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Skeletal muscle represents around 40% of whole body mass. The principal function of

skeletal muscle is the conversion of chemical energy toward mechanic energy to ensure

the development of force, provide movement and locomotion, and maintain posture.

This crucial energy dependence is maintained by the faculty of the skeletal muscle for

being a central place as a “reservoir” of amino acids and carbohydrates in the whole

body. A fundamental post-translational modification, named O-GlcNAcylation, depends,

inter alia, on these nutrients; it consists to the transfer or the removal of a unique

monosaccharide (N-acetyl-D-glucosamine) to a serine or threonine hydroxyl group of

nucleocytoplasmic and mitochondrial proteins in a dynamic process by the O-GlcNAc

Transferase (OGT) and the O-GlcNAcase (OGA), respectively. O-GlcNAcylation has

been shown to be strongly involved in crucial intracellular mechanisms through

the modulation of signaling pathways, gene expression, or cytoskeletal functions in

various organs and tissues, such as the brain, liver, kidney or pancreas, and linked

to the etiology of associated diseases. In recent years, several studies were also

focused on the role of O-GlcNAcylation in the physiology and the physiopathology

of skeletal muscle. These studies were mostly interested in O-GlcNAcylation during

muscle exercise or muscle-wasting conditions. Major findings pointed out a different

“O-GlcNAc signature” depending on muscle type metabolism at resting, wasting

and exercise conditions, as well as depending on acute or long-term exhausting

exercise protocol. First insights showed some differential OGT/OGA expression and/or

activity associated with some differential stress cellular responses through Reactive

Oxygen Species and/or Heat-Shock Proteins. Robust data displayed that these

O-GlcNAc changes could lead to (i) a differential modulation of the carbohydrates

metabolism, since the majority of enzymes are known to be O-GlcNAcylated,

and to (ii) a differential modulation of the protein synthesis/degradation balance

since O-GlcNAcylation regulates some key signaling pathways such as Akt/GSK3β,
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Akt/mTOR, Myogenin/Atrogin-1, Myogenin/Mef2D, Mrf4 and PGC-1α in the skeletal

muscle. Finally, such involvement of O-GlcNAcylation in somemetabolic processes of the

skeletal muscle might be linked to some associated diseases such as type 2 diabetes or

neuromuscular diseases showing a critical increase of the global O-GlcNAcylation level.

Keywords: O-GlcNAcylation, slow-twitch muscle, fast-twitch muscle, glucose metabolism, exercise, skeletal

muscle atrophy

INTRODUCTION

Just over thirty years ago, the O-linked N-acetyl-β-D-
glucosaminylation, termed O-GlcNAcylation, was discovered
inside the mouse lymphocyte cells by Torres and Hart (1).
From this discovery, about 1,400 studies were focused on
this field among hundreds of other known post-translational
modifications. Nowadays, scientific community shows a growing
interest since half of these previous studies was published
in the last 5 years, and provides more and more relevant
data to better characterize the impact of O-GlcNAcylation
on cellular processes. It is ubiquitous from virus to plantae
and metazoan, and to date around 4000 O-GlcNAc-modified
proteins have been identified (2). O-GlcNAcylation seems to
be an important molecular process in biology, especially since
ubiquitous OGT and OGA knockout mice experiments revealed
that O-GlcNAcylation balance is crucial for embryonic stem cell
viability and embryonic development (3, 4); recent data also
supported the essential role of O-GlcNAcylation in adult life
since inducible global knockout of OGT dramatically increased
mice mortality (5).

O-GlcNAcylation is an atypical, reversible and dynamic
glycosylation. Unlike the N- and O- glycans, the O-
GlcNAcylation consists of the transfer of a unique
monosaccharide which is not elongated, the N-acetyl-D-
glucosamine, on a plethora of nucleocytoplasmic (6) and
mitochondrial proteins (7). The O-GlcNAc modification
is mediated by a couple of antagonist enzymes; the OGT
(uridine diphospho-N-acetylglucosamine: peptide beta-N-
acetyl-glucosaminyl-transferase) transfers the monosaccharide
from the UDP-GlcNAc donor to a serine or threonine hydroxyl
group of a protein through a beta linkage (8), while OGA
(beta-N-acetylglucosaminidase) hydrolyses the O-GlcNAc
moieties from O-GlcNAcylated proteins (9). Very recent data
have shown that the moiety can also be added to proteins
intended for the extracellular compartment, through a distinct
and structurally unrelated OGT (called EGF-OGT) which
works in an OGT-independent manner (10–12). Besides its
reversibility, O-GlcNAcylation is also highly dynamic. Indeed,
the GlcNAc moieties can be added and removed several times
along the protein lifetime, and the turn-over is shorter than
the protein backbone’s one. Moreover, this O-GlcNAc dynamic
process could reply to many environmental conditions and
physiological signals such as nutriment availability, especially
from its UDP-GlcNAc donor, the last product of the Hexosamine
Biosynthesis Pathway (13, 14). Finally, O-GlcNAcylation can
also interplay with certain other post-translational modifications

such as phosphorylation and ubiquitination [for review,
see (15–17)].

