicated problems in finding the global optimal values. Gradient-based methods have some 

limitations and recently, direct search methods such as evolutionary algorithms have started to 

gain attention because of they have been found to perform better in certain cases [44].  

From the brief survey of reviews on pyrolysis models, up-to-date, a lot of effort has been made to 

the modeling of non-charring, charring and, intumescent materials, even though significant work 

still remains to be accomplished in the field. To our knowledge, none of the reviews on pyrolysis 

modeling has focused on presenting a review on the set of computational tools from pyrolysis 

modeling to optimization techniques. Moreover, most of the reviews concluded that without a 

complete set of input data, even the comprehensive models would perform poorly. This makes 

sensitivity analysis and optimization interesting topics because of its capabilities and contribution 

to pyrolysis modeling. This work reports an overview on pyrolysis modeling, sensitivity analysis 

and optimization techniques used in the prediction of the fire behavior of combustible solids 

subjected to an external heat flux.  The first section presents the classification of pyrolysis models. 

Given that these models require input parameters, the next section discusses the techniques 

allowing the estimation of these parameters. These techniques involve direct measurement by 

thermal analysis as well as solving inverse heat transfer problems using optimization techniques. 



Finally, the applications of these experimental and computational tools on different types of 

materials i.e. non-charring, charring materials as well as intumescent coatings are discussed and a 

conclusive section ends this review. 

II. PYROLYSIS MODELS 
A pyrolysis model is a set of governing equations that describes the physical and chemical 

processes occurring in a combustible solid when subjected to an external heat flux. It can be used 

as a stand-alone or coupled to a Computational Fluid Dynamics (CFD) model like Fire Dynamics 

Simulator (FDS) or FireFoam that takes into account the gas-phase phenomena.  

Generally, the steps involved in pyrolysis modeling include (i) experimentally testing the material 

on a small scale test (e.g. cone calorimeter, thermogravimetric analysis (TGA),…) and (ii) 

describing the experiments using mathematical models. Input model parameters are then 

determined by direct measurement, searching through the literature or by optimization techniques. 

The system of equations together with the accompanying boundary conditions is then resolved 

numerically and the model is validated against experimental data. 

There are numerous ways to classify pyrolysis models [2, 24] and this review broadly classifies 

the models into two main categories i.e. thermal and comprehensive models. The distinction 

between thermal models and comprehensive models is that “thermal models predict the conversion 

of the virgin material into products based on a critical pyrolysis temperature criterion and an energy 

balance, while the comprehensive models describe the degradation of the material by a chemical 

kinetic scheme coupled with the conservation equations for the transport of heat and/or mass [22, 

23].” This classification has been adopted from the works of Moghtadheri [22, 23]. The critical 

pyrolysis temperature criterion is the temperature that determines the onset of pyrolysis [45]. The 

aim of this section is not to extensively present pyrolysis models since they have already been well 

documented in previous reviews [17, 22, 23]  but to give the reader a general overview of the 

progress in their development over the past years.  

A. Thermal models 
The easiest approach to pyrolysis modeling is to implement thermal models which do not take into 

account the reaction kinetics and mass transport. They use few input parameters and due to this, 

their parameterization requires smaller number of calibration experiments. Moreover, they are also 

faster computationally [23]. Thermal models can further be divided into algebraic and analytical 

as well as integral models according to their solution techniques [22].  These different models are 

described hereafter. 

1. Algebraic and analytical models 

For algebraic and analytical models, an assumption that the gasification rate is proportional to the 

net absorbed heat flux is made [22, 23, 46]. Equation 1 shows an example of an analytical solution 

of the energy conservation as a function of the mass loss rate for a thermally thin sample (when 

Biot number is less or equal to 1) of combustible material when exposed to an external heat flux, 

assuming that there is no shrinking or expansion during pyrolysis. Moreover, the morphology i.e. 



the structure of the pores as well as the changes in the thermophysical parameters, are also 

neglected. 

 
�̇� = −

�̇�𝑒𝑥𝑡
" 𝐴𝑠

𝑄
 

Equation 1 

A more fundamental approach consists of using the integral models [47].  

2. Integral models 

An integral model is applicable to both charring and non-charring materials depending on the 

formulation of the equation [45]. In short, for integral models, the original set of partial differential 

equations describing the problem is reduced to a set of ordinary differential equations, which are 

easier to solve by considering that the temperature distribution within the solid depends on the 

space variables. Different temperature profiles have been used in literature such as exponential 

[48] and in this case a quadratic temperature profile was applied. 

The model describes the pyrolysis of a combustible solid when subjected to an external flux. It is 

basically divided in three stages according to the physical processes occurring in the solid. The 

first stage is before ignition and heat is transferred into the material by pure conduction (Figure 

2(a)). The temperature increases up to the temperature at which pyrolysis is assumed to start. The 

second stage occurs during pyrolysis and the solid acts in a semi-infinite manner. The difference 

in behavior between a charring and non-charring material is shown (Figure 2(b)) and (Figure 2(c)). 

The final stage is when the virgin material has been totally converted.  

The 1D model was formulated by describing the materials during the first stage and second stage;  

The model for the first stage using virgin material properties; 

 𝜕𝑇𝑣

𝜕𝑡
= 𝜆𝑣

𝜕2𝑇𝑣

𝜕𝑥2
 

Equation 2 

 

The net heat flux on the surface (�̇�𝑛𝑒𝑡
" ) 

 �̇�𝑛𝑒𝑡
" = �̇�𝑒𝑥𝑡

" − ℎ(𝑇𝑠 − 𝑇∞) − 𝜎𝜀(𝑇𝑠
4 − 𝑇∞

4 )               Equation 3 

 

And the boundary condition at 𝑥 = 𝐿, 

 𝜕𝑇𝑣

𝜕𝑥
(𝑥 = 𝐿) = 0 (𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑)           

Equation 4 

 



 

Figure 2 (a)  First stage , (b)  second stage for a charring solid, (c) second stage for a non-

charring solid [45]. 

Considering the scenario of a solid which undergoes charring, heat is transferred by pure 

conduction in the char layer as well and the governing equation is given by: 

 𝜕𝑇𝑐

𝜕𝑡
= 𝜆𝑐

𝜕2𝑇𝑐

𝜕𝑥2
 

Equation 5 

 

and it is subject to the initial condition 𝑇𝑐(0, 𝑡𝑝) = 𝑇𝑃 , with the applied boundary conditions as: 

 
−𝑘𝑐

𝜕𝑇𝑐

𝜕𝑥
(𝑥 = 0) = �̇�𝑛𝑒𝑡

" = �̇�𝑒𝑥𝑡
" + �̇�𝑓

" − ℎ𝑐(𝑇𝑠 − 𝑇∞) − 𝜎𝜀(𝑇𝑠
4 − 𝑇∞

4 )             
Equation 6 

 

 𝑇𝑐(𝑥 = 𝛿𝑐) = 𝑇𝑝                Equation 7 

 

with 𝑇𝑐 the temperature distribution corresponding to the char layer, 𝑇𝑝 the pyrolysis temperature, 

�̇�𝑓
"  the heat flux due to the flame. 𝜆𝑐 and 𝑘𝑐 the thermal diffusivity and thermal conductivity of the  

char, respectively.  

The coupling of the heat transfer between the char and virgin layer is described by the Stefan 

condition at the pyrolysis front:  

 
𝑘𝑣

𝜕𝑇𝑣

𝜕𝑥
(𝑥 = 𝛿𝑐) − 𝑘𝑐

𝜕𝑇𝑐

𝜕𝑥
(𝑥 = 𝛿𝑐) = �̇�"𝑄                  

Equation 8 

 

Where Q is the heat of pyrolysis and �̇�"is expressed in terms of the pyrolysis front as: 

 
�̇�" = (𝜌𝑣 − 𝜌𝑐)

𝑑𝛿𝑐

𝑑𝑡
 

Equation 9 

 

𝜌𝑣  and 𝜌𝑐 being the densities of the virgin and char materials respectively. 



The results from the model presented above were confronted with experimental data and they 

provided a reasonable level of accuracy and captured the peak of mass flux.  To understand the 

influence of the heat of pyrolysis (Q) on the mass flux, a sensitivity study was conducted as shown 

in Figure 3. As observed, the value of the peak of mass flux increases as Q decreases. This is 

because, as reported by reported by Weng and Fan [49], when Q exhibits a low value, the amount 

of energy required to decompose the material into volatiles and char is low; as a result the pyrolysis 

temperature (Tp) is reached very quickly.  

In Figure 3, the curve of the mass flux against time increases up to a maximum followed by a 

gradual decrease. The heat of pyrolysis has an influence on the maximum value and the gradual 

decrease is mainly caused by the char formation which acts as a thermal barrier. 

An interesting study using a thermal model from Rhodes and Quintiere [50] was conducted by 

Hopkins and Quintiere [51]. They extracted the thermophysical properties of the material using 

the experimental results from a cone calorimeter. Thermal models are also computationally cheap 

enough to couple with CFD models. Moghtaderi et al. [52] successfully incorporated an integral 

model into a CFD fire code. 

 

Figure 3. Integral model results confronted with experimental data for white pine under an inert 

environment [45]. 

The reader is recommended to consult the following papers [45, 46, 48, 52-56] for more detailed 

mathematical formulations. A summary of some thermal models is shown in Table 1. 

Table 1. Examples of thermal models 

Author Type of 

model 

Material  Comments on sensitivity/ 

parameters 

Moghtaderi et al. [45] Integral PMMA -The effect of the heat of the 

pyrolysis on the mass flux was 

studied. The mass flux as well as 

the peak on the mass flux curve  

were influenced by the heat of 

pyrolysis.  

Quintiere and Iqbal 

[55]  

Integral PMMA -Input parameters were taken from 

literature. 



Steckler et al. [57] Analytical PMMA -Heat of reaction was measured 

and the other temperature-

dependent thermal properties were 

approximated. 

Hopkins and 

Quintiere [51] 

Integral PMMA, Nylon, 

PE, PP 

-Utilized experimental results 

from the cone calorimeter to 

obtain the input thermophysical 

parameters for the prediction of 

the time of ignition and the 

burning rates. 

Spearpoint and 

Quintere [56] 

Integral Wood - The ignition temperature, the 

thermal conductivity, and specific 

heat capacity were mathematically 

obtained from ignition data whilst 

the heat of gasification and flame 

heat flux were obtained by 

optimization. 

Weng and Fan [49] Integral White pine - The influence of input 

parameters such as the emissivity 

of the char surface on the mass 

loss rate were studied. 
(PMMA - poly(methylmethacrylate), PE- Polyethylene, PP- Polypropylene) 

 

The main disadvantage of thermal models is that they are too simplified by the hypothesis of the 

pyrolysis temperature and they do not properly describe the major processes occurring during 

pyrolysis. For a complete understanding of the phenomena, comprehensive pyrolysis models, 

which are more representative, have gained more attention from researchers due the development 

of better computational resources. 

B. Comprehensive models 
Comprehensive models consider the actual thermal degradation processes and transport 

phenomena taking place within the solid material. These include coupled physical and chemical 

phenomena such as heat transfer, morphological changes, expansion, shrinkage, char formation, 

chemical reactions, in-depth radiation etc. [58]. These phenomena are normally represented as sub-

models. Comprehensive pyrolysis modeling has improved progressively. The earliest possible 

model was presented by Bamford et al. [59] in 1946. It was based on 1D pyrolysis model applied 

to wood that was exposed to an external heat flux. The model consisted of a heat and mass 

conservation equation and assumed a first order single step reaction (the boundary conditions are 

not presented here): 

 𝜕

𝜕𝑡
(𝜌𝐶𝑝𝑇) =

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) − 𝑄

𝜕𝑚

𝜕𝑡
  Equation 10 

 



 𝜕𝑚

𝜕𝑡
= −𝐴. 𝑒𝑥𝑝 (−

𝐸

𝑅𝑇
) . 𝑚 

Equation 11 

        

The left hand side (LHS) of the Equation 10 represents the rate of change of energy. The right 

hand side (RHS) represent the heat transferred by conduction and the heat released by thermal 

decomposition. Equation 1 is the Arrhenius equation representing the rate of decomposition, where 

𝑚 is the mass of the solid. Even if the model was relatively simple, the predicted temperature at 

the center of the considered wood slab fitted with the experimental data although there were 

deviations when applying the model to a thicker slab. The authors further investigated the release 

of gases when the wood degrades.  Many of the pyrolysis models available for combustible solids 

in the literature are either extensions or modifications of the model developed by Bamford et al. 

[59]. The same model was implemented in various other works afterwards, such as the work of 

Roberts and Clough [60]. Other authors went on to improve it by including more physical 

phenomena.  

Tinney [61] improved the model by using a kinetic scheme comprising two consecutive reactions. 

Matsumoto et al. [62] applied the model to plastics and incorporated a temperature-dependent 

thermal conductivity obtained from the linearization of experimental data from Wilson [63] using 

the least squares method and included the  char removal phenomena. Kung [64] then later 

developed a wood pyrolysis model including physical processes such as internal gas convection 

and the author particularly implemented variable thermophysical input parameters mainly obtained 

from linear approximation between the virgin and char material. The main disadvantage of the 

model was that it was not confronted with bench-scale data, however, the author was able to 

investigate, on a theoretical basis, the influence of parameters such as thermal conductivity of char 

and thickness of the material on the rate of pyrolysis. 

In 1977, a more complete model was developed by Kansa et al. [65]. The model was applied to 

wood, which was considered as a porous media. Figure 4 shows the various heat transfer 

phenomena taken into account in the model,  namely, 1) incident heat flux (�̇�𝑖), 2) the heat 

transferred by convection on the surface and in the material (�̇�𝑐𝑜𝑛𝑣), 3) heat lost by radiation (�̇�𝑒), 

4) heat transferred by conduction in the material (�̇�𝑐𝑜𝑛𝑑)  and 5) wood pyrolysis (�̇�𝑥). 

