S. Sinha, A. Jhalani, M. Ravi, and A. Ray, Modelling of Pyrolysis in Wood -A Review, SESI Journal, vol.10, pp.1-17, 2000.

M. Kim, E. Dembsey, and N. A. , Engineering Guide for Estimating Material Pyrolysis Properties for Fire Modeling, 2012.

B. L. Valencia, Experimental and numerical investigation of the thermal decomposition of materials at three scales: applicatiion to polyether polyurethane foam used in upholstered furniture), PhD, 2009.

E. Guillaume, A. Camillo, R. , and T. , Application and Limitations of a Method Based on Pyrolysis Models to Simulate Railway Rolling Stock Fire Scenarios, Fire Technology, vol.50, pp.317-348, 2013.

D. Price, M. Hourston, D. , J. Dumont, and F. , Thermogravimetry of Polymers, Encyclopedia of Analytical Chemistry, pp.8094-8105, 2000.

J. E. Staggs, Population balance models for the thermal degradation of PMMA, Polymer, vol.48, pp.3868-3876, 2007.

E. Kim, C. Lautenberger, and N. Dembsey, Property estimation for pyrolysis modeling applied to polyester FRP, 11th International Conference and Exhibition2009

A. M. Azhakesan, T. J. Shields, and G. W. Silcock, Developments on the Fire Propagation Test, Fire Safety Science -Proceedings of the fourth international symposium

M. Chaos, M. M. Khan, N. Krishnamoorthy, J. L. De-ris, and S. B. Dorofeev, Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests, Proceedings of the Combustion Institute, vol.33, pp.2599-2606, 2011.

P. Girods, H. Bal, H. Biteau, G. Rein, and J. Torero, Comparison of Pyrolysis Behavior Results between the Cone Calorimeter and the Fire Propagation Apparatus Heat Sources, Fire Safety Science, vol.10, pp.889-901, 2011.

J. G. Quintiere, A simplified theory for generalizing results from a radiant panel rate of flame spread apparatus, Fire and Materials, vol.5, 1981.

E. Guillaume, F. Didieux, A. Thiry, and A. Bellivier, Real-scale fire tests of one bedroom apartments with regard to tenability assessment, Fire Safety Journal, vol.70, pp.81-97, 2014.

S. Stoliarov and R. Lyon, Thermo-Kinetic Model of Burning for Pyrolyzing Materials, Fire Safety Science, vol.9, pp.1141-1152, 2008.

C. Lautenberger and C. Fernandez-pello, Generalized pyrolysis model for combustible solids, Fire Safety Journal, vol.44, pp.819-839, 2009.

S. I. Stoliarov, S. Crowley, R. N. Walters, and R. E. Lyon, Prediction of the burning rates of charring polymers, Combustion and Flame, vol.157, pp.2024-2034, 2010.

S. I. Stoliarov, I. T. Leventon, and R. E. Lyon, Two-dimensional model of burning for pyrolyzable solids, Fire and Materials, vol.38, pp.391-408, 2014.

D. Blasi and C. , Modelling and simulation of combustion processes of charring and noncharring solid fuels, Progress in Energy and Combustion Science, vol.19, pp.71-104, 1993.

D. Blasi, C. Galgano, A. Branca, and C. , Modeling the thermal degradation of poly(methyl methacrylate)/carbon nanotube nanocomposites, Polymer Degradation and Stability, vol.98, pp.266-275, 2013.

D. Blasi and C. , The state of the art of transport models for charrirng solid degradation, Polymer International, vol.49, pp.1133-1146, 2000.

A. Y. Snegirev, V. A. Talalov, V. V. Stepanov, and J. N. Harris, A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests, Fire Safety Journal, vol.59, pp.132-150, 2013.

J. Staggs, Simple mathematical models of char-forming polymers, Polymer International, vol.49, pp.1147-1152, 2000.

B. Moghtaderi, Pyrolysis of char forming solid fuels -A critical review of the matematical modelling techniques " 5th AOSFST, 2001.

B. Moghtaderi, The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels, Fire and Materials, vol.30, pp.1-34, 2006.

C. Lautenberger and A. C. Fernandez-pello, Pyrolysis modeling, thermal decomposition, and transport processes in combustible solids, Transport Phenomena in Fires, 2008.

F. Vermina-lundström, P. Van-hees, G. , and É. , A review on prediction models for full-scale fire behaviour of building products, Fire and Materials, vol.41, pp.225-244, 2017.

T. Kashiwagi, Polymer combustion and flammability-role of the condensed phase, Proceedings of the Combustion Institute, 1994.

R. E. Lyon, M. L. Janssens, and . Polymer-flammability, , 2005.

C. Lautenberger, Gpyro3D: A Three Dimensional Generalized Pyrolysis Model, Fire Safety Science, vol.11, pp.193-207, 2014.

J. Li, J. Gong, and S. I. Stoliarov, Development of pyrolysis models for charring polymers, Polymer Degradation and Stability, vol.115, pp.138-152, 2015.

L. Shi and M. Y. Chew, A review of fire processes modeling of combustible materials under external heat flux, Fuel, vol.106, pp.30-50, 2013.

T. J. Ohlemiller, Modeling of smoldering combustion propagation, Progress in Energy and Combustion Science, vol.11, pp.277-310, 1985.

A. P. Mouritz, Smouldering Combustion Phenomena in Science and Technology, Composites Part A: Applied Science and Manufacturing, vol.40, pp.3-18, 2009.

G. Rein, Smouldering Combustion, in SFPE Handbook of Fire Protection Engineering, pp.581-603, 2016.

M. Chaos, Application of sensitivity analyses to condensed-phase pyrolysis modeling, Fire Safety Journal, vol.61, pp.254-264, 2013.

W. T. Ramroth, P. Krysl, and R. J. Asaro, Sensitivity and uncertainty analyses for FE thermal model of FRP panel exposed to fire, Composites Part A: Applied Science and Manufacturing, vol.37, pp.1082-1091, 2006.

S. I. Stoliarov, N. Safronava, and R. E. Lyon, The effect of variation in polymer properties on the rate of burning, Fire and Materials, vol.33, pp.257-271, 2009.

B. Girardin, G. Fontaine, S. Duquesne, M. Forsth, and S. Bourbigot, Characterization of Thermo-Physical Properties of EVA/ATH: Application to Gasification Experiments and Pyrolysis Modeling, Materials (Basel), vol.8, pp.7837-7863, 2015.

B. Gardelle, S. Duquesne, P. Vandereecken, and S. Bourbigot, Characterization of the carbonization process of expandable graphite/silicone formulations in a simulated fire, Polymer Degradation and Stability, vol.98, pp.1052-1063, 2013.

E. Kim and N. Dembsey, Parameter Estimation for Comprehensive Pyrolysis Modeling: Guidance and Critical Observations, Fire Technology, vol.51, pp.443-477, 2014.

J. E. Staggs, Thermal conductivity estimates of intumescent chars by direct numerical simulation, Fire Safety Journal, vol.45, pp.228-237, 2010.

G. T. Linteris, R. E. Lyon, and S. I. Stoliarov, Prediction of the gasification rate of thermoplastic polymers in fire-like environments, Fire Safety Journal, vol.60, pp.14-24, 2013.

A. Meunders, G. Baker, B. Arnold, L. Schröder, B. Spearpoint et al., Parameter Optimization and Sensitivity Analysis for FDS modelling, 10th International Conference on Performance-Based Codes and Fire Safety, 2014.

C. Lautenberger, G. Rein, and C. Fernandez-pello, The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data, Fire Safety Journal, vol.41, pp.204-214, 2006.

B. Moghtaderi, V. Novozhilov, D. Fletcher, and J. H. Kent, An Integral Model for the Transient Pyrolysis of solid materials, Fire and Materials, vol.21, pp.7-16, 1997.

E. Theuns, B. Merci, J. Vierendeels, and P. Vandevelde, Critical evaluation of an integral model for the pyrolysis of charring materials, Fire Safety Journal, vol.40, pp.121-140, 2005.

E. Theuns, B. Merci, J. Vierendeels, and P. Vandevelde, Extension and evaluation of the integral model for transient pyrolysis of charring materials, Fire and Materials, vol.29, pp.195-212, 2005.

Y. Chen, M. A. Delichatsios, and V. Motvalli, Material Pyrolysis Properties, Part I: An Integral Model for One-Dimensional Transient Pyrolysis of Charring and Non-Charring Materials, Combustion Science and Technology, vol.88, pp.309-328, 1993.

W. G. Weng and W. C. Fan, A pyrolysis model of charring materials considering the effect of ambient oxygen concentration, Fire and Materials, vol.31, pp.463-475, 2007.

B. T. Rhodes and J. G. Quintiere, Burning rate and flame heat flux for PMMA in a cone calorimeter, Fire Safety Journal, vol.26, pp.221-240, 1996.

D. Hopkins and J. G. Quintiere, Material fire properties and predictions for thermoplastics, Fire Safety Journal, vol.26, pp.221-240, 1996.

B. Moghtaderi, V. Novozhilov, D. F. Fletcher, and J. Kent, An integral model for the pyrolysis of non-charring material, International Association for Fire Safety Science, 2006.

E. Theuns, J. Vierendeels, and P. Vandevelde, Validation of the integral model for the pyrolysis of charring materials with a moving grid, Journal of Computational and Applied Mathematics, vol.168, pp.471-479, 2004.

J. G. Quintiere and . Semi, Quantitative Model for the Burning Rate of Solid Materials, 1992

J. G. Quintiere and N. Iqbal, An approximate Integral Model for the Burning Rate of a Thermoplastic Material, Fire and Materials, vol.18, pp.89-98, 1994.