Nowadays, there is evidence that some fundamental protein
functions are modulated through the O-GlcNAcylation,
including protein-protein interactions (18, 19), protein stability
(20, 21), protein activity (22), or protein localization (23). Akin
to phosphorylation, the O-GlcNAcylation is involved in almost
all if not all intracellular processes (15, 24, 25) and different data
demonstrated that its dysregulation can play a crucial role in the
etiology of several diseases including type II diabetes (26, 27),
cancer (28, 29), neurodegenerative disorders (30, 31), X-linked
intellectual disability (32), neuromuscular (33), or cardiovascular
diseases (34, 35), and linked to aging (36).

However, recent data showed that O-GlcNAcylation is also
involved in different cellular processes of the skeletal muscle, and
its potential role in many disorders related to skeletal muscle
defects is still undervalued. This present review discusses the
involvement of O-GlcNAcylation in skeletal muscle metabolism
(in particular glucose metabolism), the impact of exercise on
O-GlcNAcylation, and finally, the potential role of this post-
translational modification in skeletal muscle in a context of
disease such as type 2 diabetes and neuromuscular disorders.

RELATIONSHIP BETWEEN
O-GLCNACYLATION AND METABOLISM IN
SKELETAL MUSCLE

In the human body, the skeletal muscle is an essential tissue
that converts chemical energy into mechanical energy, i.e.,
contraction, to generate force and ensure some fundamental
functions of the body such as movement production, posture
control and thermoregulation (37). The skeletal muscle
represents 40% of the total human body weight, contains 50 to
75% of all body proteins and accounts for 30 to 50% of whole-
body protein turnover (37). It is a huge reservoir of nutrients
(e.g., glycogen and amino acids), a great producer/consumer of
energy and accounts for 30% of the resting metabolic rate in adult
human. For instance, from basal state to fully state of contraction,
the skeletal muscle can 300-fold increase its energy consumption
within a few milliseconds (38). Interestingly, O-GlcNAcylation is
known to be a cell nutrient sensor and the “O-GlcNAc signature”
depends on the biological state of cells (39). Within the unitary
contractile apparatus, named sarcomere, and more generally
in the overall skeletal muscle cell, diverse proteins have been
identified to be O-GlcNAcylated since 2004 (18, 40–43); the
nature of these proteins is diversified including contractile,
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structural, cytoskeletal, metabolic, chaperones, mitochondrial
proteins or proteins involved in signaling pathways. Thus,
akin to phosphorylation (37, 44, 45), O-GlcNAcylation could
play a significant role, still undervalued, in the skeletal muscle
physiology.

Exercise-Mediated O-Glcnacylation
Changes in the Skeletal Muscle
Contraction is the main function of the skeletal muscle to
provide force generation and ensure movement production and
posture control from baseline to exercise conditions. Skeletal
muscle is able to develop several adaptations with exercise
by changes in contractile protein isoforms, protein turnover,
metabolism, mitochondrial functions, intracellular signaling or
transcriptional response [for review, see (46–48)]. As described,
O-GlcNAcylation highly depends on metabolism through the
Hexosamine Biosynthesis Pathway and the UDP-GlcNAc donor.
Glucose metabolism has a key role in this process since about 2–
5% of the glucose enters the HBP, while the remaining glucose
goes to glycogen storage or glycolysis (13, 49). In addition, a
study carried out on skeletal muscle, showed that HBP also
depends on fatty acids, glutamate or nucleic acids (50). Among
other processes, muscle contraction directly impacts glucose
homeostasis. For example, exercise increases skeletal muscle
glucose uptake through an insulin-dependent/GLUT4 transport
pathway (51, 52) or through the activation of CamKII by calcium
released upon muscle contraction (53). Thus, we can assume that
O-GlcNAcylation could be modulated through muscle-training
and induces several effects on muscle functions. However,
although many studies reported the importance of exercise in the
modulation of cardiac O-GlcNAcylation (54–59), to date there is
a very few studies interesting in the skeletal muscle.

It’s long recognized that metabolic flexibility concept occurs in
skeletal muscle, meaning for example its ability to increase energy
supply and provide sufficient and adequate “fuel” for muscle
working (48). In this context, it has been recently shown that
exercise could also modulate the global O-GlcNAcylation level
in rat skeletal muscle (60–62). Two different types of exercise
training were applied on rat: a single acute exercise run bout
to fatigue and an exhausting 6-weeks interval training program,
both on treadmill. Consecutively to the acute exercise, the global
level of O-GlcNAcylation was not changed in the slow-twitch
oxidative soleus nor in the fast-twitch glycolytic EDL as well (62)
(Table 1). In contrast, a long-term training program on rat led
to an increase of the global O-GlcNAcylation level in the total
extract in soleus and EDL as well, whereas its level was not altered
in the myofilament fraction (62). In this study, no alteration of
the OGT and OGA expression was observed in both exercise
protocols, suggesting a potential regulation at the activity level
following the long-term exercise. However, in another study, the
same authors mentioned a decreased OGA expression in the
total extract of the soleus, and not in the myofilament fraction
as well as in both extracts in the EDL after a similar long-term
training program on rat, suggesting a differential OGA turnover
which might explain, partly at least, changes in the O-GlcNAc
rate between EDL and soleus (61).

TABLE 1 | Difference of O-GlcNAcylation process and exercise effect on

slow-twitch and fast-twitch muscles. The major muscle properties of both muscle

types are also indicated.

Slow-twitch muscle Fast-twitch muscle

Muscle

properties

Red muscle, slow contraction,

oxidative metabolism, fatigue

resistance

Example: soleus

White muscle, fast

contraction, glycolytic

metabolism, fatigue

sensitivity

Example: EDL, white

gastrocnemius

O-GlcNAcylation

level

O-GlcNAcylation level in soleus > EDL

Expression of

enzymes

involved in

O-GlcNAcylation

process

• Expression of OGT, OGA, GFAT1, GFAT2

in soleus > EDL

• OGT activity on soleus > EDL

VARIATION OF O-GLCNACYLATION LEVEL DURING EXERCISE

Chronic Exercise

Acute exercise Ø Ø

Acute exercise

+ glutathione

depletion

Ø

Otherwise, these O-GlcNAc adaptations following skeletal
muscle activity seemed to be fully different according to the
exercise protocol as well as the skeletal muscle fiber type.
This could be first related to the metabolic flexibility and
glucose utilization known to be different and differentially
regulated depending on exercise protocols and muscle fiber types
(46, 48). Little is known so far how exercise can modulate
the glucose flux in the Hexosamine Biosynthesis Pathway. A
study demonstrated that hindlimb skeletal muscle UDP-HexNAc
concentration increased after a single swimming protocol in ad
libitum-fed but not in fasted rats. In parallel, muscle glycogen
content decreased and the GFAT activity was not altered in these
conditions (63). Thus, it would be also interesting to determine
how the glucose metabolism could operate a distinct modulation
of O-GlcNAcylation in skeletal muscles depending on different
exercise protocols since (i) the metabolism is different from
fast and slow-twitch muscle, (ii) the O-GlcNAcylation is highly
regulated through glucose metabolism and (iii) the glucose
uptake through GLUT4 is highly modulated in skeletal muscle
during exercise (52). These future directions could bring new
insights in the involvement of the O-GlcNAcylation in the
modulation of the beneficial effects of exercise in skeletal muscle,
as a game changer to develop new strategies that counteract some
muscular disorders or metabolic disorders such as obesity or
diabetes mellitus.

Moreover, the O-GlcNAc adaptations post-exercise could also
be directly linked to a differential modulation of the O-GlcNAc
pattern and the O-GlcNAc processing enzymes between both
muscle fiber types seen at resting conditions. Indeed, the O-
GlcNAcylation level is higher in the slow soleus muscle compared
with the fast EDL muscle (62, 64, 65); in parallel, the expression
level of OGT, OGA, GFAT1, and GFAT2 is higher in soleus than
in EDL (62), as well as the activity of OGT (64) (Table 1).
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Finally, it is well known that the metabolism and stress
response between the fast-twitch glycolytic fibers and the slow-
twitch oxidative fibers are different (46). Thus, this concept
could support the differential modulation of O-GlcNAcylation
inducing variable consequences on cellular functions during
basal and exercise conditions. During muscle activity, reactive
oxygen species (ROS) are produced in skeletal muscle (66)
and the O-GlcNAcylation has been shown to be involved in
the modulation of oxidative stress through different signaling
pathways including KEAP1/NRF2, FOXO, NFκB, and p53 (67–
69). A recent study compared the O-GlcNAc pattern and O-
GlcNAc processing enzymes expression between a single Diethyl
Maleate (DEM) intraperitoneal injection in order to deplete
glutathione, meaning oxidative stress in rat, and a single acute
exercise on treadmill (60). Interestingly, in the fast-twitch white
gastrocnemius, the global level of O-GlcNAcylation increased
after acute exercise as well as glutathione depletion. On the
contrary, in the slow-twitch soleus, no significant variation of
the global O-GlcNAc level was observed (Table 1). These data
suggest that the differential oxidant/antioxidant balance between
slow and fast-twitch muscle could also be at the origin of the
differential modulation of the O-GlcNAcylation level observed
in the two muscle types. However, this complex interrelationship
between cellular redox state and O-GlcNAcylation seems not to
be the only mechanism involved in the O-GlcNAc regulation
during exercise since the OGT and GFAT mRNA expressions
were different between acute exercise and glutathione depletion
in both muscles (60).