 

Figure 4. Various heat transfer phenomena taken into account in the model [65]. 



The complete mathematical description of the model is given below considering that the gas and 

solid matrices were in non-local thermal equilibrium. 

Mass conservation equation of gas in the porous material: 

 𝜕(∅𝜌𝑔)

𝜕𝑡
+ 𝛻. (𝜌𝑔𝑢) = �̇�𝑔;  �̇�𝑔 = −�̇�𝑠 

Equation 12 

Momentum conservation equation of gas flow in a porous matrix (Darcy’s law): 

 (
𝜇

𝜅
) 𝑢 + 𝛽𝜌|𝑢|𝑢 + ∇𝑝 = 0 Equation 13 

Energy conservation equation of gas: 

 𝜕(∅𝜌𝑔ℎ𝑔)

𝜕𝑡
+ ∇. (𝜌𝑔𝑢ℎ𝑔) + (

ℎ𝑇

∅
) (𝑇𝑠 − 𝑇𝑔) −

𝜕(∅𝑝)

𝜕𝑡
− ∇. (𝑘𝑔∇𝑇𝑔) + 𝑞𝑔

′

= 0 

Equation 14 

 

Energy conservation of the solid phase: 

 

   𝜕[(1 − ∅)𝜌𝑠ℎ𝑠]

𝜕𝑡
− ∇. [(1 − ∅)𝑘𝑠∇𝑇𝑠] +

ℎ𝑇(𝑇𝑠 − 𝑇𝑔)

1 − ∅
+ 𝑞𝑠

′ = 0 
Equation 15 

Rate of decomposition of the solid expressed in Arrhenius form: 

 
�̇�𝑠 =

𝜕(1 − ∅)𝜌𝑠

𝜕𝑡
= −𝐴 exp (−

𝐸

𝑅𝑇𝑠
) ∗ [𝜌𝑠 − 𝜌𝑐]𝑛 = 0 

Equation 16 

Equation of state of an ideal gas: 

 
𝑝 = (

𝑅

𝑀
)𝜌𝑔𝑇𝑔 

Equation 17 

 

Where u is considered as the superficial gas velocity, p is the pressure, R is the gas constant and 

n=1. 

To complete the model, the initial and boundary conditions for the above system of equations are 

shown in [65]. Most of the material properties such as the specific heat capacity were linearly 

approximated from 𝑓(𝛾) = 𝛾𝑓𝑣𝑖𝑟𝑔𝑖𝑛 + (1 − 𝛾)𝑓𝑐ℎ𝑎𝑟 , where 𝑓(𝛾)  stood for the considered 

material property whereas 𝛾 represented the overall extent-of-reaction or degree of decomposition 

related to the densities/masses in the fully virgin and fully charred conditions, with γ = 1 

representing the fully virgin condition and  γ = 0 representing the fully charred condition. Initially, 

they used input parameters from literature, then they were optimized using temperature profiles 

from experimental results. Generally, the numerical and experimental results corresponded with 

each other at low heat fluxes as compared to high heat fluxes. This was attributed to the non-

inclusion of phenomena such as shrinkage, radiation exchange inside the pores as well as an 

improved kinetic mechanism to fully take into account the physical processes at high fluxes. The 



comprehensive pyrolysis model formulation presented here shows how these models require more 

input parameters as compared to semi-empirical formulations. 

During this period, considerable work was conducted on modeling the pyrolysis of composites. In 

1985, Henderson et al. [66] developed a pyrolysis model for composites which was different from 

the previous models in the way that decomposition was taken into account using nth order 

Arrhenius equations and the diffusion of the gases released from the decomposition reactions 

through the char. Moreover, the work used input properties that were both temperature and mass 

dependent. The following year, Henderson and Wiecek [67], on the basis of the previous model 

[66], included thermochemical expansion as well as the storage of decomposition gases. The 

inclusion of these phenomena improved the capability of the model to predict the fire behavior of 

composites, and in particular the prediction of pressure profiles in the composite. 

In 1987, Vovelle et al. [68] developed a model for the prediction of the mass loss rate of PMMA 

exposed to a radiant heat flux. The model was also similar to Bamford’s model in that it was a 

combination of the heat transfer equation and the Arrhenius equation assuming a first order 

reaction. Moreover, they introduced the Landau transformation to take into account surface 

regression.  

Since it is difficult to fully integrate all the complex phenomena in the model, certain assumptions 

are considered. Basically in the comprehensive pyrolysis approach, the heat transfer, the thermal 

decomposition represented by a chemical kinetic scheme and mass transport are solved using 

conservation equations.  

In the 2000s, several comprehensive models  have since been developed as numerical codes 

including Gypro/Gypro3D [14, 28, 69], ThermaKin/ThermaKin2D [13, 16], Pyropolis [20, 70] 

and FiresCone [71]. Furthermore, Computer Fluid Dynamics software such as NIST Fire 

Dynamics Simulator (FDS) [72] and FM Global’s FireFOAM [73, 74]  also include a pyrolysis 

model. An example of the Pyropolis overall model structure is shown in Figure 5. 

 

Figure 5. Structure and output of the Pyropolis model [20] 



Most of these numerical codes are formulated in a generalized way to take into account all the 

types of materials. Laughtenberger and Fernando-Pello [14] validated Gypro using a variety of 

combustible materials which behave differently when subjected to an external flux. The 

combustible materials used were a non-charring solid (poly(methylmethacrylate)), a charring solid 

(white pine), an intumescent coating and polyurethane foam (for the study of smoldering 

combustion). Given the complicated fire behavior of the studied materials, Gypro performed 

reasonably well. 

COMSOL Multiphysics has also successfully been used to model pyrolysis [38, 75-77]. For 

example, Girardin et al. [38] predicted the gasification experiments of ethylene-vinyl acetate 

containing aluminum tri-hydroxide using COMSOL Multiphysics. Agreement between 

experimental and numerical results of temperature and mass loss was good. Moreover, the model 

also allowed conducting a sensitivity study on different scenarios of diffusion by tuning the 

coefficient of mass transfer.  

These codes are developed using the same theoretical basis of coupling momentum, mass and 

energy conservation equations, although they have different mathematical and numerical 

formulations. Gpyro uses the Finite Difference Method, Comsol and ThermaKin uses the Finite 

Element Method and FiresCone uses Finite Volume Method. The Finite Difference Method relies 

on the differential form of the governing equations while the Finite Volume and Finite Element 

methods are based on the weak formulation or integral form. Furthermore, radiative heat transfer 

are not treated in the same manner in FDS and ThermaKin [78]. The effect of this difference was 

observed in the work of Linteris [79] applied to poly(methylmethacrylate) where the results of 

mass loss rate (MLR) for  both programs corresponded well, apart from the case where there was 

high in-depth radiation absorption. Linteris et al. [42] also implemented FDS and Thermakin to 

thermoplastics such as polyamide 6,6, polyoxymethylene and the same conclusions were reported. 

Kempel et al. [78] used ThermaKin and FDS for predicting the MLR of poly (butylene 

terephthalate) (PBT) and PBT reinforced with glass fibres (PBT-GF). They reported that given 

precise input properties, the choice between the two numerical tools was not significant and the 

characteristic model output (e.g. the peak of mass loss rate (PMLR)) obtained using the two models 

was within ±4%.  

A study to compare ThermaKin, Comsol and FDS was conducted by Witkowski et al. [80] using 

a 1D pyrolysis models applied to cable sheathing materials. They concluded that the choice of 

model between the three computer programs, using the same input parameters, is not important 

given the similar nature of the applied governing equations to describe the physical phenomena. 

Comprehensive pyrolysis models have the capability to predict the pyrolysis of different 

combustible materials. However, to implement them, they require input material properties as well 

as boundary conditions for the experiment being modeled. The next section discusses how model 

input parameters can be determined.  

III. PARAMETER ESTIMATION 
As previously mentioned, to implement the pyrolysis models and predict the fire behavior of 

combustible materials, the input material properties are required. This section thus discusses how 



model input parameters can be determined. The first part of this section discusses the determination 

of model input parameters using experimental techniques and the uncertainties in the 

measurements. The second part discusses the estimation of parameters considering inverse 

analysis combined with optimization methods and the chapter concludes with a discussion on the 

sensitivity analysis techniques. 

A. Direct measurement by thermal analysis 
Material properties such as thermal conductivity and specific heat capacity can be ‘directly 

measured by thermal analysis’, using for example, the Hot Disk thermal constant analyzer which 

is based on a Transient Plane Source (TPS) method and Differential Scanning Calorimetry (ASTM 

E1269-11) respectively [38, 76, 81]. In addition, the emissivity can be determined from the 

hemispherical directional reflectometer and the thermal diffusivity from the Laser Flash Apparatus 

(ASTM E1461) [82]. Most of these tests are standardized ASTM test methods and a 

comprehensive presentation of these tests were discussed by Kim and Dembsey [2]. Some of the 

tests are presented briefly below. 

The TPS method was developed by Gustafsson in 1991 [83]. The method is based on a sensor that 

acts as a heat source and generates the heating power using Joule heating. The sensor is inserted 

in between an infinite medium and the heat diffuses into the material. The mean sensor temperature 

rises with time and the temperature function i.e. the shape of the rise is dependent on the type of 

sensor (e.g. its radius). In an ideal scenario, from the temperature function measurement, the 

thermal conductivity and diffusivity of the material can be determined from one single experiment 

from a parameter estimation process. However, in reality they are different factors (such as the 

material not being infinite) that influence the measurement and different improvements have been 

proposed by different research groups [83-85]. A typical example is that of Bohac et al. [84] who 

introduced an improvement in the method by calculating an optimal time window for measurement 

using the difference analysis together with the analysis of the sensitivity coefficients.  

The Laser Flash Analysis (LFA) is also a measurement technique principally used to estimate the 

thermal diffusivity of a material, in addition, the specific heat capacity and the thermal conductivity 

can also be deduced. It should be noted that the LFA is based on the flash method developed by 

Parker et al. [86] in 1961. In general, it is a non-contact method based on heating a sample on one 

side using a xenon lamp as a heat source. The temperature rise is then captured on the other side 

of the sample using an infrared detector. The temperature profile that is obtained is then analyzed 

using an appropriate mathematical model and optimization methods. Finally, the thermal 

diffusivity is obtained. The mathematical model is generally chosen to find the best fit from the 

temperature profile. Different such as models exist in literature such as the Adiabatic model [86], 

Cowan model [87], Cape-Lehman model [88], Radiation model [89] etc. 

The thermal decomposition of a material can be studied using TGA, DSC as well as the 

Simultaneous Thermal Analysis (STA) [90]. The heats of reactions can be extracted from DSC or 

STA measurements. More precisely, for example, TGA measures mass loss and the mass loss rate 

of a sample under well-defined heating conditions i.e. heating rate, atmosphere etc. The Arrhenius 

parameters are then extracted from numerical optimization using TG curves as discussed later in 

this section [90, 91].  



It is noteworthy that even though this technique is often referred to as ‘direct measurement by 

thermal analysis’, generally, an inverse analysis (using some mathematical model coupled with an 

optimization method that can either be manual or automated iterative) of the experimental results 

from the measuring tool is required to extract the relevant thermophysical parameters from the 

data set as explained above. The definition of the mathematical models, the equations to be 

resolved and the parameters to be optimized (i.e. what acceptance criteria) are equally important.  

Stoliarov et al. [92] investigated the pyrolysis of poly(methyl methacrylate) (PMMA), high-density 

polyethylene (HDPE) and high-impact polystyrene (HIPS) using the cone calorimeter and 

gasification experiments. The densities of the materials at room temperature were derived from 

measuring the mass and the dimensions of the samples. The temperature dependent densities were 

extracted from literature. The heat capacities as a function of temperature as well as the 

decomposition thermodynamics i.e. the heats of melting and decomposition were determined using 

differential scanning calorimetry (DSC) and the method is described in [81]. The thermal 

conductivity was determined based on the transient line source method. For the measurement of 

melting polymers, the method is described in [93]. The optical properties, the reflectivity and 

absorption coefficient were obtained from literature [94, 95]. The Arrhenius parameters were 

obtained by fitting the reaction rate constants to the first order Arrhenius equation. The 

uncertainties associated with the property measurements were given as, ±15% for the thermal 

conductivity, heat capacities and decomposition thermodynamics, ±5% for densities, ±3% for 

heats of combustion and energies of activation, ±50% for Arrhenius pre-exponential factors and 

respectively ±20% and ±50% for reflectivity and absorption coefficient.  

Linteris et al. [42] measured input parameters for their models in FDS and Thermakin. 

Uncertainties were taken into account, some are presented here and their effects were explored by 

conducting a sensitivity analysis. Figure 6 shows the results for the thermal conductivities using 

different methods (transient plane and line source methods). The relative uncertainties in the 

thermal conductivity were estimated to be 6%-8% for polypropylene (PP), polyamide 6,6 (PA66), 

and polyethylene terephthalate (PET) and the uncertainty for polyoxymethylene (POM) was 20%. 

For properties such as heat capacities and heats of reaction, the error was 16% according to 

Stoliarov et al.  [81] and 3% for reflectance.  



 

Figure 6. Thermal conductivity measurements of different polymers (PP, PA66, POM, and PET) 

using the methods : transient plane (Δ) and line (○) [42]. 

