C. R. Torres and G. W. Hart, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J Biol Chem, vol.259, pp.3308-3325, 1984.

J. Ma and G. W. Hart, O-GlcNAc profiling: from proteins to proteomes, Clin Proteomics, 2014.

R. Shafi, S. P. Iyer, L. G. Ellies, O. Donnell, N. Marek et al., The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny, Proc Natl Acad Sci, vol.97, pp.5735-5744, 2000.

Y. R. Yang, M. Song, H. Lee, Y. Jeon, E. Choi et al., O-GlcNAcase is essential for embryonic development and maintenance of genomic stability, Aging Cell, vol.11, pp.439-487, 2012.

S. Ida, K. Morino, O. Sekine, N. Ohashi, S. Kume et al., Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice, Diabetologia, vol.60, pp.1761-1770, 2017.

G. W. Hart, M. P. Housley, and C. Slawson, Cycling of O-linked ?-Nacetylglucosamine on nucleocytoplasmic proteins, Nature, vol.446, pp.1017-1039, 2007.

Y. Gu, S. R. Ande, and S. Mishra, Altered O-GlcNAc modification and phosphorylation of mitochondrial proteins in myoblast cells exposed to high glucose, Arch Biochem Biophys, vol.505, pp.98-104, 2011.

R. S. Haltiwanger, G. D. Holt, and G. W. Hart, Enzymatic addition of O-GlcNAc to Nuclear and Cytoplasmic Proteins, J Biol Chem, vol.265, pp.2563-2571, 1990.

D. L. Dong and G. W. Hart, Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol, J Biol Chem, vol.269, pp.19321-19351, 1994.

P. Nagnan-le-meillour, A. Vercoutter-edouart, F. Hilliou, L. Danvic, C. Levy et al., Proteomic analysis of Pig (Sus scrofa) olfactory soluble proteome reveals O-Linked-N-acetylglucosaminylation of secreted odorant-binding proteins, Front Endocrinol, vol.5, p.202, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01130529

M. Ogawa, S. Sawaguchi, K. Furukawa, and T. Okajima, N-acetylglucosamine modification in the lumen of the endoplasmic reticulum, Biochim Biophys Acta, vol.1850, pp.1319-1343, 2015.

S. Varshney and P. Stanley, EOGT and O -GlcNAc on secreted and membrane proteins, Biochem Soc Trans, vol.45, pp.401-409, 2017.

J. Hanover, M. W. Krause, and D. C. Love, The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine, Biochim Biophys Acta, vol.1800, pp.80-95, 2010.

G. W. Hart, Y. Akimoto, A. Varki, R. D. Cummings, J. D. Esko et al., The O-GlcNAc Modification, Essentials of Glycobiology, 2009.

G. W. Hart, C. Slawson, G. Ramirez-correa, and O. Lagerlof, Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease, Annu Rev Biochem, vol.80, pp.825-58, 2011.

S. Van-der-laarse, A. C. Leney, and A. Heck, Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe, FEBS J, vol.285, pp.3152-67, 2018.

H. Ruan, Y. Nie, and X. Yang, Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination, Mol Cell Proteomics, vol.12, pp.3489-97, 2013.

M. Lambert, E. Richard, S. Duban-deweer, F. Krzewinski, B. Deracinois et al., O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of proteinprotein interactions, Biochim Biophys Acta Gen Subj, vol.1860, pp.2017-2047, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02375890

H. J. Tarbet, C. A. Toleman, and M. Boyce, A sweet embrace: control of proteinprotein interactions by O-Linked ?-N -Acetylglucosamine, Biochemistry, vol.57, pp.13-21, 2018.

C. Chu, P. Lo, Y. Yeh, P. Hsu, S. Peng et al., O-GlcNAcylation regulates EZH2 protein stability and function, Proc Natl Acad Sci, vol.111, pp.1355-60, 2014.

Y. Li, L. Wang, J. Liu, P. Zhang, A. M. Han et al., O-GlcNAcylation modulates Bmi-1 protein stability and potential oncogenic function in prostate cancer, Oncogene, vol.36, pp.6293-305, 2017.

F. Cividini, B. T. Scott, A. Dai, W. Han, J. