C. R. Torres and G. W. Hart, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J Biol Chem, vol.259, pp.3308-3317, 1984.

N. E. Zachara and G. W. Hart, Cell signaling, the essential role of O-GlcNAc!, Biochim Biophys Acta, vol.1761, pp.599-617, 2006.

G. W. Hart, M. P. Housley, and C. Slawson, Cycling of O-linked beta-Nacetylglucosamine on nucleocytoplasmic proteins, Nature, vol.446, pp.1017-1022, 2007.

J. A. Hanover, M. W. Krause, and D. C. Love, The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine, Biochim Biophys Acta, vol.1800, pp.80-95, 2010.

W. B. Dias and G. W. Hart, O-GlcNAc modification in diabetes and Alzheimer's disease, Mol Biosyst, vol.3, pp.766-772, 2007.

T. Lefebvre, V. Dehennaut, C. Guinez, S. Olivier, and L. Drougat, Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease, Biochim Biophys Acta, vol.1800, pp.67-79, 2010.

C. Slawson, R. J. Copeland, and G. W. Hart, O-GlcNAc signaling: a metabolic link between diabetes and cancer?, Trends Biochem Sci, vol.35, pp.547-555, 2010.

N. E. Zachara, O. Donnell, N. Cheung, W. M. Mercer, J. J. Marth et al., Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells, J Biol Chem, vol.279, pp.30133-30142, 2004.

L. G. Not, C. A. Brocks, L. Vamhidy, R. B. Marchase, and J. C. Chatham, Increased O-linked beta-N-acetylglucosamine levels on proteins improves survival, reduces inflammation and organe damage 24 hours after trauma-hemorrhage in rats, Crit Care Med, vol.38, pp.562-571, 2010.

L. Zhou, S. Yang, S. Hu, I. H. Chaudry, R. B. Marchase et al., The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels, Shock, vol.27, pp.402-408, 2007.

J. Liu, R. B. Marchase, and J. C. Chatham, Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels, J Mol Cell Cardiol, vol.42, pp.177-185, 2007.

V. Champattanachai, R. B. Marchase, and J. C. Chatham, Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased proteinassociated O-GlcNAc, Am J Physiol Cell Physiol, vol.292, pp.178-187, 2007.

V. Champattanachai, R. B. Marchase, and J. C. Chatham, Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2, Am J Physiol Cell Physiol, vol.294, pp.1509-1520, 2008.

C. Slawson, R. J. Copeland, and G. W. Hart, O-GlcNAc signaling: a metabolic link between diabetes and cancer?, Trends Biochem Sci, vol.35, pp.547-555, 2010.

B. Laczy, B. G. Hill, K. Wang, A. J. Paterson, and C. R. White, Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system, Am J Physiol Heart Circ Physiol, vol.296, pp.13-28, 2009.

P. Huang, S. R. Ho, K. Wang, B. C. Roessler, and F. Zhang, Muscle-specific overexpression of NCOATGK, splice variant of O-GlcNAcase, induces skeletal muscle atrophy, Am J Physiol Cell, vol.300, issue.3, pp.456-465, 2011.

C. Cieniewski-bernard, Y. Mounier, J. C. Michalski, and B. Bastide, O-GlcNAc level variations are associated with the development of skeletal muscle atrophy, J Appl Physiol, vol.100, pp.1499-1505, 2006.

C. Cieniewski-bernard, B. Bastide, T. Lefebvre, J. Lemoine, and Y. Mounier, Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry, Mol Cell Proteomics, vol.3, pp.577-585, 2004.

J. Hedou, C. Cieniewski-bernard, Y. Leroy, J. C. Michalski, and Y. Mounier, O-linked N-acetylglucosaminylation is involved in the Ca2+ activation properties of rat skeletal muscle, J Biol Chem, vol.282, pp.10360-10369, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00250067

G. A. Ramirez-correa, J. W. Wang, Z. Zhong, Z. Gao, and W. D. , O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function, Circ Res, vol.103, pp.1354-1358, 2008.

J. Hedou, B. Bastide, A. Page, J. C. Michalski, and W. Morelle, Mapping of Olinked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle, Proteomics, vol.9, pp.2139-2148, 2009.

C. Cieniewski-bernard, V. Montel, L. Stevens, and B. Bastide, O-GlcNAcylation, an original modulator of contractile activity in striated muscle, J Muscle Res Cell Motil, vol.30, pp.281-287, 2009.

J. P. Jin, A. Chen, O. Ogut, and Q. Q. Huang, Conformational modulation of slow skeletal muscle troponin T by an NH(2)-terminal metal-binding extension, Am J Physiol Cell Physiol, vol.279, pp.1067-1077, 2000.

J. P. Jin, F. W. Yang, Z. B. Yu, C. I. Ruse, and M. Bond, The highly conserved COOH terminus of troponin I forms a Ca2+-modulated allosteric domain in the troponin complex, Biochemistry, vol.40, pp.2623-2631, 2001.

E. B. Arias, J. Kim, and G. D. Cartee, Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle, Diabetes, vol.53, pp.921-930, 2004.

P. B. Stace, D. R. Marchington, A. L. Kerbey, and P. J. Randle, Long term culture of rat soleus muscle in vitro. Its effects on glucose utilization and insulin sensitivity, FEBS Lett, vol.273, pp.91-94, 1990.

Y. Mounier, X. Holy, and L. Stevens, Compared properties of the contractile system of skinned slow and fast rat muscle fibres, Pflugers Arch, vol.415, pp.136-141, 1989.

A. Fabiato, Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands, Methods Enzymol, vol.157, pp.378-417, 1988.

M. D. Delp and C. Duan, Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle, J Appl Physiol, vol.80, pp.261-270, 1996.

F. I. Comer, K. Vosseller, L. Wells, M. A. Accavitti, and G. W. Hart, Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine, Anal Biochem, vol.293, pp.169-177, 2001.

N. E. Zachara, Detection and analysis of (O-linked beta-N-acetylglucosamine)-modified proteins, Methods Mol Biol, vol.464, pp.227-254, 2009.

C. M. Snow, A. Senior, and L. Gerace, Monoclonal antibodies identify a group of nuclear pore complex glycoproteins, J Cell Biol, vol.104, pp.1143-1156, 1987.

R. J. Talmadge and R. R. Roy, Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms, J Appl Physiol, vol.75, pp.2337-2340, 1993.

B. Bastide, P. Kischel, J. Puterflam, L. Stevens, and D. Pette, Expression and functional implications of troponin T isoforms in soleus muscle fibers of rat after unloading, Pflugers Arch, vol.444, pp.345-352, 2002.

P. Kischel, B. Bastide, M. Muller, F. Dubail, and F. Offredi, Expression and functional properties of four slow skeletal troponin T isoforms in rat muscles, Am J Physiol Cell Physiol, vol.289, pp.437-443, 2005.

K. A. Stubbs, M. S. Macauley, and D. J. Vocadlo, A selective inhibitor Gal-PUGNAc of human lysosomal beta-hexosaminidases modulates levels of the ganglioside GM2 in neuroblastoma cells, Angew Chem., Int. Ed, vol.48, pp.1300-1303, 2009.

A. Mehdy, W. Morelle, C. Rosnoblet, D. Legrand, and T. Lefebvre, PUGNAc treatment leads to an unusual accumulation of free oligosaccharides in CHO cells, J Biochem, vol.151, pp.439-446, 2012.

E. B. Arias and G. D. Cartee, Relationship between protein O-linked glycosylation and insulin-stimulated glucose transport in rat skeletal muscle following calorie restriction or exposure to O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate, Acta Physiol Scand, vol.183, pp.281-289, 2005.

A. Persechini, J. T. Stull, and R. Cooke, The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers, J Biol Chem, vol.260, pp.7951-7954, 1985.

G. M. Stephenson and D. G. Stephenson, Endogenous MLC2 phosphorylation and Ca(2+)-activated force in mechanically skinned skeletal muscle fibres of the rat, Pflugers Arch, vol.424, pp.30-38, 1993.

H. L. Sweeney, B. F. Bowman, and J. T. Stull, Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function, Am J Physiol, vol.264, pp.1085-1095, 1993.

D. Szczesna, J. Zhao, M. Jones, G. Zhi, and J. Stull, Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction, J Appl Physiol, vol.92, pp.1661-1670, 2002.