Girardin et al. [38, 76] directly characterized the thermophysical properties of ethylene-vinyl 

acetate copolymer/ aluminum tri-hydroxide/nanoclays (EVA/ATH/NC). They also used DSC and 

transient plane source methods. Moreover, for the optical properties, transmittance and reflectance 

spectra were measured using spectrophotometers equipped with an integrating sphere. The 

uncertainty in the measurements was ±3% and the method for the determination of absorption 

coefficients and emissivity is described in [80]. The heat capacity of decomposition gases was also 

determined by identifying the gaseous products using a controlled-atmosphere mass loss 

calorimeter connected to a Fourier Transform Infra-Red (FTIR) spectrometer. The procedure is 

described in [38]. 

For charring materials, numerical models often require the properties of the formed char. The char 

is often fragile and non-uniform, making direct measurements difficult [15]. However, Gardelle et 

al. [39] measured the thermal conductivity of a silicone-based intumescent coating from ambient 

temperature to 500°C using a hot disk apparatus. They observed that the thermal conductivity 

decreased from 0.5 ± 0.02 Wm-1K-1 to 0.21 ±0.02 Wm-1K-1at 400°C owing to the formed 

carbonaceous char structure and then rises to 500°C due to radiation in the porous structure. Muller 

[96] also used the same technique to measure the thermal conductivity of intumescent 

polyurethanes. 



Stoliarov et al. [15] used the same experimental techniques as above for determining heat of 

decomposition and heat capacities of charring polymers and extracted other parameters from 

literature as well as approximations when no other solution could be found. 

Tranchard et al. [97] characterized the thermophysical properties of a carbon epoxy composite 

exposed to fire. The experimental techniques included TGA, STA, Laser Flash Analysis (LFA) as 

well as Fourier Transform Infrared (FTIR). These techniques were used to determine the specific 

heats, anisotropic thermal conductivity, decomposition kinetics and thermodynamics. The 

application of inverse analysis to parameter estimation of input material parameters for pyrolysis 

models is presented in the next section. 

B. Inverse analysis 
A parameter estimation problem can be formulated as an inverse heat transfer problem involving 

optimization with an objective function which minimizes the error between experimental and 

model data. This approach involves obtaining input model parameters from e.g. bench scale tests 

used for temperature measurements or mass loss rates determination. It has been widely used in 

the fire community [9, 44, 98]. The most noticeable early work on the parameterization of 

comprehensive pyrolysis models from experiments include that of Stoliarov and Lyon [15, 92]. 

Lautenberger et al. [44] also worked on parametrization but used an evolutionary algorithm which 

was later improved by Chaos et al. [9]. These research works are further discussed later in this 

section. 

When conducting optimization, the idea is to compare numerical results from the pyrolysis model 

and the results from the experiment and a stopping criterion like the relative tolerance on the 

objective function is normally defined. Calabrese et al. [99] defined the relative tolerance to be 

lower than 10-4 in their study. Comprehensive pyrolysis models are then coupled with numerical 

optimization methods. A detailed study and guide on parameter estimation applied to 

comprehensive pyrolysis models was conducted by Kim [2, 40, 100]. As shown on the work flow 

of their methodology presented on Figure 7, they categorized the process of parameter estimation 

in three blocks containing 1) the main parts of the pyrolysis model i.e. initial input values of the 

material properties, numerical optimization method etc., 2) the block containing the numerical 

results which are confronted with the experimental results, errors etc. i.e. the validation phase and 

3) the block which allows to comment or discuss information on the results of the optimization 

study etc. 



 

Figure 7. Workflow on how to conduct a parameter estimation study [2, 40]. 

A number of curve-fitting algorithms have been developed and used over the past years and they 

have been successfully applied to pyrolysis models. Optimization plays an essential role in the 

estimation of material properties to be used as inputs for pyrolysis models and it is crucial to 

identify which optimization technique is best suited for a particular problem in terms of how it 

converges and overall performance. Besides the selected optimization technique, experiments for 

which they are applied and the final model validation are highly important. The conducted 

experiments should be relatively accurate otherwise an incorrect data set can be obtained. For the 

validation step, the predictions should be compared to the experimental results and an agreement 

should be observed preferably over a wide range of conditions e.g. different external heat fluxes. 

If the agreement is not achieved, it means that there was a phenomenon not included in the model 

or that an incorrect parameter or boundary condition was used. In this case the pyrolysis model 

should be improved [101]. 

To solve the inverse heat transfer problem, different types of optimization methods are used. 

Several optimization methods exist in literature such as manual optimization and automated search 

techniques [99]. These methods are generally classified by the optimization community as 

gradient-based versus direct search methods. Using this classification, evolutionary algorithms fall 

under direct search methods. 

In this review, we present gradient-based and direct search methods which are often applied to 

pyrolysis of combustible materials. Additional class of approaches for finding model parameters 

from data are Bayesian methods such as Markov Chain Monte Carlo (MCMC). These methods are 

interesting as they characterize the model parameters from a probability distribution rather than as 



a single value. Bruns [102] used MCMC to find kinetic parameters from TGA data for HIPS, PC 

and PVC. 

1. Gradient-based methods 

Several gradient-based methods such as Simplex method, Gradient method, Newton, Levenberg-

Marquardt, Sequential quadratic programming (SQP) etc. exist in literature. The gradient-based 

method often implemented for non-linear problems is the Levenberg-Marquardt method [103-

109].  

Gradient-based methods have often been applied to estimate material thermophysical properties 

of materials as well as kinetic parameters. Calabrese et al. [99, 110] proposed a methodology to 

estimate the effective thermal conductivity applied to a material that intumesces. COMSOL 

coupled with the Nelder-Mead algorithm coded in Matlab was used to solve the problem. 

Experimental data for the optimization target were gathered from temperature measurements from 

thermocouples that were placed at two different heights inside the intumescent layer. The results 

demonstrated how the thermal conductivity varies with temperature and the possibility to estimate 

the thermal conductivity using inverse heat transfer. Bozozoli [111] also applied the same 

methodology. Since in their case they were only estimating one material property, there was no 

information on the performance of the algorithm. Theuns et al. [46] determined the material 

properties of charring combustible solids by implementing an automatic optimization technique 

called downhill Simplex in multidimensions (which is also known as the Nelder-Mead simplex 

method) using  experimental mass release curves. They set their relative tolerance as 10-4. In their 

optimization procedure, they also chose bounds to allow for realistic values. Some of the optimized 

parameters resembled those found in literature while others did not, probably because of 

differences in the source of the materials. Scott and Beck [112] estimated the thermophysical 

properties of a composite using a Gauss minimization procedure and temperature measurements 

at different locations. The obtained parameters corresponded very well with the synthetic values 

that were used to produce temperature values.  

Meunders et al. [43] investigated an optimization method for estimating kinetic and 

thermophysical parameters of polyurethane (PU) foam. Experimental information was collected 

from bench-scale tests such as Thermo-Gravimetric Analysis (TGA) and cone calorimeter. TGA 

and heat release rate (HRR) results were used as optimization targets for the kinetic parameters 

and thermophysical properties respectively. In this study, the heats of reaction were taken from 

literature [113] and the Arrhenius equation was manually adjusted to obtain a good fit against the 

experimental data from the TGA to estimate the Arrhenius parameters. The obtained set of 

Arrhenius parameters was then used to determine the thermophysical properties and FDS 6.0.1 

was coupled to an optimization algorithm which was based on the gradient method. The 

comparison between the predicted and experimental HRR was considered consistent for the overall 

burning time and average HRR. However, the model could not capture the two-stage fire behavior 

probably because the kinetic scheme was not capable of taking this behavior into account.  The 

bounds prescribed on the material properties for the optimization technique were very large and 

consequently the estimated parameters would be based on the used pyrolysis model and boundary 

conditions. Even though the bounds prescribed on the parameters were large, two of the estimated 



parameters were equal to the upper boundary indicating that there were issues with the modeling 

approach (Table 2). It makes sense as the pyrolysis model chosen could not predict the two-step 

burning of PU at high fluxes. 

Table 2. Bounds prescribed and estimated values [43]. 

 Units Lower 

bound 

Upper bound Estimated 

Values 

Mass fraction (C1) − −  0.22 

Mass fraction (C2) − −  0.67 

Activation Energy, E (C1) kJ/kmol −  1.50×105 

Activation energy, E (C2) kJ/kmol −  1.85×105 

Pre-exponential factor, A 

(C1) 

1/s −  1.07×1012 

Pre-exponential factor, A 

(C2) 

1/s −  5.90×1012 

Emissivity, ε (C 1) − 0.70 1.00 0.70 

Emissivity, ε (C 2) − 0.70 1.00 0.78 

Specific heat, cp (C 1) kJ/(kg·K) 1.50 4.00 3.17 

Specific heat, cp (C 2) kJ/(kg·K) 1.50 3.00 3.00 

Thermal conductivity, k (C 

1) 

W/(m·K) 0.01 0.15 0.01 

Thermal conductivity, k (C 

2) 

W/(m·K) 0.15 0.23 0.23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Optimization techniques have also been widely used for determining the kinetic parameters using 

kinetic models. Different kinetic models have been implemented to model the thermal degradation 

of combustible solids. These kinetics models can be simple one-step or multi-step complex 

reaction schemes [17]. To understand how the level of complexity of the kinetic model plays a role 

on pyrolysis modeling, a typical study was conducted by Marquis et al. [114] on polyisocyanurate 

foam (PIR). They evidenced that simple kinetic models were acceptable to represent thermal 

decomposition of PIR. Ritchter et al. [115] studied the influence of kinetics of several wood species 

on their charring behavior. They then concluded that the kinetic model for one wood species can 

be applied to other wood species and that modelers should pay more attention to their 

thermophysical properties. For non-charring materials, issues concerning model complexity have 

been discussed by Bal and Rein [116-118], and Ghorbani et al. [58]. Bal and Rein [117] conducted 

a brief comparison of three models (implemented in different codes) used for predicting the same 

experimental results, which revealed that some degree of complexity in mechanisms was 

unnecessary. They then proved that using complicated kinetic schemes was not necessary once 

heat transfer processes were simplified. However, for scenarios such as smoldering combustion in 

polyurethane foam the heterogeneous chemistry has been fully described. Rein et al. [119] 

implemented a 5-step mechanism to take into account the smoldering combustion of polyurethane 

foam which was an improvement to the most used 3-step mechanism proposed by Ohlemiller 

[120]. The model was capable of reproducing the smoldering characteristics such as the thermal 

and species structure of the reaction-front propagation rate etc. and described both opposed and 

forward propagation despite inaccuracies. 

Many solid-state decomposition kinetic models have been developed over the past years and up-

to-date the Arrhenius law is still being used to model the solid decomposition. Equation 18 

describes the reaction rate of a solid-phase reaction and gives the relationship between reaction 

rate and temperature, 

 𝑑𝛼

𝑑𝑡
= 𝑘(𝑇)𝑓(𝛼) 

Equation 18 

 

The rate constant 𝑘(𝑇) is expressed in terms of the Arrhenius equation (Equation 19); 

 𝑘(𝑇) = 𝐴𝑒−(𝐸𝑎/𝑅𝑇) Equation 19 

 

where, A is the pre-exponential factor (1/s), Ea is the activation energy (kJ/mol), T is the absolute 

temperature, R is the gas constant, f(α) is the reaction model  related to the solid reaction 

mechanism (some kinetic models are listed in Table. 5)  and α is the conversion degree defined by 

Equation 20: 

 𝛼 =
𝑚0 − 𝑚𝑡

𝑚0 − 𝑚𝑓
 Equation 20 

 

Where , m0is the intial weight, mt is the instantaneous weight, and  mf is the final weight.  



There are several ways to determine the Arrhenius parameters. They can be extracted from 

isothermal kinetic data by applying Equation 18. Equation 18 is then adapted into a non-isothermal 

rate expression (Equation 21) leaving the reaction rate as a function of temperature at a constant 

heating rate, 

 𝑑𝛼

𝑑𝑇
=

𝐴

𝛽
𝑒−(

𝐸𝑎
𝑅𝑇

)𝑓(𝛼) 
Equation 21 

where β is the heating rate. 

This transformation is based on the assumption that changing the experimental conditions from 

isothermal to non-isothermal has no effect on the reaction kinetics, which is quite reasonable when 

dealing with simple single-step process but may have serious implications for multi-step reactions 

kinetics as discussed by Vyazovkin and Wight [121]. Reaction kinetics is commonly studied by 

using thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) curves but can 

also be studied using Differential scanning calorimetry (DSC) curves [122, 123].  

Isothermal or non-isothermal kinetic analysis can be performed by using model-based or model-

free methods (Figure 8). Model free methods such as Friedmann, Kissinger, Flynn-Wall-Ozawa, 

Kissinger-Akahira-Sunose method [124, 125] have the ability to calculate the activation energy 

without the assumption of reaction models but they however have some disadvantages, hence, a 

model to describe the reactions is often applied for the solid thermal degradation. 

 

Figure 8. Typical kinetic analysis methods [126]. 

For a comprehensive understanding on these methods the reader is referred to papers [124, 126-

132]. A model-based method is one that fits different reaction models f(α) or g(α) (Table 3) into 

the general kinetic equation (Equation 18) and the activation energy and pre-exponential factor are 

often calculated by non-linear regression analysis (least square optimization) [131]. A number of 

optimization methods exist for the extraction of the kinetic parameters e.g. gradient-based [106], 

simulated annealing [133], genetic algorithm (GA) [134, 135], particle swarm algorithm (PSO) 

[136-138] etc. These algorithms are explained later in this section. 



Table 3. Examples of  reaction models [139]. 

 

Since a large number of kinetic models exist, Burnham and Braun [140] reviewed some of these 

models, they outlined how they work and gave recommendations on the selection of an appropriate 

model. 