M. J. Spearpoint and J. G. Quintiere, Predicting the Burning of Wood Using an Integral Model, Combustion and Flame, vol.123, pp.308-324, 2000.

K. Steckler, D. Kashiwagi, T. Baum, H. Kanemaru, and K. , Analytical model for Transient gasification of Non-charring Thermoplastics materials, Fire Safety Science--Proceedings of the 3rd International Symposium. IAFSS, 1991.

Z. Ghorbani, R. Webster, M. Lázaro, and A. Trouvé, Limitations in the predictive capability of pyrolysis models based on a calibrated semi-empirical approach, Fire Safety Journal, vol.61, pp.274-288, 2013.

C. Bamford, J. Crank, and D. Malan, The combustion of wood. Part I, Mathematical Proceedings of the Cambridge Philosophical Society, vol.42, pp.162-182, 1946.

A. F. Roberts and G. Clough, Thermal decomposition of wood in an inert atmosphere, Symposium (International) on Combustion, vol.9, pp.158-166, 1963.

E. R. Tinney, The combustion of wooden dowels in heated air, 10th International Symposium on Combustion1965: Pittsburgh

T. Matsumoto, T. Fujiwara, and J. Kondo, Nonsteady thermal decomposition of plastics, Symposium (International) on Combustion, 1969.

R. G. Wilson, Thermophysical properties of six charring ablators from 140° to 700°K and two chars from 800° to 3000°K, 1965.

H. C. Kung, A mathematical model of wood pyrolysis, Combustion and Flame, vol.18, pp.185-195, 1972.

E. J. Kansa, H. E. Perlee, and R. F. Chaiken, Mathematical Model of Wood Pyrolysis Including internal forced convection, Combustion and Flame, vol.29, pp.311-324, 1977.

J. B. Henderson, J. A. Wiebelt, and M. R. Tant, A Model for the Thermal Response of Polymer Composite materials with Experimental verification, Journal of Composite Materials, vol.19, pp.579-595, 1985.

J. B. Henderson and T. E. Wiecek, A Mathematical Model to Predict the Thermal Response of Decomposing, Expanding Polymer Composites, Journal of Composite Materials, vol.21, pp.373-393, 1987.

C. Vovelle, J. Delfau, M. Reuillon, J. Bransier, and N. Laraqui, Experimental and Numerical Study of the Thermal Degradation of PMMA, Combustion Science and Technology, vol.53, pp.187-201, 1987.

C. Lautenberger, A Generalized Pyrolysis Model for Combustible Solids), 2007.

A. Snegirev, V. Talalov, V. Stepanov, and J. Harris, A new model to predict multistage pyrolysis of flammable materials in standard fire tests, Journal of Physics: Conference Series, vol.395, p.12012, 2012.

L. Shi, M. Chew, V. Novozhilov, J. , and P. , Modeling the Pyrolysis and Combustion Behaviors of Non-Charring and Intumescent-Protected Polymers Using "FiresCone, Polymers, vol.7, 1979.

K. Mcgrattan, S. Hostikka, J. Floyd, H. Baum, R. Rehm et al., Fire Dynamics Simulator (Version 5)Technical Reference Guide. National Institute ofStandards and Technology Special Publication, 1973.

D. Zeinali, Computational Analysis of Pyrolysis and Flame Spread for MDF Panels Placed in a Corner Configuration, Eighth International Seminar on Fire and Explosion Hazards (ISFEH8)

D. L. Statler and R. K. Gupta, A Finite Element Analysis on the Modeling of Heat Release Rate, COMSOL Conference2008

B. Girardin, G. Fontaine, S. Duquesne, M. Försth, and S. Bourbigot, Measurement of kinetics and thermodynamics of the thermal degradation for flame retarded materials: Application to EVA/ATH/NC, Journal of Analytical and Applied Pyrolysis, vol.124, pp.130-148, 2017.

T. Nyazika, M. Jimenez, F. Samyn, and S. Bourbigot, Modeling heat transfers across a silicone-based intumescent coating, Conference Series 1107:032012, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02137682

F. Kempel, B. Schartel, G. T. Linteris, S. I. Stoliarov, R. E. Lyon et al., Prediction of the mass loss rate of polymer materials: Impact of residue formation, Combustion and Flame, vol.159, pp.2974-2984, 2012.

G. T. Linteris, Numerical simulations of polymer pyrolysis rate: Effect of property variations, Fire and Materials, vol.35, pp.463-480, 2011.

A. Witkowski, Development of an anaerobic pyrolysis model for fire retardant cable sheathing materials, Polymer Degradation and Stability, vol.113, pp.208-217, 2015.

S. I. Stoliarov and R. N. Walters, Determination of the heats of gasification of polymers using differential scanning calorimetry, Polymer Degradation and Stability, vol.93, pp.422-427, 2008.

C. Lautenberger and A. Fernandez-pello, Optimization Algorithms for Material Pyrolysis Property Estimation, Fire Safety Science, vol.10, pp.751-764, 2011.