O-GlcNAcylation Could Mediate the
Skeletal Muscle Glucose Metabolism
Recent studies demonstrated that energy metabolism, insulin
sensitivity and exercise-induced glucose uptake depends on O-
GlcNAcylation (65, 70). Indeed, the muscle specific knockout
of OGT led to the increase of glucose uptake in skeletal
muscle in basal conditions (65) as well as consequently to
exercise (70). Thus, the specific inhibition of O-GlcNAcylation
in skeletal muscle also led to facilitation of glucose utilization
in skeletal muscle, leading to greater exercise-induced glucose
disposal, involving AMPK (70). Interestingly, the enhancement
of glucose uptake was correlated to an increase of glycolytic
enzymes activities, suggesting that mice have greater reliance of
carbohydrates for energy production (65).

It is worth to note that almost all enzymes of glycolytic
pathway such as phosphofructokinase (PFK), fructose
bisphosphate aldolase (FBPA), triose phosphate isomerase
(TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
beta-enolase (BE), and pyruvate kinase (PK) are O-GlcNAcylated
(40, 71–76) [and for review, see (77, 78)] (Figure 1). Thus,
O-GlcNAcylation may regulate the expression and/or activity of
glycolytic enzymes and might consequently be involved in the
regulation of glucose metabolism in skeletal muscle. To support
this important role of O-GlcNAcylation as nutrient-sensor, it
was first demonstrated that O-GlcNAcylation is involved in
the regulation of phosphofructokinase 1 and pyruvate kinase
M2 activity (71, 73). Indeed, induction of O-GlcNAcylation

at serine 529 of PFK1 inhibited PFK1 oligomerization and
activity, and reduced glycolytic flux as well (71). Moreover,
knockdown of OGT led to an increased PKM2 activity (73).
In this previous study, the resulting decrease of O-GlcNAc
PKM2 level was associated to a decreased PKM2 expression,
and to a decrease of PKM2 serine phosphorylation (73).
Conversely, the increase of PKM2 O-GlcNAcylation by the use
of Thiamet-G, a potent OGA inhibitor, led to upregulation of
PKM2 expression and a decreased PKM2 activity (73). More
recently, pharmacological inhibition of OGA and knockdown
of OGT were associated to a respective increase and decrease
of GK expression, which is the major regulator of the glucose
input into cell and therefore the major regulator of glucose
metabolism (79). Thus, O-GlcNAcylation is a key regulator of
enzymes of glycolysis; interestingly, two downstream enzymes
of PK, lactate dehydrogenase (LD) and pyruvate dehydrogenase
(PDH) are also modified by O-GlcNAc moieties (74), suggesting
that O-GlcNAcylation may also be an important regulator of
the utilization of the glycolysis end-product, i.e., pyruvate,
through the anaerobic pathway (lactate dehydrogenase) or
the aerobic pathway (TCA cycle; Figure 1). Since almost all
enzymes of TCA cycle are described to be O-GlcNAc modified
[aconitate hydratase (A), isocitrate dehydrogenase (IDH),
ketoglutarate dehydrogenase (KGD), succinyl-CoA ligase (SL),
succinate dehydrogenase (SDH) and malate dehydrogenase
(MDH), so as several subunits of respiratory chain complexes
(40, 80, 81)], O-GlcNAcylation might play an important role
in the ATP production as well (Figure 1). However, to date,
neither literature mention a potential O-GlcNAcylation of citrate
synthase (CS) and fumarate hydratase (FH). In the same way, the
creatine shuttle, permitting the communication between ATP
site consumption (i.e., myofibrillar ATPases) and mitochondria
(82), could be therefore modulated by O-GlcNAcylation since
creatine kinase is itself O-GlcNAcylated (40).

Many data suggest a close association between the myofibrils
and the enzymes involved in the metabolism. Indeed, the
fructose-bisphosphate aldolase (FBPA), enzyme of glycolysis
and neo-glucogenesis, is known to be localized to the Z-
line of the sarcomere in association with α-actinin within a
multiprotein complex termed metabolon (83, 84). In the same
way, the interaction between phosphoglucoisomerase (PGM),
phosphofructokinase (PFK), glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), pyruvate kinase (PK) and aldolase
(FBPA) also occurs with the thin filament (85, 86). These
specific interactions between glycolytic enzyme complexes
(termed glycolytic metabolon) and the contractile apparatus
may ensure a very efficient and dynamic localized production of
ATP for myosin ATPase and actomyosin interactions resulting
in force development. Indeed, it was recently demonstrated
that the global modulation of O-GlcNAcylation level in C2C12
skeletal muscle cells differentiated into myotubes led to the
modulation of protein-protein interactions in multiprotein
complexes; while this study focused on structural proteins, the
proteomic data suggested that the glycolytic metabolon could be
modulated by O-GlcNAcylation changes as well (Figure 1) (18).
Indeed, several glycolytic enzymes (indicated by blue asterisks
on Figure 1) were identified in protein-protein complexes
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FIGURE 1 | Representative scheme of the presence of O-GlcNAcylation on glucose metabolism in skeletal muscle. Several signaling and metabolic pathways are

indicated, in particular the hexosamine biosynthesis pathway, glycolysis (anaerobic and aerobic glycolysis), glycogen metabolism, insulin signaling, and TCA cycle.

Specific molecular components of skeletal muscle such as myofibrils and creatine shuttle are also represented. Red asterisks correspond to O-GlcNAcylated proteins;

blue asterisks correspond to enzymes including in protein-protein complexes (such as the glycolytic metabolon) which could be potentially modulated consecutively to

O-GlcNAcylation changes in skeletal muscle cells. A, Aconitase; BE, Beta-enolase; CKc, Creatine kinase cytoplasmic; CKm, Creatine kinase mitochondrial; CS,

Citrate synthase; FBPA, Fructose-bisphosphate aldolase; FH, Fumarate hydratase; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; GFAT,

Glutamine,fructose-6-phosphate aminotransferase; GK, Glucokinase; GP, Glycogen phosphorylase; GS, Glycogen synthase; IDH, Isocitrate dehydrogenase; KGD,

Ketoglutarate dehydrogenase; LD, Lactate dehydrogenase; MDH, Malate dehydrogenase; OGA, O-GlcNAcase; OGT, O-GlcNAc transferase; PDH, Pyruvate

Dehydrogenase; PFK, Phosphofructokinase; PGI, Phosphoglucose isomerase; PGK, Phosphoglycerate kinase; PGM, Phosphoglycerate mutase; PK, Pyruvate kinase;

PM, phosphoglucomutase; PP, UDP-glucose pyrophosphorylase; SDH, Succinate Dehydrogenase; SL, Succinyl-CoA ligase; TPI, Triose-phosphate isomerase.

which were modulated after the global O-GlcNAcylation
changes, suggesting that the glycolytic metabolon could be
potentially modulated consecutively to O-GlcNAcylation
variations.

In addition, O-GlcNAcylation is also involved in the
modulation of insulin pathway through the modulation of
signaling proteins such as IRS-1, PI3K, PDK1, or Akt.
O-GlcNAcylation of these upstream components of insulin
signaling pathway occurs after the recruitment of OGT to the
membrane, leading to the attenuation of insulin sensitivity
(87–89) [for review, see (15, 90)]. Interestingly, the glycogen
metabolism could be also modulated by O-GlcNAcylation
through the regulation of glycogen synthase, O-GlcNAcylation
acting as inhibitory mechanism of this enzyme (15, 91, 92);
in addition, the UDP-glucose pyrophosphorylase (PP), which
generates UDP-Glc, is also O-GlcNAcylated (75), suggesting that
O-GlcNAcylation may be a regulator of glycogen synthesis. Thus,
the O-GlcNAcylation, which depends itself of the glucose level

through the Hexosamine Biosynthesis Pathway, could act as a
nutritional sensor to regulate the glycolytic flow through the
modification of glycolytic enzymes, the regulation of protein
expression, the modulation of their phosphorylation level and/or
the modulation of the metabolon.

Taken together, all these data were gained from different
tissues or cell lines, and the precise role of O-GlcNAcylation
on the regulation of glucose metabolism in the skeletal muscle
remains to be clearly elucidated. In this context, it would also
be wise to investigate the exact role of O-GlcNAcylation, not
only in the regulation of enzymes expression and/or activities,
but also in the modulation of these metabolon since OGT
and OGA are also enriched in the Z-line and the I-band of
the sarcomere (93). All together, these data strongly argue in
favor of a key role of the O-GlcNAcylation process in the
regulation of energy metabolism of skeletal muscle, in particular
the utilization of glucose as “fuel” to provide energy to ensure
muscle contraction.
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O-GLCNACYLATION AND SKELETAL
MUSCLE DYSFUNCTIONS

O-GlcNAcylation Is Associated to
Muscular Atrophy
Muscle atrophy arises from a defect of the balance between
protein synthesis and degradation (94, 95). Both intracellular
mechanisms maintain protein homeostasis and could be
potentially modulated by O-GlcNAcylation (17, 96, 97), but the
role of O-GlcNAcylation in the regulation of protein synthesis
and degradation is not really investigated in the skeletal muscle.
However, this knowledge could be crucial since muscle atrophy
is often associated with impairment of contractile and structural
functions, metabolism process, and changes of phenotype
fiber.

O-GlcNAcylation and skeletal muscle atrophy were firstly
associated subsequently to a 14- or 28-days hindlimb unloading
(HU) experiments in rat (40, 64, 93). One of the most relevant
data was an opposite modulation of the global O-GlcNAc level
between the slow-twitch soleus and the fast-twitch EDL (64).
A decrease of the global O-GlcNAcylation level was observed
in the atrophied rat soleus, while in contrast it was not
altered in the non-atrophied rat EDL subsequently to the 14-
and 28-days hindlimb unloading. Moreover, OGT activity was
also opposite in both muscles by decreasing in soleus and
increasing in EDL; however, it has been shown that OGA activity
increased in both muscles (64). This first report suggested that
O-GlcNAcylation could be related to the muscle atrophy and
plasticity processes. Interestingly, the authors demonstrated in
parallel that heat-shock proteins expression was also altered.
Indeed, in the rat EDL, the HSP70 expression increased, contrary
to the atrophied rat soleus after a 14-days HU (64). This
heat-shock protein is known to be O-GlcNAcylated, to have
lectin properties (98–100), and to have the ability to increase
stress tolerance while decreasing protein degradation (101, 102).
Thus, in rat EDL, the increase of global O-GlcNAc level, as
well as HSP70 expression, could contribute to an improvement
of stress tolerance, as suggested in cardiomyocytes (103), and
prevent muscle atrophy (64, 104). Interestingly, the expression
of another heat-shock protein, the alphaB-crystallin which is
also known to be O-GlcNAcylated (105), was decreased in the
atrophied soleus and could therefore be involved in the plasticity
processes (106).

More recently, different studies focused on the molecular
pathways involved in skeletal muscle atrophy, including the
relationship between O-GlcNAcylation, signaling pathways and
muscular atrophy in skeletal muscle cells model (Figure 2).
By using Thiamet-G, a potent inhibitor of the O-GlcNAcase,
the C2C12 cells showed both a global increase of the O-
GlcNAcylation and a modulation of some catabolic and anabolic
pathways leading to atrophy (107). First, this study reported
a significant decrease of Akt and GSK3β phosphorylation,
as well as an increase of myostatin expression, which could
lead to an inhibition of some anabolic pathways. Secondly,
an increase of Atrogin-1 expression was reported and could
lead to an improvement of some catabolic pathways (Figure 2).
In this way, myostatin is a negative modulator of skeletal

muscle growth and inhibits some protein synthesis pathways
such as Akt/mTOR; it also promotes degradation of many
sarcomeric proteins and seems to be dependent of Atrogin-1
(108). Interestingly, this report of molecular events following
OGA deficiency in C2C12 could partly explain muscle wasting
induction through glucocorticoid in stress conditions (109).
Indeed, in C2C12 cells treated with dexamethasone, the OGA
activity was decreased such as its expression (a similar molecular
event was described when cells were treated with the Thiamet-
G); in parallel, Murf-1 expression, leading to atrophy, increased
(107) (Figure 2). It was suggested that dexamethasone could
repress OGA gene via binding onto Glucocorticoid Response
Element (107, 110); another mechanism could also involve OGT,
known to be a cofactor of glucocorticoid receptors promoting
transrepression (111). This is a relevant new insight regarding the
use of glucocorticoids as the only available therapeutic treatment
to maintain essential muscle functions in some muscular
dystrophies (112). However, O-GlcNAc-mediated molecular
mechanisms could be partly different between glucocorticoid-
induced atrophy and disuse atrophy since the O-GlcNAc pattern
is different, and the expression of O-GlcNAc processing enzymes
is not changed (64).

In parallel, in C2C12 cells, the increase of the global O-
GlcNAcylation level by the use of Thiamet-G or another OGA
inhibitor such as PUGNAc or another strategy such as OGA
knockdown, seemed suppress the myogenic differentiation of
the muscle cells (113–115). Indeed, the terminal differentiation
stage of C2C12 is altered through a decrease of mrf4, myogenin
(113), and myoD expression (115) (Figure 2). Interestingly, a
decreased O-GlcNAcylation of Mef2D, a transcriptional activator
of myogenin, suppressed its recruitment to the myogenic factor
promoter (114). Moreover, in the case of a global decrease of the
O-GlcNAcylation level, the specificO-GlcNAc rate of PGC-1α led
to its degradation and suppressed the mitochondrial biogenesis
and myogenesis in C2C12 (115) (Figure 2). By the way, through
OGA manipulation in C2C12 cells, O-GlcNAcylation seemed
to be a negative regulator of the myogenesis. This conclusion
is reinforced by the overexpression of an inactive OGA variant
and the increase of O-GlcNAcylation in a rat model inducing
skeletal muscle atrophy (116). In contrast, a skeletal muscle
specificOGT knockout in mice, leading to a global decrease of O-
GlcNAcylation in the tissue, did not induce muscle hypertrophy
(65). Indeed, tibialis anterior, EDL and soleus of these mice
showed a normal morphology and mass. Interestingly, mice
exhibited reduced fat mass (65). Muscle phenotype from global
OGT or OGA knockout in mice is difficult to determine since it
has been shown a severe perinatal lethality, and to date there is
no available data about an inducible OGA knockout or a skeletal
muscle specific OGA knockout model. Along O-GlcNAcylation,
all these recent studies showed complex pathways, but not fully
resolved, leading to skeletal muscle atrophy.