Significant effort has been made in the development of numerical methods for the determination 

of the kinetics of decomposition, however, most studies reported in literature do not explain the 

physical significance of the obtained parameters and reaction schemes. Development of 

experimental techniques is required to physically understand the extracted kinetic parameters. An 

interesting study was conducted by Tranchard et al. [141] relating the obtained kinetic parameters 

of a composite material to a physical sense. Based on the determination of the degradation pathway 

of the material, they proposed a multi-step reactions model composed of two main competitive 

reactions, an auto-catalytic reaction and a nth order reaction. In a similar way, Bourbigot et al. [142] 

determined the kinetic degradation scheme of a polystyrene-montmorillonite nanocomposite. 

Results from the kinetic analysis were justified by using the heat release curve from the cone 

calorimeter. A concise paper on the challenges of modeling the thermal decomposition of solid 

fuels is presented by Rogaume [143]. 

Currently, different numerical codes exist to calculate the kinetic triplet such as TA-KIN, 

NETZSCH thermokinetics software, KINETICS…[127]. For example, NETZSCH thermokinetics 

software determines the parameters of the model-free and model based approach following the 

methodology by Opfermann [144]. Anderson et al.[145] investigated three different computer 

programs (RATE, KINETICS MK and TA-KIN) to determine activation parameters using non-

linear evaluation methods. TA-KIN implements the the Levenberg-Marquardt algorithm, RATE 

implements Simplex algorithm while the KINETICS MK uses the modified Gauss-Newton 

algorithm. TA-KIN performed very well because it was flexible. 

Bruns et al. [146] extracted Arrhenius parameters of thermoplastic materials by using the algorithm 

based on sequential quadratic programming. TGA curves obtained from several heating rates were 

used in the study and their pyrolysis model was based on a population balance approach. Generally, 



the population-based model performed well for the prediction of TG curves and the same was 

reported by Staggs [6]. However, there were typical issues with the parameter estimation study 

and there was no conclusion on the extracted parameters because the global minimum could not 

be reached due to the kinetic compensation effect.  

The kinetic compensation effect is a major issue when it comes to finding optimum kinetic 

parameters [146, 147]. Generally, it is possible to generate the same TG curve by simultaneously 

varying the values of the activation energy (E) and the pre-exponential factor (A). Ceamanos et al. 

[147] reported that for polyethylene, the activation energy can vary between 175 and 325 kJ/mol 

while the pre-exponential factor varied between 1010 and 1022 s-1. Koga [148] presented a 

comprehensive review on this topic. A visualization of kinetic compensation is shown in Figure 9 

where the objective function (sum of squared errors (SSE)) is plotted for the activation energy 

against the pre-exponential factor [146] for a “critical molecule size of a monomer unit” using the 

random scission model.  There are two major observations: the first one is the valley for which the 

experimental data is predicted by the model which highlights the kinetic compensation effect. At 

A=5.495 109 s-1 and E=130 kJ/mol a unique shallow minimum was found even though the SSE 

was relatively flat along the kinetic compensation line. The second observation is the noticeable 

flat region for large values of A and small values of E which is a consequence of the considered 

limited range of temperatures for the data points of the experiments. 

 

 

Figure 9. 3D Visual representation of the kinetic compensation for PMMA with random scission 

model for a “critical molecule size of a monomer unit”[146]. 

Loulou et al. [109] aimed at applying optimization techniques to obtain the Arrhenius parameters 

from a proposed kinetic model for the pyrolysis of a cardboard material. Mass loss information 

from thermogravimetric measurements was used. The Levenberg-Marquardt algorithm was 

implemented and it was robust in fitting with the experimental data. Constraints were also imposed 

on the estimated values e.g. to keep the parameters always positive. The comparison between the 

experimental and simulated data was acceptable given that there were small differences on the 



curvature of the total mass loss. However, the methodology was affected by the values used 

initially and this was attributed to the kinetic models being non-linear and consequently they 

proposed the use of genetic algorithms for better initial guesses. Mamleev and Bourbigot [106] 

used a method involving modulated thermogravimetry to estimate the Arrhenius parameters. The 

methodology was the same as the Levenberg-Marquardt method and it sped up the numerical 

processing time. 

For intumescent modeling, Griffin [107] applied the Levenberg-Marquardt method for the 

estimation of the kinetic parameters of an intumescent coating. Independent first order parallel 

reactions were assumed. They obtained a correlation coefficient that was higher than 99.5%, 

however they observed poor fits at inflexion points and at the end of the weight loss curves. An 

example of the fit between predicted and measured results is shown in Figure 10.   

 

Figure 10. Weight loss and predicted curves [107]. 

Di Blasi and Branca [149] proposed that an intumescent coating made of three ingredients 

degrades following independent finite-rate reactions. Thermogravimetric data (TGA) were used 

for estimating Arrhenius parameters using a direct method. The estimated parameters 

corresponded to those which were found in a previous study. Reverte et al. [108] also used TGA 

data and contributed to the research on parameter estimation. A gradient-based method, which was 

a version of Levenberg–Marquardt method, was implemented. Other numerical methods for the 

estimation of kinetic parameters were presented. 

Rozyki [150] compared the Arrhenius parameters that were estimated from different methods such 

as the linear method etc. Generally, he concluded that the values of the calculated parameters 

depended on the estimation method. The use of the non-linear least squares methods was 

recommended because it allowed calculating statistical weights and it did not bring into play 

transformations involving algorithms. 



A different approach was presented by Lyon [151] to determine the kinetic parameters from TGA 

data. These data were obtained from different heating rates i.e. 1, 5 and 20 K/min. The 

methodology was based on using nonisothermal, single step thermal degradation kinetics to 

express the heat release kinetics combining material properties as well as thermal stability 

parameters. Using a simplified kinetic model to describe the thermal decomposition for polymers, 

they managed to predict a good fit between the model and experimental data except for 

temperatures higher that 700 °C because secondary reactions were not taken into account in the 

model.  For determining the kinetic parameters from TGA data, the Stoliarov’s group [152] has 

used this method as a basis in ThermaKin as well as other studies in FDS [43].  

Li and Stoliarov [90, 91] developed a systematic approach for the determination of kinetics and 

thermodynamics of the thermal decomposition of non-charring and charring polymers based on 

the simultaneous thermal analysis (STA) using ThermaKin. The ThermaKin model was fitted to 

the experimental TGA curves to obtain the kinetics of decomposition and then used for the analysis 

of the heat flow curves from the DSC to determine the parameters related to the thermodynamics 

of decomposition (sensible, melting and decomposition reaction heats). The parameters obtained 

from this methodology were capable of reproducing both the experimental TGA and DSC curves. 

Li et al. [29, 153] used the same procedure as above to determine the Arrhenius parameters, heats 

of decomposition and the heat capacities. Moreover, other parameters such as the emissivities and 

the absorption coefficients were determined from independent experiments. Finally, the thermal 

conductivities were the only unknowns and their values were computed by fitting the gasification 

sample back surface temperature evolution. In their model development, the optimization problem 

is well poised and the gasification experiment MLR were not used as fitting targets but were 

instead utilized in the model validation. This is a critical feature of the Li et al.’s approach [29] 

[153] that differentiates it from the majority of other pyrolysis parameterization studies  [15, 77, 

78, 92, 154]. In most similar studies, MLR was used as an optimization target and thus the model’s 

ability to capture MLR was not viewed as an independent indicator of the model’s validity. The 

same technique was used by McKinnon et al. [155] applied to corrugated cardboard. The authors 

also used TGA and DSC to determine the reaction mechanism, the enthalpy of decomposition 

reactions as well as the apparent heat capacities related to the species. Moreover, the heat of 

combustion of evolved gases for the respective reactions were determined from the pyrolysis-

combustion flow calorimetry. This approach has an advantage because it results in a pyrolysis 

model that is physically representable [156]. A detailed study on this approach is presented by 

Stoliarov [101]. 

Another approach consists in fitting all or almost all material properties into a set of cone 

calorimeter or FPA experiments. By doing so, the problem is both highly complex (multi-

dimensional parameter space) and ill-posed (multiple solutions exist representing local minima in 

the multi-dimensional parameter space). Finding solutions to these problems require sophisticated 

optimization methods. In this case, direct search methods such as evolutionary algorithm are useful 

and they are presented in the next section. 



2. Direct search methods 

The objective of this section is not to describe the evolutionary algorithms but to give an overview 

of their application in pyrolysis models. Detailed descriptions of these algorithms can be found 

elsewhere [82, 157-159]. These optimization methods are inspired by the theory of evolution and 

are often referred to as Evolutionary Algorithms. Gradient-based optimization techniques optimize 

a single individual whilst evolutionary algorithms are focused on optimizing a population. These 

algorithms do not identify the global minimum but they do combine traditional mathematical 

optimization with random exploration of the parameter space, which makes them effective in 

identifying multiple local minima, the best of which is subsequently selected. In pyrolysis 

modeling, up-to date, evolutionary algorithms have been successfully implemented.  

Genetic algorithms have been applied in other fields such as turbulent reacting flows for the 

optimization of reaction rate coefficients and they were found to be numerically robust and 

efficient as well as being flexible and easy to use [68]. In 2001, Şahin et al. used genetic algorithms 

(GA) to determine the kinetic parameters from thermogravimetric analysis of ammonium 

pentaborate. They compared the results between the GA method and Coats-Redfern methods and 

the former presented better results. In 2006, Rein et al. [44, 134], started implementing GA for the 

estimation of thermophysical and kinetic parameters from cone calorimeter and TGA experiments.  

Rein et al. [134] obtained the Arrhenius parameters of the pyrolysis and oxidation of flexible 

polyurethane (PU) foam by applying a GA together with TGA data. Before applying the GA to 

PU they applied the methodology to a case which has been extensively studied, that is the pyrolysis 

of cellulose [160]. In this preliminary work, the GA methodology was used to estimate the 

Arrhenius parameters of cellulose (activation energy - 𝐸𝑝, pre-exponential factor - 𝐴𝑝,) as well as 

the stoichiometric coefficient (𝜗𝑐,𝑝). Figure 11(a) shows the performance of the GA at simulating 

the TGA experiments; the simulated results perfectly correspond with the experimental data for 

the duration of the experiment.  Figure 11(b) illustrates how the GA performs during search of 

optimized parameters. It shows how initial individuals perform poorly and how the GA progresses 

up to convergence. Figure 11(c) shows the fitness vs generations. The figure shows how the fitness 

evolves from the start i.e. in a quick manner, then slowing down toward the end of the search.  

 

(a)                                               (b)                                                    (c) 



Figure 11. (a) Comparison of experimental (red) and numerical (black) results of cellulose mass-

loss rate curves in nitrogen at 5 °C/min [160], (b) GA (blue) performance during the search of 

optimized parameters (in red is the experimental curve), (c) Fitness evolution during GA 

optimization [134]. 

The optimized kinetic parameters from the GA are shown in Table 4. The parameters agree very 

well with the parameters obtained from a gradient-based method. Significant scatter (TG scatter) 

was reported among measured TGA data from several laboratories because of errors in the data 

which consequently caused differences in the estimated parameters (Table 4). 

Table 4. Comparison of estimated parameters [134]. 

Parameter GA TG 

benchmark 

TG scatter GA-TG 

difference 

Units 

Ep 236 241 12% 2% kJ/mol 

Log 10 (Ap) 18,4 18.8 17% 2% Log 10 (1/s) 

𝜗𝑐,𝑝 0.050 0.052 90% 4% - 

 

The study suggested that the differences between results from the GA and benchmark were lower 

than that from the benchmark and experimental data because of the errors observed. For the PU 

foam, Arrhenius laws were implemented using a 5 step reactional scheme. The GA performed very 

well and the estimated parameters well predicted the experimental TGA data at different conditions 

as well as some physical characteristics associated with smoldering combustion. 

Other works involving the use of GA for determining the Arrhenius parameters are included here; 

Matala et al. [161] applied the methodology which was developed by Lautenberger et al. [44]  and 

Rein et al. [134] involving the use of GA for the estimation of the Arrhenius parameters of several 

combustible materials from TGA measurements in FDS. The methodology worked very well and 

further confirmed the use of evolutionary algorithms in estimating input parameters in the field of 

fire safety. More work was also done on applying the GA, for example the work of Rogaume et 

al. [162]. They used the GA to calculate the kinetic parameters of five-step kinetic scheme 

describing the thermal decomposition of polyether polyurethane foam. The experimental and 

predicted mass loss rate data were consistent. 

Lautenberger et al. [44] demonstrated applicability of the previous methodology using cone 

calorimeter data instead of TGA data applied to redwood and red oak as well as polypropylene. 

Their optimization targets were the surface temperature and the MLR. In their study, the 

comparison between calculated and experimental results was acceptable given that the estimated 

parameters were model dependent (boundary conditions, assumptions), a sensitivity study would 

be necessary. The GA was also able to estimate the material properties within ~10 % of those 

found in the literature.  However, the advantage of the approach was the possibility to apply it to 

any pyrolysis model using experimental data from small-scale tests. 

In a similar way, Chaos et al. [9] used evolutionary optimization methodologies. Their objective 

was to study the ability of the SCE and GE “to converge to a global optimum using the least 

amount of data”. In this study, the MLR from the Fire Propagation Apparatus (FPA) was used to 



generate synthetic data by adjusting the input parameters to get the best fit. This synthetic data was 

then used to investigate the performance of the SCE and GA algorithms. This exercise showed the 

ability of SCE to return almost the exact same data as the initial synthetic data. Moreover, it was 

accurate, efficient and robust. The MLR was used as a target at different heat fluxes i.e. 25kW/m2, 

62.5 kW/m2 and 100 kW/m2 and the SCE further provided excellent agreement as well as residual 

that was as low as 10 -7 as shown in Figure 12. The authors chose the MLR as an optimization 

target because it was assumed to be measured accurately as compared to the temperature data. This 

was because the measured temperature data had uncertainties. However, they reiterated that the 

modeler should use several target data and not limit it when available and accurate. Moreover, 

additional target data provides confidence in the data set obtained from optimization. 