S. E. Gustafsson, Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials, Review of Scientific Instruments, vol.62, pp.797-804, 1991.

V. Bohac, M. K. Gustavsson, L. Kubicar, and S. E. Gustafsson, Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer, Review of Scientific Instruments, vol.71, pp.2452-2455, 2000.

B. M. Suleiman, S. E. Gustafsson, and L. Börjesson, A practical cryogenic resistive sensor for thermal conductivity measurements, Sensors and Actuators A, vol.57, pp.15-19, 1996.

W. J. Parker, R. J. Jenkins, C. P. Butler, A. , and G. L. , Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, Journal of Applied Physics, vol.32, pp.1679-1684, 1961.

R. D. Cowan, Pulse Method of Measuring Thermal Diffusivity at High Temperatures, Journal of Applied Physics, vol.34, pp.926-927, 1963.

J. A. Cape and G. W. Lehman, Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity, Journal of Applied Physics, vol.34, pp.1909-1913, 1963.

H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann et al., Thermal difusivity of semitransparent materials determined by the laser -flash method applying a new analytical model, International Journal of Thermophysics, vol.19, pp.941-949, 1998.

J. Li and S. I. Stoliarov, Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers, Combustion and Flame, vol.160, pp.1287-1297, 2013.

J. Li and S. I. Stoliarov, Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers, Polymer Degradation and Stability, vol.106, pp.2-15, 2014.

S. I. Stoliarov, S. Crowley, R. E. Lyon, and G. T. Linteris, Prediction of the burning rates of non-charring polymers, Combustion and Flame, vol.156, pp.1068-1083, 2009.

H. Lobo and C. Cohen, Measurement of Thermal Conductivity of Polymer Melts by the Line-source Method, Polymer Engineering & Science, vol.30, pp.65-70, 1990.

P. T. Tsilingiris, Comparative evaluation of the infrared transmission of polymer films, Energy Conversion and Management, vol.44, pp.66-75, 2003.

J. R. Hallman and J. R. Welker, Polymer Surface Reflectance-Absorptance Characteristics, Polymer Engineering & Science, vol.14, pp.717-723, 1974.

M. Muller, Systematic approach of the synergism in flame retarded intumescent polyurethanes), 2012.

P. Tranchard, F. Samyn, S. Duquesne, B. Estebe, and S. Bourbigot, Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part I-Characterisation of Thermophysical Properties, Materials (Basel), vol.10, 2017.

J. L. De-ris and M. M. Khan, A Sample Holder for Determining Material Properties, Fire and Materials, vol.24, pp.219-226, 2000.

L. Calabrese, F. Bozzoli, G. Bochicchio, B. Tessadri, P. Vocale et al., Parameter estimation approach to the thermal characterization of intumescent fire retardant paints, Journal of Physics: Conference Series, vol.655, p.12048, 2015.

E. Kim, Parameter Estimation Methods for Comprehensive Pyrolysis Modeling), 2014.

S. I. Stoliarov and J. Li, Parameterization and Validation of Pyrolysis Models for Polymeric Materials, Fire Technology, vol.52, pp.79-91, 2015.

M. C. Bruns, Inferring and Propagating Kinetic Parameter Uncertainty for Condensed Phase Burning Models, Fire Technology, vol.52, pp.93-120, 2015.

K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics, vol.2, pp.164-168, 1944.

D. W. Marquardt, An algorithm for least-squares estimation of non linear parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, pp.431-441, 1963.

M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and M. , Thermal degradation of PMMA : Modelling of DTG and TG curves, Polymer Degradation and Stability, vol.79, pp.271-181

V. Mamleev and S. Bourbigot, Modulated thermogravimetry in analysis of decomposition kinetics, Chemical Engineering Science, vol.60, pp.747-766, 2005.

G. J. Griffin, The Modeling of Heat Transfer across Intumescent Polymer Coatings, Journal of Fire Sciences, vol.28, pp.249-277, 2009.

C. Reverte, J. Dirion, and M. Cabassud, Kinetic model identification and parameters estimation from TGA experiments, Journal of Analytical and Applied Pyrolysis, vol.79, pp.297-305, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01690807

T. Loulou, S. Salvador, and J. L. Dirion, Determination of Reaction Parameters for Cardboard Thermal Degradation Using Experimental Data, Chemical Engineering Research and Design, vol.81, pp.1265-1270, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01718082

L. Calabrese, F. Bozzoli, G. Bochicchio, B. Tessadri, S. Rainieri et al., Thermal characterization of intumescent fire retardant paints, Journal of Physics: Conference Series, vol.547, p.12005, 2014.

F. Bozzoli, A. Mocerino, S. Rainieri, and P. Vocale, Inverse heat transfer modeling applied to the estimation of the apparent thermal conductivity of an intumescent fire retardant paint, Experimental Thermal and Fluid Science, vol.90, pp.143-152, 2018.

E. P. Scott and J. V. Beck, Estimation of Thermal Properties in Carbon-Epoxy Composite Materials during Curing, Journal of Composite Materials, vol.26, 1992.