Skeletal Muscle O-GlcNAcylation in
Physiopathological Context
In various organs or tissues (e.g., heart, brain, pancreas,
and kidney), O-GlcNAcylation was previously described to be
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FIGURE 2 | Relationships between O-GlcNAcylation, signaling pathways and muscular atrophy in skeletal muscle cells model. This figure depicts the impact of OGA

deficiency on myogenesis and skeletal muscle atrophy. The asterisk means that Murf-1 overexpression occurs with the use of dexamethasone and not with the

Thiamet-G in C2C12 cells.

both cell protective from an acute variation and deleterious
from chronic and sustained variations especially through the
impairment of glucose utilization or the glucose toxicity
paradigm that may lead to the progression of several diseases
[for review, see (31, 34, 36, 68, 117, 118)]. To date, one
of the most defined examples is the involvement of O-
GlcNAcylation in the progression of diabetes, characterized
by hyperglycemia as the result of body’s inability to correctly
process blood glucose. Subsequently, all insulin sensitive tissues
present hyper-O-GlcNAcylation and many complications. It
appeared that a single nucleotide polymorphism in MGEA5,
encoding OGA, is associated with type 2 diabetes in a
mexican american population (119). Moreover, Goto-Kakizaki
rats, which develop type 2 diabetes mellitus in early life,
express an inactive 90 kDa isoform of OGA (120). Finally, a
conditional OGA knockout in mice led to a low blood glucose
concentration, a decreased insulin sensitivity, and to a perinatal
death (121). However, the involvement of O-GlcNAcylation
in the onset or in the progression of diabetes is still in
debate (118) since a pharmacological inhibition of OGA in
adipocytes did not cause insulin resistance or disruption of the
glucohomeostasis (122).

Interestingly, among insulin sensitive tissues, the skeletal
muscles are responsible for about 75% of insulin-stimulated
uptake in the whole human body. In skeletal muscle, a global
increase of O-GlcNAcylation induced insulin resistance (123),
whereas insulin infusion led to an increase of the HBP flux and
the O-GlcNAc content (124). It has been shown that muscular
overexpression of GFAT in transgenic mice led to muscle insulin
resistance (125, 126). In a same way, upregulation of GFAT

expression and activity was described in skeletal muscle of
diabetic patients (127). Moreover, overexpression of GFAT in
mice is associated to a decrease of GLUT4 translocation to
the sarcolemma (128), whereas transgenic mice overexpressing
GLUT4 did not show alteration of GFAT expression or activity
unlike the overexpression of GLUT1 (129), although both
of these mice models showed an increase of glucose uptake
and O-GlcNAcylation in muscle (130). Thus, the role of
HBP in insulin resistance seems to be complex and still not
resolved (131). Recent data provided that TRIB3 may be a
novel link between HBP and insulin resistance in skeletal
muscle (132).

Experiments with mice overexpressing OGT displayed
muscle insulin resistance as well as hyperleptinemia (133).
Pharmacological inhibition of OGA (123) or OGA knockdown
(116) in skeletal muscle cells also induced insulin resistance. In
parallel, after induction of insulin in liver, PIP3 recruited OGT
from the nucleus to the membrane and caused perturbations
of insulin signaling (88). Taken together, these data suggest
that O-GlcNAcylation could be a link between insulin
resistance and muscle impairment, since O-GlcNAcylation
is involved in skeletal muscle contractility, sarcomere
structuration, myogenesis, and diabetic patients often display
“diabetic myopathy” (134). A significant volume of literature
suggested O-GlcNAcylation linking diabetes and cardiovascular
complications [for review, see (27, 35)]. In cardiac muscle from
mice developing insulin resistance, mitochondrial dysfunction
and changes in contractile properties were associated to an
increase of O-GlcNAcylation (58). Indeed, it has been shown a
correlation between increase of O-GlcNAcylation and decrease
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of calcium sensitivity in the cardiac tissue (135), as well as in
the skeletal muscle tissue (41, 42). Interestingly, it has been
shown that adenoviral transfer of OGA (136) or injection of
a bacterial homologue of OGA (137), reversed the excessive
O-GlcNAc content and the cardiac contractile dysfunctions.
In this study, many myofibrillar proteins exhibited changes of
their O-GlcNAcylation level, but the modulation of contractile
properties could be also explained by a modulation of Ca2+

handling (138). Indeed, within an insulin resistance context
in cardiac tissue, Serca2a expression was changed (58, 136),
and an alteration of O-GlcNAc levels significantly affected
Ca2+ handling, Serca2a (139) and STM1 functions (140).
This role of O-GlcNAcylation should be considered also in
skeletal muscle since dysfunction of contractibility as well
as the Ca2+ handling were also measured in skeletal muscle
of rat models of diabetes (141), via impaired Serca and
GLUT4 (142).