 

Figure 13. (a) MLR from optimized parameters ( SCE – bold lines, GA – thin lines) vs synthetic 

data (symbols) for a non-charring material  (b) Residuals of the SCE and GA during optimization 

[9]. 

The SCE was further recommended by Lautenberger and Fernandez-Pello [163] for general use in 

the estimation of material properties because of its balance between efficiency and accuracy. They 

presented a comprehensive review on the application of four different optimization techniques 

with Gpyro (namely vanilla GA, hybrid GA/simulated annealing, SHC and SCE). They also 

evaluated the different experimental techniques that can be used when conducting a parameter 

estimation study. 

The same methodology used by Chaos et al. [9] (described above) was successfully used by the 

same author [164] with application to hardwood pyrolysis. In their study they however decoupled 

the boundary conditions from the optimization problem by measuring the spectral properties of 

the material surface. Ding et al. [165] used the FireFoam pyrolysis model to study the  pyrolysis 

of wet wood using the optimized parameters obtained by Chaos [164]. Chaos et al.[166]. also 

investigated the flame spread and fire response of corrugated cardboard using the CFD program 

FireFoam. This study was conducted on vertically orientated panels and exposed to an external 

propane sand burner. For this particular test, the heat release rate and the smoke generation were 

evaluated. In addition, surface temperatures and heat flux were determined so as to add to the 

validation data set.  Using the pyrolysis model in FireFoam, input material properties were 



obtained using optimization against experimental data from the FPA. These properties were then 

used for the CFD simulations and the model results overpredicted the peak of HRR. Moreover, a 

sharp decay was observed towards the end of the combustion process and this was probably due 

to the char oxidation which was not taken into account in the model. In addition, the same 

methodology [9] was also applied by Zeinali et al. [74] for the determination of input model 

parameters to examine the pyrolysis and flame spread on medium density fiberboard (MDF) using 

FireFoam. 

Interesting work was presented by Ghorbani et al. [58, 167] who also studied the two algorithms 

GA and SHC using six different models to describe the pyrolysis of polyvinyl chloride. The 

authors further presented the limitations of the optimization technique that was implemented. The 

models differed in their thereby affecting the number of unknown properties as well as the 

algorithm used. The optimization targets were experimental data obtained from the cone 

calorimeter i.e. MLR and temperature at the back surface. Some of the properties, such as the char 

density estimated by the GA, were too low and without any physical sense. This was attributed to 

the typical parameter estimation problem of the non-existence of a unique solution. Both the 

algorithms were capable of globally capturing the MLR curves. Precisely, they successfully 

predicted the time to ignition and the predictions for the time of the first peak, magnitude of the 

first peak, total burn out time, time for the second peak, magnitude of the second peak, total burn 

out time and total mass loss were within 20%, 10%, 30%, 15%, 10% and 5% respectively. For the 

temperature curves, the predictions were capable of capturing the early moments up to around 100 

°C and experimental values beyond this temperature were not taken into account because they 

were considered unreliable. The authors reported that these models were only valid for the set of 

conditions used during model calibration after applying them to a scenario involving flame spread. 

To overcome this problem, in addition to the cone calorimeter or FPA, DSC, DSC and/or STA 

could be used for calibrating the models as well as improving the bench-scale tests and 

measurements. Capote et al. [168] presented a methodology combining the cone calorimeter and 

STA to estimate thermophysical properties and the kinetic parameters respectively. The 

methodology was similar to that of Stoliarov and Li [101] in that it separated the individual 

pyrolysis processes during optimization i.e. the STA results were used to obtain the kinetic 

parameters and then the cone calorimeter data (MLR) as the optimization target for the 

thermophysical properties. The cone calorimeter tests were conducted at external hea fluxes of 

25kW/m2, 40kW/m2, 50kW/m2 and 75kW/m2. The methodology was applied on polyethylene and 

optimization was conducted by implementing evolutionary algorithms in Gpyro. The initial values 

were obtained both from measurements and from literature. The methodology was able to provide 

with a reasonable set of properties. However, the following relative errors were observed; 0% at 

75kW/m2 and 27% at 50kW/m2 for the ignition times, 135% at 25kW/m2, 45% at 40kW/m2, 4% at 

50kW/m2 and 32% at 75kW/m2 for the peak MLR and 21% at 25kW/m2, 35% at 40kW/m2, 3% at 

50kW/m2, and 4% at 75kW/m2 for the time to peak. In general, the optimization performed well 

at 50kW/m2 and the ignition times for the other heat fluxes were acceptable. Moreover, errors for 

the peak MLR were higher than those of the ignition times. 

Generally, the major drawback associated to parameter estimation problems especially with 

gradient based algorithms is the non-existence of a unique solution because the complicated 



pyrolysis phenomenon is numerically described using simplified models. In this case, methods 

based on evolutionary algorithms are necessary [169, 170]. Marquis et al. [169] worked on proving 

that a unique solution existed which satisfied the initial conditions for a given model. Kinetic 

parameters were obtained using the GA and mass loss rates under air and nitrogen atmospheres 

were used as optimization targets. They implemented the Picard–Lindelöf based on a model for 

the pyrolysis of polyether–polyurethane foam. They managed to prove that a unique solution 

actually existed which satisfied the initial conditions for a given model in certain conditions. 

Several papers in literature have been reported to evaluate the performance of the different types 

of evolutionary algorithms. Webster and co-workers [58, 157, 167] examined the use of an 

algorithm called stochastic hill-climber for the estimation of material properties from mass loss 

rates from bench scale data. The results were compared to results obtained using genetic 

algorithms. The stochastic hill-climber (SHC) algorithm performed much better for pyrolysis 

parameter optimization. Lauer et al. [171] compared the performance of different optimization 

algorithms i.e. the Fitness Scaled Chaotic Artificial Bee Colony algorithm (FSCABC), Artificial 

Bee Colony algorithm (ABC) and SCE. In terms of accuracy as well as efficiency, both the 

FSCABC and the SCE performed very well. Ira, Hasalova et Jahoda [172] also dealt with both the 

GA and SCE for estimating wood thermophysical properties from TGA experiments. In their 

study, in overall, SCE performed slightly better than the GA.  

More advanced optimization techniques are also found in literature. Saha et al. [173] studied the 

pyrolysis of several thermoplastics and focused on searching for the optimized kinetic model as 

well as the kinetic parameters. Instead of using the model-fitting methods because of their 

drawbacks, they applied a hybrid GA (HGA) on 15 different kinetic schemes using TGA data. The 

HGA reduced the calculation time because it was based on the general GA but used a different 

method for the search of parameters thereby increasing convergence. The kinetic models that 

performed very well were the nucleation and growth models together with the nth order. Other 

research work was done by Li et al. [135] to reach the same objective as mentioned previously. In 

their work, they implemented the GA coupled with the Kissinger’s Method (K-K method). As 

compared to the regular GA, the K-K method was highly efficient because the Kissinger’s Method 

is first used to search for the possible initial parameters and then these parameters are fed into the 

GA. Park et Yoon [138] used the repulsive particle swarm optimization (RPSO) algorithm to 

numerically determine the material pyrolysis parameters. The RPSO algorithm was an improved 

particle swarm algorithm. Ritcher et al. [115] implemented the Multialgorithm Genetically 

Adaptive method which used several optimization algorithms to estimate the kinetic parameters of 

wood. The several combined optimization algorithms used were GA, PSO, Adaptive Metropolis 

Search as well as the Differential Evolution. This algorithm was both accurate and less time 

consuming compared to others.  

In a similar way, a very interesting study was conducted by Raudensky [160]. The authors focused 

on the notion of artificial intelligence in parameter estimation for materials. They compared a 

genetic algorithm as well as an algorithm based on neural networks. Neural network algorithms 

emanate from how the brain of a human works.  Both algorithms performed well although they all 

had advantages and limitations. Genetic algorithms were stated to take time during simulation 



whereas neural networks required acceptable initial values. They proposed that a combination of 

both algorithms would improve the results. Najafi and Woodbury [174] used  neural networks to 

estimate the heat flux at the surface of a material using temperature information, then they also 

discussed their limitations and benefits. 

In summary, within the framework of pyrolysis modeling, optimization can broadly be used to 

solve two main categories of problems. The first category is where most of the model input 

parameters are determined from independent experiments [29, 153]. Then the few remaining 

parameters are optimized using, for example, the gasification sample back surface temperature 

evolution. In this case, optimizations are not time consuming and can be carried out by manually 

method adjusting parameter values or by the gradient-based methods until satisfactory agreement 

is achieved. The second category of optimization problems involves fitting all or almost all 

material properties into a set of Cone or FPA experiments. These problems have been discussed 

and include the use of evolutionary algorithms [9, 163, 167, 175]. These algorithms are not 

guaranteed to find the global minimum (no algorithm is capable of that) but they generally combine 

traditional mathematical optimization with random exploration of the parameter space, which 

makes them effective in identifying multiple local minima, the best of which is subsequently 

selected based on physical consideration. However, Ghorbani [58] stated that the estimated values 

from this approach, when using one set of target data, sometimes do not provide reliable 

predictions outside the range of conditions in which the calibration was realized. Several research 

works have focused on trying to overcome this problem. These works involve a systematic 

approach of combining cone calorimeter or FPA data with TGA, DSC and/or STA data. In this 

way, it is possible to separate the individual phenomena involve in pyrolysis [101, 153]. Moreover, 

improved measuring techniques and controlled bench-scale tests have been implemented [29]. 

In all the cases described above, it is essential to have the knowledge on how the estimated 

parameters influence the model outputs of interest. The next part highlights the use of sensitivity 

studies in the fire community. 

C. Sensitivity analysis 
In general, a sensitivity analysis permits the quantification of the role of parameters in the model 

predictions. The application of sensitivity analysis to chemical problems dates back to as early as 

1981. Rabitz [176, 177] presented an overview of sensitivity theory for the application to chemical 

problems. In 1994, a comprehensive review presenting more than a dozen sensitivity analysis 

methods intended for those not familiar with the techniques was presented by Hamby [178]. Some 

of the techniques applied in the fire-related field are presented here. 

Generally, when the most influential parameters are determined, it allows the elimination of the 

less important parameters and the modeler concentrates on the experimental or numerical 

determination of the most sensitive parameters in order to increase model accuracy. Sensitivity 

analysis (SA) methods can generally be classified into three classes i.e. 1) screening, 2) local, 3) 

global [179, 180].  

Screening is a qualitative method that only involves the ranking of input parameters according to 

their sensitivity. They are advantageous for complex problems as compared to other SA methods 



because they are computationally economic. Gillet [181] conducted a sensitivity analysis using the 

screening method on a one dimensional intumescent coating model.  

On the other hand, the local sensitivity methods are quantitative and are carried out by changing 

each input parameter at a time and maintaining the other parameters constant. This method 

provides the gradient of the model output with respect to a nominal set of input parameters. Chaos 

[35] performed a sensitivity analysis on a given pyrolysis model that was a simplification of Gpyro 

[14] applied on both a charring and non-charring combustible solid. In their study, instead of 

varying the parameters by an arbitrary uncertainty value such as in [36], they used a complex-step 

differentiation approach to compute the normalized first-order local sensitivity coefficients. The 

outputs of the model were the temperature of the surface and the MLR. Figure 14 shows some of 

the results of the sensitivity of the surface temperature at different heat fluxes with respect to the 

input parameters in the case of a non-charring combustible solid. Note that the kinetic parameters 

were grouped because of the compensation effect. From the first row in Figure 14, an increase in 

the heat flux (from 25 kWm-2 to 100 kWm-2) caused the sample surface to reach a higher 

temperature in the steady state.  Near the end, the temperature decreases slightly in both cases. 

This was explained to be the effect from the mass loss of the material which reduced the thickness 

consequently reducing the absorbed in-depth radiation and heating rate. The parameters were 

divided into material properties i.e. thermal conductivity (𝑘𝑣), heat capacity (𝐶𝑝,𝑣), density (𝜌) then 

optical parameters (emissivity (𝜀𝑣), absorptivity (𝛼𝑣), absorption coefficient (𝜅) and parameters 

related to reaction kinetics (Ea/lnZ, reaction order (n) , heat of pyrolysis (ΔHp)). 

Regarding the surface temperature sensitivity coefficients, they generally exhibit an initial 

unsteady stage during the first moments and then remain relatively steady except for the parameters 

related to reaction kinetics. This observation shows the effect of varying the input parameters. The 

materials properties lower the heating rate because of the dynamic thermophysical properties. The 

heat flux reaching the surface is dependent on the optical properties and absorptivity is the most 

sensitive to the increase in temperature. The parameters related to the reaction kinetics hardly have 

an influence at this stage because conduction controls the heat transfer phenomena. When the 

material starts to decompose, Ea/LnZ becomes the most influential parameter. ΔHp lowers the 

temperature of the surface and the effect is demonstrated by its sensitivity coefficient curve. 

Moreover, from Figure 14, it can be observed that some of the sensitivity coefficients change from 

a negative value to a positive value with time. This demonstrates how values obtained by 

optimization could be affected due to compensation effects between the parameters i.e. a variation 

in some parameters during optimization gives rise to a change in other parameters. Bal [116] 

extensively studied these effects. 

 



 

Figure 14. Sensitivity of the temperatures of the surface at different heat fluxes 25 kWm-2 (left 

column) and 100 kWm-2 (right column). with respect to the input parameters in the case of a non-

charring combustible solid [35]. 