D. Pau, C. Fleischmann, M. Spearpoint, L. , and K. , Sensitivity of Heat of Reaction for Polyurethane Foams, Fire Safety Science, vol.11, pp.179-192, 2014.

D. M. Marquis, B. Batiot, E. Guillaume, R. , and T. , Influence of reaction mechanism accuracy on the chemical reactivity prediction of complex charring material in fire condition, Journal of Analytical and Applied Pyrolysis, vol.118, pp.231-248, 2016.

F. Richter and G. Rein, Pyrolysis kinetics and multi-objective inverse modelling of cellulose at the microscale, Fire Safety Journal, vol.91, pp.191-199, 2017.

N. Bal, Uncertainty and complexity in pyrolysis modelling), 2012.

N. Bal and G. Rein, Relevant model complexity for non-charring polymer pyrolysis, Fire Safety Journal, vol.61, pp.36-44, 2013.

N. Bal and G. Rein, On the effect of inverse modelling and compensation effects in computational pyrolysis for fire scenarios, Fire Safety Journal, vol.72, pp.68-76, 2015.

G. Rein, C. Fernandez-pello, A. Urban, and D. L. , Computational model of forward and opposed smoldering combustion in microgravity, Proceedings of the Combustion Institute, vol.31, pp.2677-2684, 2007.

T. J. Ohlemiller, Modeling of Smoldering Combustion Propagation. NBSIR 84-2895, 1984.

S. Vyazovkin, C. Wight, and A. , Isothermal and non-isothermal kinetics of thermally stimulated reaction of solids, International Reviews in Physical Chemistry, vol.17, pp.407-433, 1998.

A. E698-11, Standard Test Method for Kinetic Parameters for Thermally Unstable Materials by Differential Scanning Calorimetry Using the Kissinger Method, 2012.

S. Vyazovkin, ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations, Thermochimica Acta, vol.590, pp.1-23, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01056407

A. A. Jain, A. Mehra, and V. V. Ranade, Processing of TGA data: Analysis of isoconversional and model fitting methods, Fuel, vol.165, pp.490-498, 2016.

J. R. Opfermann, E. Kaisersberger, and H. J. Flammersheim, Model-free analysis of thermoanalytical data-advantages and limitations, Thermochim Acta, vol.391, pp.119-146, 2002.

A. Khawam and D. R. Flanagan, Basics and applications of solid-state kinetics: a pharmaceutical perspective, J Pharm Sci, vol.95, pp.472-98, 2006.

M. E. Brown, Computational aspects of kinetic analysis -Part A The ICTAC kinetics project-data, methods and results, Thermochimica Acta, vol.355, pp.125-143, 2000.

B. Roduit, Computational aspects of kinetic analysis. Part E -The ICTAC Kinetics Project-numerical techniques and kinetics of solid state processes, Thermochimica Acta, vol.355, pp.171-180, 2000.

T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn, vol.38, pp.1881-1886, 1965.

A. W. Coats and J. P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature, vol.201, pp.68-69, 1964.

S. Vyazovkin, C. Wight, and A. , Kinetics of solids, Annu Rev Phys Chem, vol.48, pp.125-174, 1997.

S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-maqueda, C. Popescu et al., ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, vol.520, pp.1-19, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01350051

T. Mani, P. Murugan, and N. Mahinpey, Determination of Distributed Activation Energy Model Kinetic Parameters Using Simulated Annealing Optimization Method for Nonisothermal Pyrolysis of Lignin, Ind. Eng. Chem. Res, vol.48, pp.1464-1467, 2009.

G. Rein, C. Lautenberger, A. Fernandezpello, J. Torero, and D. Urban, Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion, Combustion and Flame, vol.146, pp.95-108, 2006.

K. Li, X. Huang, C. Fleischmann, G. Rein, J. et al., Pyrolysis of Medium-Density Fiberboard: Optimized Search for Kinetics Scheme and Parameters via a Genetic Algorithm Driven by Kissinger's Method, Energy & Fuels, vol.28, pp.6130-6139, 2014.

C. Song, Parameter estimation of the pyrolysis model for fir based on particle swarm algorithm, Second International Conference on Mechanic Automation and Control Engineering2011

W. Park and K. Yoon, Optimization of pyrolysis properties using TGA and cone calorimeter test, Journal of Thermal Science, vol.22, pp.168-173, 2013.

W. Park, K. Yoon, H. Chang, and T. Kim, Estimation of pyrolysisrelated properties using repulsive particle swarm optimization, Journal of Mechanical Science and Technology, vol.26, pp.2129-2132, 2012.

A. Khawam and D. R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals, J Phys Chem B, vol.110, pp.17315-17343, 2006.