Interestingly, OGT and OGA are highly concentrated to the
sarcomere (93). Moreover, in cardiac tissue of STZ-diabetic
mice, OGA, and OGT mislocalization in the sarcomere was
associated to activities alteration as well as changes in the
OGA interactions with actin, tropomyosin and MLC1 (137).
In parallel, OGT was also mislocalized in mitochondria, the
interaction between OGT and complex IV being decreased
while the OGA activity decreased (143). O-GlcNAc processing
enzymes distribution in the sarcomere of skeletal muscle as
well as other compartments, such as mitochondria should be
also investigated to better understand the involvement of O-
GlcNAcylation in diabetic context. Indeed, different data support
a relocalization of O-GlcNAc in atrophy or exercise muscle
activity context (61, 62, 93). Recently, in C2C12 cells, an
OGA knockdown induced insulin resistance and a decrease
of the mitochondrial biogenesis with a decreased PGC1α
expression (115).

In another context, it has been shown that the global
O-GlcNAc level in skeletal muscle is increased in some
human neuromuscular diseases (33). Especially, compared to
normal muscle fibers, the O-GlcNAc signal seemed to be
relocalized from the sarcolemma to the cytoplasm and nuclei
in regenerative muscle fibers of muscular dystrophies, myositis
and rhabdomyolysis. A strong O-GlcNAc content signal was
also displayed in vacuolated fibers in sporadic inclusion body
myositis, and distal myopathies with rimmed vacuoles, as well
as in neurogenic muscular dystrophy. This O-GlcNAc raise
could be associated with the stress response, since HSP70
expression is increased in the cytoplasmic compartment of these
neuromuscular diseases. Moreover, a mutation in the GNE gene
is known to cause distal myopathies with rimmed vacuoles.
Interestingly, UDP-GlcNAc is the substrate of the GNE enzyme,
and an impairment of GNE expression/activity could altered the
UDP-GlcNAc content and so the O-GlcNAcylation mediated by
OGT (33).

CONCLUSION AND PERSPECTIVES

In the past ten years, more and more studies concerned
O-GlcNAcylation in the skeletal muscle physiology and

physiopathology. This glycosylation is mostly related to
glucose metabolism, and skeletal muscle is one of the largest
consumers of glucose; in addition, numerous studies showed
that skeletal muscle is essential for glucose homeostasis and
insulin sensitivity. Moreover, muscle plasticity allows skeletal
fibers adaptations to physiological conditions in terms of
contractile but also metabolism properties. Consequently,
the glucose utilization will change depending on resting,
wasting or exercise, as well as the fiber type composition.
Interestingly, the global O-GlcNAcylation pattern in skeletal
muscle changed, depending on these different conditions
and fiber types. O-GlcNAcylation may be both a cause or a
consequence of the modulation of the glucose utilization, in a
virtuous or deleterious cycle, since most of the enzymes from
the carbohydrate metabolism are known to be O-GlcNAcylated.
This concept clearly raises the O-GlcNAcylation as a potential
key regulator of the skeletal muscle glucose metabolism.
O-GlcNAcylation has been also shown to regulate some key
signaling pathways, as well cellular stress response, involved in
the maintenance of the protein synthesis/degradation balance in
the skeletal muscle. From these novel insights, a new paradigm
is emerging considering the O-GlcNAcylation as a key factor
involved in skeletal muscle physiopathology such as atrophy
or insulin resistance, and more generally in neuromuscular
diseases. However, O-GlcNAc involvements as a cause or
consequence of skeletal muscle impairments are currently in
debate. After all, it is now clear that O-GlcNAcylation is getting
many involvements in the skeletal muscle physiopathology
and would be confirmed in the future by larger studies of
interest.

Indeed, with the exponential development of mass-
spectrometry and innovative enrichment techniques, the
identification of O-GlcNAc sites which are modulated
subsequently to any stimuli/condition/disease will be clearly
the challenge of tomorrow. In fact, O-GlcNAcylation
regulates protein activity, protein localization, protein-
protein interactions, and can interplay with phosphorylation
or ubiquitination. This strategy will lead to a deeper
understanding of the precise mechanisms by which O-
GlcNAcylation can regulate skeletal muscle metabolism.
Secondly, O-GlcNAc processing enzymes behavior should
be more precisely investigated, since their localizations
and/or interactions, and as consequence, the pattern of O-
GlcNAcylation, seemed to be changed through different
stimuli in skeletal muscle fibers, especially around the
myofilaments. Exercise is one of these stimuli inducing
complex O-GlcNAc variations, depending on the muscle
phenotype, but also the kind of exercise. Importantly, due
to the enhancement of glucose utilization during exercise,
the O-GlcNAcylation process in skeletal muscle could be
considered as a potential target to alleviate metabolic disorders.
Finally, O-GlcNAcylation should be investigated in some
precise muscular dystrophies or congenital myopathies, since
glucose utilization is often impaired, the sarcomere could be
disorganized, the mitochondria biogenesis altered, the nuclei
delocalized, or the muscle plasticity changed. It will be worth
knowing if O-GlcNAcylation could contribute or alleviate
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neuromuscular disorders or being considered as a marker of
these diseases.
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