Their targets were the MLR and surface temperature and most of the parameters qualitatively 

exhibited relatively the same sensitivity curves. The most sensitive parameters were αv and 

Ea/LnZ. Chaos [35] also conducted a sensitivity study on the time to ignition, average MLR, and 

peak MLR. For charring material, the thermophysical properties for both the virgin and char state 

except for the heat capacity of the char had an influence on the time to ignition, average MLR, and 

peak MLR, in particular at low heat fluxes. Moreover, Ea/LnZ significantly influenced the average 

and peak of MLR. Figure 15 shows the results for the non-charring material. The ignition was not 

influenced by ΔHp but it was significantly influenced by Ea/LnZ as well as by αv. kv, Cp,v and ρ 

also affected the ignition time given that these properties play a role during the initial heating phase 

of the material (Figure 14). As for the average and the peak MLR, Ea/LnZ, ΔHp, αv and εv were 

the most influential parameters.  

 



 

Figure 15. Global sensitivity analysis for non-charring material (a) time to ignition, (b) average 

MLR, (c) peak MLR [35]. 

The results observed by Chaos [35] were consistent with those from Stoliarov [37] and Linteris 

[79] in that the thermophysical properties as well as 𝜅 had an impact on the time to ignition. 

Moreover, the average MLR was also noticed to be sensitive to ΔHp and 𝐶𝑝,𝑣. However, when 

considering the impact on the peak of MLR, the results were only consistent with those of Stoliarov 

[37].  

Global sensitivity methods are also quantitative and they focus on how all the parameters influence 

the outputs of the numerical model. They vary all the inputs at the same time as well as providing 

information concerning statistical distributions which is necessary for a deeper understanding of 

the role of the parameters. These methods are useful when a significant number of parameters is 

involved [36].  

Ramroth et al. [36] used a finite-element pyrolysis model to simulate the fire behavior of a 

composite and then conducted both a local and global sensitivity study. All the parameters were 

varied by an uncertainty of 1%. As a preliminary step, the sensitivity of the temperature on the 

cold surface to material properties were calculated in terms of the local sensitivity coefficients. 

Statistical information related to uncertainty was then obtained by using the Monte Carlo method. 

Figure 16. shows results concerning the local sensitivity coefficients. Figure 16(a) shows the 

change in the value of every property with time. The change in colors from left to right represents 

the change of the parameter with time.  The values above zero demonstrate that if the material 

property is increased, the temperature value which is the output is also increased and vice-versa 

for the values below zero. Figure 16(b) ranks the material properties with the evolution of time. 

The higher the position at any given instant shows that the parameter is the most influential and 

vice-versa. However, varying the parameters by 1% did not significantly affect the results. 



 

                                       (a)                                                                       (b) 

pre-exponential factor - 𝐴 [𝑠−1], specific heat of the char - 𝑐𝑝𝑐ℎ [Jkg-1K-1], specific heat of the 

product gases - 𝑐𝑝𝑔, [Jkg-1K-1 ], specific heat of the virgin composite - 𝑐𝑝𝑣[Jkg-1K-1], activation 

energy -𝐸𝑎 [Jkmol-1 ], conductivity of char - 𝑘𝑐ℎ[Wm-1K-1], conductivity of the virgin composite 

- 𝑘𝑣 [Wm-1K-1] Reaction order - 𝑛 , heat of decomposition – 𝑄[Jkg-1], density of char - 𝜌𝑐ℎ[kgm-

3], density of the virgin composite - 𝜌𝑣 [kgm-3] 

Figure 16. (a) Normalized local sensitivity coefficients (b) Ranking of the material properties as 

a function of time [36]. 

Moreover, they conducted a comparison of the results from the local and global sensitivity study 

results. The results agreed in many ways, however, there was contrast in a few instances. At early 

times of the calculation, the most sensitive parameters in both methods were obviously 𝑐𝑝𝑣, 𝑘𝑣  and  

𝜌𝑣 because heat transfer is controlled by pure conduction until degradation starts and the 

importance of 𝐸𝑎 comes into play. During the simulation, which is the degradation phase, both 

methods showed 𝑐𝑝𝑔, 𝐸𝑎, 𝑘𝑐ℎ and 𝜌𝑣 to be of significance. However, the local sensitivity method, 

showed 𝜌𝑐ℎ as significant, whilst the global sensitivity method indicated 𝐴 as important. Finally, 

near the end of the calculation, 𝑐𝑝𝑔, 𝜌𝑐ℎ, 𝑘𝑐ℎ and 𝜌𝑣 were more influential as per both methods. 

However, according to the local sensitivity method, 𝐸𝑎 and 𝑘𝑣 were more significant at this time, 

while they were not for the global sensitivity method. Both methods demonstrated that 𝑐𝑝𝑐ℎ, 𝑛 and 

𝑄 were not of significance. The discrepancies between these two analyses were solely attributed 

to the nature of the methods. 

Stoliarov et al. [37] conducted a study on the pyrolysis of polymeric materials as well as a 

sensitivity study using ThermaKin. The sensitivity analysis was carried out based on the predicted 

MLR curves. The motivation of their study was to investigate which properties could be guessed 

with reasonable accuracy based on existing property data and which properties must be measured 

for each material to provide reasonable predictions. In this analysis, each property was varied 

within the range representing the majority of synthetic polymers. This range was different for each 

property. Figure 17 shows the mean and maximum variations. Regarding the maximum variations, 



the signs shows how the peak or average mass loss rate responds to an increase of the input 

parameter. Their conclusion was that the parameters related to kinetics (E/A ) and decomposition 

(ℎ𝑑𝑒𝑐,char yield) were of great influence to the peak and average mass loss rates as shown in Figure 

17. Moreover, the average mass loss rate was sensitive to 𝛼 (Figure 17(b)).  

 

 

density - 𝜌, heat capacity describing 𝑐𝑟𝑜𝑜𝑚−𝑑𝑒𝑐 temperature range, thermal conductivity - 𝑘, 

reflectivity - 𝑟, absorption coefficient - 𝛼 heat of decomposition - ℎ𝑑𝑒𝑐, activation energy - 𝐸, 

pre-exponential factor - 𝐴 

Figure 17 (a) Peak mass loss rate sensitivity to material properties (b) Average mass loss rate 

sensitivity to material properties [37]. 

Linteris [79] further conducted numerical simulations on PMMA exposed to radiant fluxes to 

understand the effect of  property variations using FDS and ThermaKin.  Both programs were used 

to calculate the mass loss rate and to evaluate its sensitivity to material properties. The nominal 

property values that were used were taken from [50]. The values were varied by a factor of 2-2.5 

around the nominal values.  As reported, these variations were greater than those applied by 

Stoliarov et al. [37] for typical polymers. This was done so as to take into account new materials 

with a wide range of properties. In their study, they reported that the heat of reaction was the most 

sensitive and the activation energy the least sensitive parameter. The result suggested that for the 

prediction of the mass loss rate, the heat of reaction needed to be measured with accuracy. It is a 

key property defining the fire response of a non-charring combustible solid as it contributes to the 

energy needed to transform a unit mass of solid to materials to volatiles [81]. According to Linteris 

[79], for the conditions assumed, activation energy was the least important parameter which was 

in contrast with results from Stoliarov [37]. This was attributed to the different ranges in which E 

and A were varied in the two works revealing how the sensitivity of the parameters are model 

dependent.  

As discussed earlier, material properties that are directly measured by thermal analysis have a 

certain degree of uncertainty that can induce errors in the numerical predictions. In this case, a 



sensitivity analysis helps in in understanding how much percentage uncertainty can be accepted 

so as to obtain minimum error in the predictions. Stoliarov et al. [182] noted that one of the 

potential sources of discrepancy between their numerical model and experimental results was the 

uncertainties in the material properties. In this case, a sensitivity analysis brings additional insights 

on the uncertainty quantification. Girardin et al. [76] modeled the pyrolysis of  EVA/ATH/NC. 

The particularity of their work was the measurement of temperature-dependent thermophysical 

parameters. The numerical and experimental results were in reasonable agreement, however, to fit 

the final mass loss curves with accuracy, the mass transfer need to be adjusted. In their work, a 

sensitivity study was conducted on the kinetic parameters and the mass transfer coefficient. They 

concluded that the later was the only parameter to help fit the model and they reported that the 

diffusion of the gases did not have a significant effect on the temperature but rather on the mass 

loss curves. However, they did not conduct a sensitivity analysis to quantify the uncertainty from 

each of the property measurements which could have further explained differences between the 

numerical and experimental results. 

Linteris et al. [42] measured inputs parameters for their models in FDS and Thermakin as described 

in the direct measurement by thermal analysis section. Figure 18 shows sensitivity of the mass loss 

rates to changes in the materials properties. Different percentage variations were used in the 

sensitivity study for the properties. The basis of the variations for the thermal conductivity was on 

the standard deviation in the mean of the measured properties (Figure 6) for each material. The 

variations were given as ±7% for the thermal conductivity for all polymers except for POM which 

was ±20%. ±16% was taken for the heat of reaction and specific heat based on the uncertainty in 

the measurements that was reported in [81]. The Arrhenius parameters, activation energy and pre-

exponential factor, were varied by ±50% and ±3% based on uncertainties give in literature [92]. 

The uncertainty values for the absorption coefficient were chosen based on its dependency on 

thickness of the material [183]. The variations are extensively explained in Linteris et al. [42] to 

try and understand the source of differences between the calculated and experiment mass loss rates 

at some points mainly for PA66. The left column in Figure 18 shows the influences of H (heat of 

reaction), A (pre-exponential factor) and E (activation energy) while the right column shows the 

influences of a (absorption coefficient), C (heat capacity) and all (All) properties at once. The signs 

+ and – indicate the value bounds corresponding to each property. Ecr denoted that E was 

simultaneously varied with A in a way to alter the temperature on the surface. In general, the 

thermal conductivity did not have an influence on mass loss rate but affected the ignition time. The 

parameter that exhibited the largest effect on the mass loss rate results, depending on the conditions 

of simulation, was the heat of gasification and the least was the coefficient of absorption. It 

appeared that the uncertainties that were observed in the properties that were experimentally 

determined were not the reason for the differences between the calculated and experiment mass 

loss rates for PA66. They therefore attributed the discrepancies to other physical burning features 

which needed to be understood and included in the model. 

 



 

activation energy - E, pre-exponential factor, A - pre-exponential factor, heat of reaction – H, 

absorption coefficient – a, heat capacity – C, all the parameters combined - All 

Figure 18. The sensitivity of calculated mass loss rates to E, A, and H (left column) and a, C, and 

all parameters (All) (right column) for POM and PA66 [42]. 

Kempel et al. [78] used FDS and ThermaKin to calculate the mass loss rate of two polymers 

namely poly (butylene terephthalate) (PBT) and PBT reinforced with glass fibres (PBT-GF). The 

former burns to leave no residue while the later does. Three different sets of material properties 

were used i.e. data from the material supplier, properties determined at room temperature and 

temperature dependent properties. Temperature dependent properties gave better correspondence 

between model and experiment demonstrating the importance of the precision of the input 

properties on the performance of the model. Of interest in this section was the sensitivity analysis. 

The material properties were varied by ±20% and for both materials, the time to mass loss (tML) 

was sensitive to changes in Cp and k. The rest of the materials properties hardly had an influence 

on the tML. The peak of mass loss rate (pMLR) corresponding to PBT was influenced by variations 

in Hdec while the pMLR corresponding to PBT-GF was influenced by the variations in k, Hdec 

and Cp. 

Bal and Rein [117] presented a different methodology as compared to the other sensitivity methods 

focused on input parameters.  Their methodology focused on the effect of adding the heat, mass 



and chemical processes during the development of model on the model output. They concluded 

that generally once the heat transfer processes were simplified in the model, the model was not 

sensitive to complicated kinetic schemes and simple ones would be acceptable. 

When applied to decomposition kinetics, a sensitivity study helps to understand how the change 

in the Arrhenius parameters affects the results of the kinetic model both in a qualitative and 

quantitative way [180]. Batiot et al.  [179]  applied a method using the local and global SA to study 

a kinetic model using a one-step mechanism.  The Sobol’s technique was applied as global 

sensitivity method. The work demonstrated how the mass loss rate is influenced by the Arrhenius 

parameters and also highlighted issues concerning the compensation effect of these parameters. A 

local sensitivity method was implemented by Dong et al. [184] on kinetic models applied to the 

pyrolysis of cellulose i.e. the 1st and nth order. The models were much more influenced by the 

activation energy and the logarithmic pre-exponential factor. They concluded that for optimization 

purposes, it was advisable to use the logarithmic pre-exponential factor rather than the pre-

exponential factor because it was hardly sensitive. 

In summary, it should be mentioned that the outcome of sensitivity studies strongly depends on 

the specific question being answered as seen above. Often, researchers seek to understand the 

sensitivity of key model predictions (mean HRR, time to ignition, surface temperature, etc.) to the 

uncertainties in the measured properties by varying the properties within a certain percentage of 

uncertainty. This percentage is not always the same for all the researchers and is not applied 

uniformly to all properties e.g. Kempel et al. [78] varied all the properties by ±20% while Linteris 

[42] varied the properties with different percentages. On the other hand, Stoliarov et al. [37] and 

Linteris [79] varied the properties within a certain range of values representing the studied 

polymers. It should be noted that the chosen range was different between the two authors. 

Moreover, the outcome of the sensitivity studies also depends on their targets. However, 

collectively, these studies show that the thermophysical properties of the material together with 

the absorption coefficient have a significant influence on the ignition time and that the heat of 

pyrolysis affects the average MLR. Moreover, both Stoliarov et al. [37] and Chaos [35] found that 

the heat of pyrolysis and the reaction rate were the most influential on the peak MLR. Kempel [78] 

also found that the heat of pyrolysis was influential on the peak MLR. The difference between the 

results from Stoliarov et al. [37] and Linteris [79] is mainly on how the Arrhenius parameters 

influence the ignition time and the average MLR; Linteris observed that Ea/LnZ was the less 

influencing parameter which was contrary to Stoliarov et al. [37] and Chaos [35]. This difference 

can be attributed to the considered range of variations in the parameters by Linteris [79] which 

were not consistent and different from Stoliarov [37]. 

Non-charring, charring and intumescent materials behave differently when exposed to a fire 

scenario. The next sections describe the applications of the computational tools that have been 

presented above for comprehensive pyrolysis models for each of these materials. 

 



IV. APPLICATIONS 

A. Non-charring materials 
When non-charring materials are exposed to an external thermal constraint, they either burn 

completely or leave some residue as well as melt or drip. Zeng et al. [185] presented a review 

focused on thermal decomposition of a typical non-charring polymer (poly(methyl methacrylate)). 

They reported that the fire behavior of poly(methyl methacrylate) could be explained in three 

stages. The first stage involves the production of the monomer methyl methacrylate (MMA) 

followed by the decomposition of MMA to form “small gaseous molecules” and lastly the 

combustion of these “small gaseous molecules” leading to the release of final products that include 

CO2, H2O and some toxic gases as well as heat. 

Stoliarov et al. [92] implemented the ThermaKin model for non-charring polymers such as 

poly(methyl methacrylate) (PMMA), high-density polyethylene (HDPE) and high-impact 

polystyrene (HIPS). The key physics that was modeled included heat transfer by conduction inside 

the material, the kinetics and the thermodynamics of the decomposition reaction as well as the in-

depth radiation absorption. Some of the input parameters for the model were experimentally 

determined and other parameters were extracted from previous research work. The agreement 

between experimental and numerical data for gasification experiments was considered excellent 

for PMMA and HIPS given the uncertainties observed in the model input parameters and that no 

model calibration was conducted. However, less agreement was observed for HPDE because of 

the expansion of the material that was observed during the tests. The peak MLR and average MLR, 

for PMMA were 3% and 13% lower than the experimental data respectively. For HIPS, the 

predicted peak and average MLR were 6% and 2% lower while for HDPE, the simulation results 

for the peak ad average MLR were 27% and 17%. They observed that besides the precision of the 

material properties, the fire behavior of the material influenced the response of the model, for 

example the time-to-ignition which depended on the conditions of the experiment.  

Later, Li et al. [153] also used ThermaKin to study PMMA and HIPS as well as 

poly(oxymethylene) (POM). This study provided more accurate pyrolysis models for these 

materials as compared to the study by Stoliarov et al. [92] because they used better controlled 

gasification experiments in the parameterization process. The controlled gasification experiments 

involved mainly conducting the experiments in a controlled atmosphere as well as non-contact 

temperature and improved radiation absorption measurements. Moreover, they obtained the model 

inputs using a systematic approach that was described in the optimization section ([90, 91]). The 

difference between simulated burning rates and the experimental results were averaged to fall 

within10%. 

 

Shi et al. [71] used FiresCone to study the pyrolysis of PMMA. The experiments were conducted 

using a standard cone calorimeter. Different sample thicknesses (10mm and 20mm) and heat fluxes 

(25kW/m2 - 75 kW/m2) were considered. By dividing the computational domain into two, the 

FiresCone framework was set to consider the gas phase as 2D and the solid phase as 1D as an 

assumption. The assumption was justified by experimental observation. They modeled the gas 



phase physics by solving the 2D Navier-Stokes equations coupled with the conservation equations 

of continuity, energy and species which were adapted for the gas phase. 

Figure 19 shows some of the model results when confronted with experimental data. The three 

stages in terms of the MLR are; the first stage represents the increase of MLR that is observed just 

after ignition, the second stage as the temperature rises, PMMA begins to melt and the MLR 

slightly increases followed by complete transformation of the solid PMMA into a liquid and the 

apparition of the MLR peak due to the heat feedback from the insulation block. Alternatively, the 

three stages can be explained by considering the heat transfer in the problem. There is an initial 

steep ramp rate, followed by a flattening of the curve as a near equilibrium surface boundary 

condition is reached, and finally a sharp peak associated with rapid heating of the thin slab of 

remaining material. These stages in PMMA combustion are clearly captured by the model as well 

as the peak of mass loss rate that is observed at the final stages which is attributed to the heat 

feedback from the insulation block. 

In general, all of the mass loss rate (MLR) results from the model agreed well with experiments 

except for the scenario where a 20mm thick sample was exposed to an external heat flux of 

25kW/m2 (Figure 6(a)). The modeling results showed higher MLR than the experiment and it was 

explained as follows. During the experiment, the 20mm thick sample only melted and it did not 

produce any flame during burning. This might also show that the critical heat flux of PMMA is 

higher than 25kW/m2 in the auto-ignition regime. 

 

(a) 

 



(b) 

Figure 19. Modeling results when confronted with experimental data under different heat fluxes 

(a) under 25 kW/m2 and  (b) under 75 kW/m2  [71]. 

Di Blasi et al. [186] investigated the ignition of PMMA exposed to a radiative heat flux using a 

1D model. The model took into account different phenomena that was occurring in both the solid 

material and the flame. The phenomena taken into account in the condensed phase were heat 

transfer by conduction, pyrolysis, in-depth radiation absorption as well as the regression of the 

sample surface. In the gas phase, combustion, transport phenomena and radiation absorption was 

taken into account. The model was able to qualitatively simulate the time-to-ignition as compared 

to experimental data at different heat fluxes when acceptable absorption coefficients in the gas 

phase were applied. When low values of the absorption coefficients in the gas phase were in the 

range 0.01-0.06 atm-1cm-1, a strong dependence between the time-to-ignition and the intensity of 

the radiative heat flux was observed. It was the opposite for higher values suggesting that the times 

to ignition were associated to the heating of the material. The values taken for the gas phase 

absorption coefficient were indicative to those found in literature. The sensitivity of the ignition 

phenomenon to parameters related to absorption of radiation and kinetics were also investigated. 

Ignition was greatly influenced by the kinetics implemented for the flame and material pyrolysis. 

The influence was strong at low values of radiation absorption as compared to higher values. They 

concluded that a 2D model would provide improved results since the 1D model did not take into 

account effects caused by convection.  

Esfahani et Kashani [187] also modeled the combustion of PMMA using a 1D model and 

considered the solid and gas phases. The input parameters used were not temperature dependent. 

The influence of the concentration of oxygen and the radiative heat flux was then investigated. 

Oxygen had an influence only on the temperature distribution in the gas phase and the radiative 

heat flux had an influence on both phases. Since the model was simplistic, they concluded that a 

more complex model taking into account mechanisms such as surface regression would improve 

the model. Bal and Rein [117] focused mainly on the effect of physical and chemical processes on 

modeling the pyrolysis of PMMA. They observed that the kinetic scheme was sensitive to MLR 

and not the temperature on the surface of the sample whereas heat transfer processes had 

significant effect on both parameters. Zong et al. [188] investigated the pyrolysis of acrylonitrile 

butadiene styrene (ABS) under various experimental conditions of heat flux and pressure deficient 

atmosphere. A 1D pyrolysis model was used to simulate the experiment. The model agreed well 

with experimental results at greater values of heat flux because in this case the temperature profiles 

and MLR were hardly affected by the pressure as compared to low values of heat flux. Linteris et 

al. [42] worked on modeling four different thermoplastic materials using FDS and Thermakin. 

These polymers were chosen because of their complex fire behavior. The input material properties 

were experimentally determined. Uncertainties were observed and their effects explored by 

sensitivity analyses, the results were discussed in the ‘sensitivity analysis’ section. The results 

from both programs were confronted with experimental data. In general, for PET, the results 

agreed only in the first instance up to around 150s because of its fire behavior. For POM, the results 

only agreed by fitting them using the heat of reaction while for the case of PA66 and PP, the results 



corresponded well for the greater part of the duration of the computation. A summary of some of 

the models is illustrated in Table 5.  

Table 5. Summary of comprehensive pyrolysis models for non-charring materials  

Author Numerical 

code/ 

Method 

Kinetic 

scheme/m

ethod 

Material Comments on sensitivity/ parameters 

Stoliarov et al. 

[92] 

Thermakin Multi-

step, First 

order 

reactions 

PMMA 

HIPS 

HDPE 

-Potential sources of discrepancies 

between model and experiments included 

uncertainties in material properties, 

sensitivity of experimental conditions (e.g. 

time to ignition). 

Shi et al. [71] FiresCone Multi-step PMMA -The grid spacing < 0.1mm did not have 

effect on the output parameters on the solid 

phase i.e.  

temperature of the surface and MLR. 

Di Blasi et al.  

[186] 

Finite 

Difference  

First order PMMA -Sensitivity of kinetic and radiation 

absorption parameters with respect to 

ignition was conducted. 

Esfahani and 

Kashani [187] 

Finite 

Volume 

 

 

 

One-step 

global, 

first order 

PMMA -The influence of the concentration of 

oxygen and the radiative heat flux was then 

investigated. Oxygen had an influence only 

on the temperature distribution in the gas 

phase and the radiative heat flux  had an 

influence on both phases. 

Girardin et al. 

[38, 76] 

COMSOL Multi-

step, nth 

order 

EVA/AT

H/NC  

-Parameters were experimentally 

determined and were validated against 

temperature on the backside of the material 

as well as the MLR. 

-The diffusion of the gases did not have a 

significant effect on the temperature but 

rather on the mass loss curves. 

-It was observed that the assumption of 

slow diffusion of pyrolyzates is required to 

model the gasification of EVA/ATH.  

Bal and Rein 

[117] 

Gpyro Multi-step PMMA -A range of models for the decomposition 

of PMMA were compared with the 

objective investigating their sensitivity to 

heat, mass and chemical processes. 

Linteris et al. 

[42] 

FDS/ 

Thermakin 

First order PET 

PP 

PA 

POM 

-Material properties were measured by 

independent laboratory tests and 

uncertainties were observed and the effects 

of the uncertainties were explored through 

sensitivity analyses.  

(PMMA - poly(methylmethacrylate), HIPS - high-impact polystyrene, HDPE - high-density 

polyethylene, EVA/ATH/NC - ethylene vinyl acetate copolymer/aluminum tri-



hydroxide/nanoclay, PET - polyethylene terephthalate, POM – polyoxymethylene, PP – 

polypropylene, PA - polyamide 6,6) 

The melting phenomenon has been thermodynamically included in several pyrolysis models. For 

example, Li et al. [153] represented the melting of POM by including a first order reaction which 

occurs at 455K as well as the associated heat of reaction. Similarly, Shi et al. [71] used the 

Arrhenius model to incorporate the melting of PMMA. Melt flow has generally not been included 

in the cone calorimetry or gasification experiments for horizontally oriented samples because it is 

not significant. However, in vertically oriented samples, samples experience flame spread and melt 

flow can be significant and this is what affects the burning behavior of a material [189] . Therefore, 

for such experiments it has been taken into account in the pyrolysis models [190, 191]. 

B. Charring materials 
Modeling charring materials is complicated because of the char formation. This is because the 

physical and chemical processes in charring involve complex kinetic mechanisms that may include 

“many separate intermediate steps” such as multi-step primary and secondary reactions [19, 21]. 

Moreover, charring materials may also evolve dynamically thereby causing changes in 

morphology (e.g. shrinkage and cracking). The changes in morphology have an effect on pyrolysis 

modeling and it should be recommended to take them into account so as to improve the accuracy 

of pyrolysis models [192, 193]. Processes such as cracking are not included in Gpyro, Thermakin 

and FDS but maybe taken into account by using submodels [14, 70, 72]. Shen at al. [194] derived 

formulas for cracking of wood from an experimental study which can be readily implemented into 

pyrolysis model. Li et al. [195] studied the char cracking of medium density fiberboard and used 

FDS to model pyrolysis and modeled the mechanical process separately. Some charring materials 

such as polyurethane foam undergo smoldering combustion which further complicates the 

modeling process because the chemical kinetics needs to be explicitly described. An insight on 

this phenomena is presented by Rein [33]. 

Polycarbonate (PC) and poly-vinyl chloride (PVC) are considered here as charring even though 

they expand to form a carbonaceous structure. Shi et al. [71] studied the fire behavior of 

polycarbonate using FiresCone under a cone calorimeter. Experimentally, the polymer swelled 

irregularly resulting in poor repeatability (also observed by Stoliarov et al. [15]). Even though, the 

numerical results reasonably corresponded with experimental results. The experimental curves 

were unstable what was not the case for the predicted data because the model did not take into 

account the phenomena (e.g. irregular expansion) involved when the polymer was dynamically 

evolving. Stoliarov et al. [15] investigated the pyrolysis of PC and PVC using Thermakin. Figure 

20 shows the numerical vs the experimental results and Figure 21 shows the samples after being 

heat at 75kW/m2 for 200s. Considering the errors observed during the experiments, the model 

performed reasonably well.  They proposed that in order to improve the numerical predictions, 3D 

effects should be taken into account in modeling the fire behavior of the materials. 

 



 

Figure 20. Numerical vs experimental results HRR at external heat flux = 50 and 92kW/m2 on 

5.5 and 6mm thick samples [15]. 

 

Figure 21. PC (left) and PVC (right) after exposure to a heat flux of 75kW/m2 for 200s (initial 

thickness of samples was 6mm [15]. 