A. K. Burnham, L. , and B. R. , Global Kinetic Analysis of Complex Materials, Energy and Fuels 13, 1999.

P. Tranchard, S. Duquesne, F. Samyn, B. Estèbe, and S. Bourbigot, Kinetic analysis of the thermal decomposition of a carbon fibre-reinforced epoxy resin laminate, Journal of Analytical and Applied Pyrolysis, vol.126, pp.14-21, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697363

S. Bourbigot, J. W. Gilman, and C. A. Wilkie, Kinetic analysis of the thermal degradation of polystyrene-montmorillonite nanocomposite, Polymer Degradation and Stability, vol.84, pp.483-492, 2004.

T. Rogaume, Thermal decomposition of solid fuels. Objectives, challenges and modelling, Conference Series 1107:022001, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02285809

J. Opfermann, Kinetic Analysis Using Multivariate Non-linear Regression. I. Basic concepts, Journal of Thermal Analysis and Calorimetry, vol.60, pp.641-658, 2000.

H. L. Anderson, A. Kemmler, and R. Strey, Comparison of different non-linear evaluation methods in thermal analysis, Thermochimica Acta, vol.271, pp.23-29, 1996.

M. C. Bruns, J. H. Koo, and O. A. Ezekoye, Population-based models of thermoplastic degradation: Using optimization to determine model parameters, Polymer Degradation and Stability, vol.94, pp.1013-1022, 2009.

J. Ceamanos, J. F. Mastral, A. Millera, A. , and M. E. , Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments, Journal of Analytical and Applied Pyrolysis, vol.65, pp.93-110, 2002.

N. Koga, A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid reactions_the kinetic compensation effect, Thermochimica Acta, vol.244, pp.1-20, 1994.

D. Blasi, C. Branca, and C. , Mathematical Model for the Nonsteady Decomposition of Intumescent Coatings, AIChE J, vol.47, pp.2359-2370, 2001.

C. Rozycki, Comparison of methods of determining Arrhenius evaluation of parameters by, Least Squares Method Journal of Thermal Analysis and Calorimetry, vol.29, pp.959-963, 1984.

R. E. Lyon, Heat Release Kinetics, Fire and Materials, vol.24, pp.179-186, 2000.

S. I. Stoliarov and R. E. Lyon, Thermo-Kinetic Model of Burning, 2008.

J. Li, J. Gong, and S. I. Stoliarov, Gasification experiments for pyrolysis model parameterization and validation, International Journal of Heat and Mass Transfer, vol.77, pp.738-744, 2014.

E. S. Oztekin, S. B. Crowley, R. E. Lyon, S. I. Stoliarov, P. Patel et al., Sources of variability in fire test data: A case study on poly(aryl ether ether ketone) (PEEK), Combustion and Flame, vol.159, pp.1720-1731, 2012.

M. B. Mckinnon, S. I. Stoliarov, and A. Witkowski, Development of a pyrolysis model for corrugated cardboard, Combustion and Flame, vol.160, pp.2595-2607, 2013.

S. Salvador, M. Quintard, D. , and C. , Combustion of a substitution fuel made of cardboard and polyethylene: influence of the mix characteristics-modeling, Fire and Materials, vol.32, pp.417-444, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01847581

R. Webster, Pyrolysis model parameter optimization using a customized stochastic hill-climber algorithm and bench scale fire test data, 2009.

Q. Y. Duan, V. K. Gupta, and S. Sorooshian, Shuffled Complex Evolution Approach for Effective and Efficient Global Minimization, Journal of Optimization Theory and Application, vol.76, pp.501-521, 1993.

C. Houck, J. A. Joines, and M. G. Kay, A Genetic Algorithm for Function Optimization -A Matlab Implementation, 1995.

M. Jimenez, S. Duquesne, and S. Bourbigot, Characterization of the performance of an intumescent fire protective coating, Surface and Coatings Technology, vol.201, pp.979-987, 2006.

A. Matala, S. Hostikka, and J. Mangs, Estimation of pyrolysis model parameters for solid materials using thermogravimetric data, Fire Safety Science, vol.9, pp.1213-1223, 2008.

J. Lefebvre, S. Duquesne, V. Mamleev, M. L. Bras, and R. Delobel, Study of the kinetics of pyrolysis of a rigid polyurethane foam: use of the invariant kinetics parameters method, Polymers for Advanced Technologies, vol.14, pp.796-801, 2003.

C. Lautenberger and A. Fernandez-pello, Optimization Algorithms for Material Pyrolysis Property Estimation, Fire Safety Science -Proceedings of the Tenth International symposium, 2011.

Y. Chen, V. Motevalli, and M. A. Delichatsios, Material Pyrolysis Properties, Part II: Methodology for the Derivation of Pyrolysis Properties for Charring Materials, Combustion Science and Technology, vol.104, pp.401-425, 1995.

Y. Ding, C. Wang, and S. Lu, Modeling the pyrolysis of wet wood using FireFOAM, Energy Conversion and Management, vol.98, pp.500-506, 2015.