Salvador et al. [156] developed a pyrolysis model for the combustion of a porous medium 

(cardboard and polyethylene). The standard cone calorimeter was used to provide the sample of 

the materials with an external heat flux of 50 kW/m2 [196]. A sensitivity analysis was conducted 

to understand the influence of the parameters related to the exposed surface boundary condition 

i.e. the emissivity, heat transfer coefficient, view factor, ambient temperature and cone temperature 

on the solution. The authors stated that all these parameters had an impact on the solution (i.e. the 

mass loss rate and temperature evolution at different in-depth locations). Nevertheless, the cone 

temperature was the most influencing parameter. Unfortunately, although no quantifiable data was 



provided, it can be concluded that the study showed that the boundary conditions needed to be well 

understood to improve the accuracy of the model. Most of the input parameters for the model were 

obtained through experimental measurements [196] except for the tortuosity and the thermal 

conductivity of the char which were obtained by optimization because they were almost impossible 

to be directly measured. A summary of some models is shown in Table 6. 

Table 6. Examples of comprehensive pyrolysis models for charring materials 

Author Software/method Kinetic 

Scheme/method 

Material Comments on Sensitivity/ 

Parameter estimation 

Shi et al.[71] FiresCone Multi-step PC  -The grid spacing < 0.1mm 

did not have effect on the 

output parameters on the 

solid phase i.e.  

temperature of the surface 

and MLR. 

Stoliarov et al. 

[15] 

ThermaKin One global, first 

order (PC) 

Multi-step 

(PVC) 

PC, PVC -A large number of the 

thermophysical properties 

used as inputs in the model 

were measured.  

-Model sensitivity to 

uncertainties was conducted. 

Salvador et al. 

[156] 

 

Finite Difference 

 

 

 

 

 

 

Multi-step 

(cardboard) 

One global 

step(PE) 

Cardboard, 

PE 

-Sensitivity was conducted 

on emissivity, heat transfer 

coefficient, view factor, 

ambient temperature and 

cone temperature. Cone 

temperature was the most 

influencing parameter. 

PC – polycarbonate, PVC – poly(vinyl chloride), PE – polyethylene. 

Nakabe et al. [197] developed a model for the study on ignition and transition to flame spread on 

a thermally-thin cellulosic sheet. The material was considered to be exposed to an external 

radiative heat flux under a quiescent microgravity atmosphere. The model took into account 

pyrolysis in the solid phase by considering 3 global decomposition reactions and a one-step global 

oxidation reaction for the gas phase. They observed that for a 30% oxygen concentration, there 

was autoignition but no transition to flame spread until 50%. More recent research works on the 

flame spread of charring materials include that of medium density fiberboard (MDF) [74] and 

corrugated cardboard [166] using FireFoam.  

C. Intumescent coatings 
Intumescent materials expand or swell to form a carbonaceous char of low conductivity when 

exposed to fire. Their expansion is therefore an important parameter that should be considered 

when modeling their fire behavior [198].  One of the earliest models to numerically represent the 

physical and chemical phenomena of an intumescent coating when exposed to an external flux was 

presented by Anderson et al. [199] in 1984.  In this model, expansion was explicitly taken into 



account by assuming it to be dependent on the mass loss. In 1985, Anderson et al. [200] conducted 

complementary work but this time they implemented a frontal model. Over the past decades, 

several pyrolysis models of intumescent materials have been developed in literature varying from 

simple models [199, 201] to complex models involving multi-step reaction mechanisms [107, 149, 

202, 203]. Griffin [107] reviewed and discussed the limitations of the intumescent models 

including those of Anderson. The main limitations included 1) the one dimensionality of the 

models given that the intumescent materials do not expand symmetrically during bench scale tests, 

2) the unavailability of a complete set of temperature-dependent thermophysical properties, 3) the 

use of expansion factors to represent the swelling because of the not-so-well understood processes 

etc. These limitations often result in discrepancies between model predictions and experimental 

results. In the same paper, the author presented a model considering oxidation and a different 

approach for expansion. Expansion was taken into account by considering that it happens during 

the period of gas evolution and when the material has an acceptable viscosity for gas accumulation. 

A sensitivity analysis was then conducted to understand the thermal performance of the coating. 

The results are shown in Figure 22. The influence of the number of bubbles (𝑛𝑏𝑢𝑏) on the 

temperature of the substrate is also shown (line 5 and line 6). It is highlighted that a change in 

(𝑛𝑏𝑢𝑏) can induce a difference of (>100°C) consequently showing the role of heat transfer by 

radiation. Line 4 shows the result when expansion is taken differently as in the present model. Line 

2 and 3 shows the effect of combustion on the model. 

 

Figure 22. Sensitivity of the predicted substrate temperatures [107]. 

Staggs [202] developed a model that used a different kinetic scheme as compared to that used by 

other researchers such as Di Blasi and Branca [149], Di Blasi [203], and Griffin [107]. In this work 

a competitive one was used instead of parallel and only the kinetics involved in expansion was 

taken into account to describe the intumescent phenomena. Observations from the study 

emphasized the need to understand the phenomena that drives expansion and more work is 

required in the general modeling of this process. 



Different approaches to implement the swelling of a coating exist in literature. Zhang et al. [204, 

205] took into account the swelling of the intumescent coating by considering the gas released 

from the chemical reaction of the blowing agent. The expansion was assumed to happen within a 

temperature range i.e. the temperature when the coating starts to melt and the temperature when 

the material has charred and no expansion was observed. Cirpici et al. [206] developed an 

analytical model for the swelling of materials that intumesce based on the bubble theory proposed 

by Amon and Denson [207]. The model was validated against experimental results under different 

fire conditions. Nyazika et al. [77] experimentally determined the swelling of a silicone-based 

intumescent coating using an infrared camera then implemented the swelling profile in the 

numerical model using the Arbitrary Lagrangian-Eulerian (ALE) Method. Furthermore, Okyay et 

al. [208] recently proposed a new approach by applying the theory of fractals and random nature 

events to conceptualize the expansion of different intumescent coatings. Other researchers have 

assumed that the fire behavior of an intumescent system can be assumed to be equivalent to a 

material going through phase change [209, 210].   

On the other hand, Thermakin takes into account the intumescent phenomena by “scaling the 

contribution of gases to the overall volume by a factor related to the local composition” [211]. Li 

et al. [29] studied intumescent polymers namely poly(acrylonitrile butadiene styrene) (ABS), 

poly(ethylene terephthalate) (PET), poly(methyl methacrylate)-poly(vinyl chloride) alloy (Kydex) 

and polyetherimide (PEI). The experiments were conducted using a cone calorimeter in controlled 

gasification conditions and ThermaKin was used for the pyrolysis models. They observed that both 

Kydex and PEI highly intumesced. Between the two highly intumescent polymers, PEI exhibited 

a higher swelling rate. Their study incorporated swelling into the pyrolysis models and also took 

into account changes in the radiative exposure of the material samples associated with this 

swelling. Generally, the comparison between experimental and predicted results were good for all 

materials except for Kydex and PEI due to its their high swelling rates thereby inducing significant 

errors associated boundary conditions (Figure 23). Since the model was 1D, they suggested that a 

model with higher dimension would improve the results as well as some solid mechanics. 



 

Figure 23. Comparison between the experimental and predicted temperature profiles at the 

bottom surface for radiant heat fluxes of 30 kWm-2 and 50 kWm-2 [29]. 

A summary of some models is shown in Table 7. It can be clearly noticed that there is no 

convention on the expansion mechanism considered in the models. It should be noted, even though 

some models do not implement a specific kinetic scheme, they do include coupling of conservation 

equations with an expansion sub-model which takes into account the chemical reactions. 

Table 7. Summary of comprehensive pyrolysis models for intumescent materials. 

Author Kinetic 

Scheme 

Material Comments on the expansion 

mechanism/sensitivity/parameter 

estimation 

Anderson and 

Wauters [199] 

- Coating 

 

-Expansion assumed to be a function of mass 

loss. 

- TGA and DSC data were used to determine 

the kinetics and thermodynamics of the 

decomposition process using Fourier series. 

Shih et al. [209] 

 

- Coating 

 

-Analogous to a phase change process. 

 

Di Blasi and 

Branca [149] 

 

Multi-step Coating  

 

-Bubble mechanism. 

-Sensitivity study was performed so as to 

understand the effect of the thermophysical 



and Arrhenius parameters on the temperature 

of the substrate. 

Griffin [107] Multi-step, 

parallel 

reactions 

Coating -Gas forming during melting and stopping at 

char formation + bubbles. 

- The influence of the number of bubbles 

(𝑛𝑏𝑢𝑏) on the temperature of the substrate 

showed the role of heat transfer by radiation. 

- Arrhenius parameters obtained using 

Levenberg-Marqaudt algorithm. 

Staggs et al.[202] Multi-

step/competitive 

reactions 

Coating -The degradation step producing gas was 

taken as the one driving expansion. 

Di Blasi [203] Independent 

global reactions 

Coating -Bubble dynamics and material swelling  

sensitivity 

Gillet [212] 

 

COMSOL / one 

global step, first 

order 

Coating -Expansion considered using expansion 

factor 

-Conducted sensitivity analysis (screening 

and sensitivity coefficients) 

Nyazika et al. 

[77] 

COMSOL / one 

step nth order 

Coating -Expansion was determined experimentally 

using an infrared camera then implemented 

in COMSOL using ALE. 

-Thermal properties were experimentally 

determined for the virgin coating.  

Li et al.[29] 

 

Thermakin/ 

semi-global 

ABS, PET, 

Kydex, PEI 

-Swelling was taken into account in the 

ThermaKin framework. 

-Their model was based on fitting the model 

to experimental results using the 

methodology described in the optimization 

section were the MLR was not used as fitting 

targets but instead were for model validation.  

Butler et al. [213] 

 

- Intumescent 

material 

-The intumescent material was treated as a 

highly viscous fluid. 

-Swelling was considered using a growth rate 

model based on bubbles at microscopic level. 

The growth of the bubbles was dependent on 

the gas released by the chemical 

decomposition of the blowing agent as well as 

the properties of the viscous fluid. 

-The complete model coupled different 

submodels including hydrodynamics, bubble 

growth, and heat transfer 

Zhang et al. [204] Independent 

global reactions 

Coating -Gas released by the chemical reaction of the 

blowing agent drives the expansion 

mechanism 

 



V. CONCLUSIONS 
This paper reviewed the pyrolysis modeling methodologies used to simulate the fire behavior of 

combustible solids with emphasis on sensitivity analysis and the optimization techniques. The 

capability of pyrolysis models to predict the fire behavior of materials with reasonable accuracy 

has been demonstrated. 

Both thermal and comprehensive models have been developed. Thermal models have shown to be 

computationally faster than comprehensive ones because they use a small number of parameters 

therefore their parameterization requires a smaller number of calibration experiments. However, 

generalized comprehensive pyrolysis models are more representative of the pyrolysis phenomena 

have been validated with reasonable accuracy for non-charring, charring and intumescent materials 

and sometimes taking into account phenomena of smoldering. For intumescent materials, 

expansion has been considered differently in the pyrolysis models depending on the modeler. The 

main problem is the not-so-well understood phenomena that drives expansion and some modelers 

have resorted to including fitting parameters which do not necessarily have a physical meaning. 

Indeed, a comprehensive understanding of the fire behavior of materials at experimental level is 

required first so as to improve the current models. Even though 1D model formulations have a low 

run cost, 2D or 3D models are more reliable and accurate. 

Numerical techniques such as sensitivity analysis and optimization have become necessary. 

Several sensitivity methods have successfully been used and they have become a powerful tool in 

understanding the model responses to the input parameters. SA has proved to be useful in pyrolysis 

modeling by allowing the study of the response of a model based on its input parameters. It can 

guide the development and optimization of better pyrolysis models. Nevertheless, it is noteworthy 

that the SA results are model specific and depends on the experimental conditions: it should be 

analyzed depending on the modeled case. In addition, there is a lack of generality in the 

methodologies when conducting sensitivity studies which can make it difficult to determine the 

‘true’ important parameters. 

Optimization techniques have been successfully used to obtain model input parameters. Gradient-

based algorithms are much more efficient for small problems involving a few number of 

parameters. When there are many parameters, experimental measurements can be used to reduce 

the number of parameters to be estimated. They have successfully been implemented but the major 

drawback like any other optimization techniques is in attaining the global optimum. Problems in 

attaining this optimum have been often attributed to errors that arise from the selected initial 

values. To counter these drawbacks, modern evolutionary algorithms have often been 

implemented. However, these evolutionary algorithms are based on heuristic and they are not 

optimized for problems involving a few number of parameters because they are time consuming 

[214]. Amongst the most used evolutionary algorithms (GA, SCE and SHC), the SCE method has 

proved to perform very well probably because it combines the strength of Nelder-Mead method 

(downhill simplex), controlled random search, genetic algorithm and complex shuffling [158, 

172]. More advanced optimization techniques are starting to gain attention to overcome some 



obstacles, for example, coupling the Kissinger’s method with GA where the Kissinger’s method 

is first used to search for the possible initial parameters and then these parameters are fed into the 

GA accelerating the process. Combining these optimization techniques helps in reducing their 

drawbacks thereby increasing their efficiency. Moreover, to improve the optimization results the 

modeler can also fit a combined set of bench-scale data for example TGA data and cone 

calorimeter data. Systematic approaches involving several experimental data and decoupling the 

individual processes in pyrolysis have also been developed. It is noteworthy that the selected 

optimization technique and final model validation are highly important. 

As the comprehensive understanding of the fire behavior of materials at experimental level 

continues to improve together with the modeling techniques, further understanding of the complex 

pyrolysis phenomena should be achieved.  
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