M. Chaos, M. Khan, M. Krishnamoorthy, N. Chatterjee, P. Wang et al., Experiments and modeling of single-and triple-wall corrugated cardboard: Effective material properties and fire behavior, Fire and Materials, 2011.

Z. Ghorbani, R. Webster, M. Lázaro, and A. Trouvé, Critical evaluation of parameter estimation techniques for pyrolysis of charring materials, 8th U. S. National Combustion Meeting2013: University of

J. Capote, D. Alvear, O. Abreu, M. Lazaro, and E. Puente, Pyrolysis Characterization of a Lineal Low Density Polyethylene, Fire Safety Science, vol.10, pp.877-888, 2011.

D. M. Marquis, E. Guillaume, A. Camillo, T. Rogaume, R. et al., Existence and uniqueness of solutions of a differential equation system modeling the thermal decomposition of polymer materials, Combustion and Flame, vol.160, pp.818-829, 2013.

D. M. Marquis and É. Guillaume, Modelling Reaction-to-fire of Polymer-based Composite Laminate, 2011.

P. Lauer, C. Trettin, and F. W. Wittbecker, Performance of optimization algorithms for deriving material data from bench scale tests

J. Iraa, L. Hasalováa, and M. Jahodaa, The use of optimization techniques for estimation of pyrolysis model input, 2013.

B. Saha, P. K. Reddy, and A. K. Ghoshal, Hybrid genetic algorithm to find the best model and the globally optimized overall kinetics parameters for thermal decomposition of plastics, Chemical Engineering Journal, vol.138, pp.20-29, 2008.

H. Najafi and K. A. Woodbury, Online heat flux estimation using artificial neural network as a digital filter approach, International Journal of Heat and Mass Transfer, vol.91, pp.808-817, 2015.

Y. Ding, M. B. Mckinnon, S. I. Stoliarov, G. Fontaine, and S. Bourbigot, Determination of kinetics and thermodynamics of thermal decomposition for polymers containing reactive flame retardants: Application to poly(lactic acid) blended with melamine and ammonium polyphosphate, Polymer Degradation and Stability, vol.129, pp.347-362, 2016.

H. Rabitz, Chemical sensitivity analysis theory with applications to molecular dynamics and kinetics, Computers & Chemirlry, vol.5, pp.167-180, 1981.

H. Rabitz, M. Kramer, and D. Dacol, Sensitivity analysis in chemical kinetics, Ann. Rev. Phys. Chern, vol.34, pp.419-61, 1983.

D. M. Hamby, A review of techniques for parameter sensitivity analysis of environmental models, Environmental Monitoring and Assessment, vol.32, pp.135-154, 1994.

B. Batiot, T. Rogaume, A. Collin, F. Richard, and J. Luche, Sensitivity and uncertainty analysis of Arrhenius parameters in order to describe the kinetic of solid thermal degradation during fire phenomena, Fire Safety Journal, vol.82, pp.76-90, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01408767

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis -A Guide to assessing scientific models, 2004.

A. Galgano, C. Di-blasi, S. Ritondale, and A. Todisco, Numerical simulation of the glowing combustion of moist wood by means of a front-based model, Fire and Materials, vol.38, pp.639-658, 2014.

S. Stoliarov, S. Crowley, and R. Lyon, Prediction of the burning rates of noncharring polymers, 2009.

G. Linteris, M. Zammarano, B. Wilthan, and L. Hanssen, Absorption and reflection of infrared radiation by polymers in fire-like environments, Fire and Materials, vol.36, pp.537-553, 2012.

Z. Dong, L. Xie, Y. Yang, A. V. Bridgwater, and J. Cai, Local Sensitivity Analysis of Kinetic Models for Cellulose Pyrolysis, Waste and Biomass Valorization, vol.10, pp.975-984, 2017.

W. R. Zeng, S. F. Li, and W. K. Chow, Review on Chemical Reactions of Burning Poly(methyl methacrylate) PMMA, Journal of Fire Sciences, vol.20, pp.401-433, 2016.

D. Blasi, C. Crescitelli, S. Russo, G. , C. et al., Numerical model of ignition processes of polymeric materials including gas-phase absorption of radiation, Combustion and Flame, vol.89, pp.333-344, 1991.

J. A. Esfahani and A. Kashani, One-dimensional numerical model for degradation and combustion of polymethyl methacrylate, Heat and Mass Transfer, vol.42, pp.569-576, 2005.

R. Zong, R. Kang, Y. Hu, and Y. Zhi, Modeling the pyrolysis study of noncharring polymers under reduced pressure environments, Heat and Mass Transfer, vol.54, pp.1135-1144, 2017.

J. Zhang, T. J. Shields, and G. W. Silcock, Effect of melting behaviour on upward flame spread of thermoplastics, Fire and Materials, vol.21, pp.1-6, 1997.

I. T. Leventon, J. Li, and S. I. Stoliarov, A flame spread simulation based on a comprehensive solid pyrolysis model coupled with a detailed empirical flame structure representation, Combustion and Flame, vol.162, pp.3884-3895, 2015.

E. Oñate, R. Rossi, S. R. Idelsohn, and K. M. Butler, Melting and spread of polymers in fire with the particle finite element method, International Journal for Numerical Methods in Engineering, 2009.

K. Li, S. Hostikka, P. Dai, Y. Li, H. Zhang et al., Charring shrinkage and cracking of fir during pyrolysis in an inert atmosphere and at different ambient pressures, Proceedings of the Combustion Institute, vol.36, pp.3185-3194, 2017.

K. Y. Li, X. Cheng, and H. Zhang, A simplified model on vertical density profile and shrinkage ratio of virgin and charred medium density fibreboard, Fire and Materials, vol.38, pp.659-672, 2014.

D. K. Shen, S. Gu, and K. H. Luo, Analysis of Wood Structural Changes under Thermal Radiation, Energy & Fuels, vol.23, pp.1081-1088, 2009.

K. Li, M. Mousavi, and S. Hostikka, Char cracking of medium density fibreboard due to thermal shock effect induced pyrolysis shrinkage, Fire Safety Journal, vol.91, pp.165-173, 2017.

S. Salvador, M. Quintard, D. , and C. , Combustion of a substitution fuel made of cardboard and polyethylene: influence of the mix characteristics-experimental approach, Fuel, vol.83, pp.451-462, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01847600

K. Nakabe, K. B. Mcgrattan, T. Kashiwagi, H. Baum, T. Yamashita et al., Ignition and Transition to Flame Spread Over a Thermally thin cellulosic sheet in a microgravity environment, Combustion and Flame, vol.98, pp.361-374, 1994.

M. Jimenez, S. Duquesne, and S. Bourbigot, Multiscale Experimental Approach for developing High-Performance Intumescent Coatings, Ind. Eng. Chem. Res, vol.45, pp.4500-4508, 2006.

C. E. Anderson and D. K. Wauters, A thermodynamic heat transfer model for intumescent systems, International Journal of Engineering Science, vol.22, pp.881-889, 1984.

C. E. Anderson, J. J. Dziuk, W. A. Mallow, and J. Buckmaster, Intumescent Reaction Mechanisms, Journal of Fire Sciences, vol.3, 1985.

M. Gillet, L. Autrique, and L. Perez, Mathematical model for intumescent coatings growth: application to fire retardant systems evaluation, Journal of Physics D: Applied Physics, vol.40, pp.883-899, 2007.

J. E. Staggs, R. J. Crewe, and R. Butler, A theoretical and experimental investigation of intumescent behaviour in protective coatings for structural steel, Chemical Engineering Science, vol.71, pp.239-251, 2012.

D. Blasi and C. , Modeling the effects of high radiative heat fluxes on intumescent material decomposition, Journal of Analytical and Applied Pyrolysis, vol.71, pp.721-737, 2004.

Y. Zhang, Y. C. Wang, C. G. Bailey, and A. P. Taylor, Global modelling of fire protection performance of an intumescent coating under different furnace fire conditions, Journal of Fire Sciences, vol.31, pp.51-72, 2012.

Y. Zhang, Y. C. Wang, C. G. Bailey, and A. P. Taylor, Global modelling of fire protection performance of intumescent coating under different cone calorimeter heating conditions, Fire Safety Journal, vol.50, pp.51-62, 2012.

B. K. Cirpici, Y. C. Wang, B. D. Rogers, and S. Bourbigot, A theoretical model for quantifying expansion of intumescent coating under different heating conditions, Polymer Engineering & Science, vol.56, pp.798-809, 2016.

M. Amon and C. D. Denso, A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles, Polymer Engineering & Science, vol.26, 1986.

G. Okyay, A. D. Naik, F. Samyn, M. Jimenez, and S. Bourbigot, Fractal conceptualization of intumescent fire barriers, toward simulations of virtual morphologies, Sci Rep, vol.9, p.1872, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02075599

Y. C. Shih, F. B. Cheung, K. , and J. H. , Theoretical Modeling of Intumescent Fire-Retardant Materials, Journal of Fire Sciences, vol.16, pp.46-71, 2016.

S. Bourbigot, S. Duquesne, and J. Leroy, Modeling of Heat Transfer of a Polypropylene-Based Intumescent System during Combustion, Journal of Fire Sciences, vol.17, pp.42-56, 1999.

M. B. Mckinnon and S. I. Stoliarov, Pyrolysis Model Development for a Multilayer Floor Covering, Materials (Basel), vol.8, pp.6117-6153, 2015.

M. Gillet, Analyse de systèmes intumescents sous haut flux : modélisation et identification paramétrique, 2009.

K. M. Butler, H. R. Baum, and T. Kashiwagi, Three dimensional Modeling of Intumescent behavior in Fires, Fire Safety ScienceProceedings of the fifth International Symposium, 1997.

G. Rein, Computational Model of Forward and Opposed Smoldering Combustion with Improved Chemical Kinetics, 2005.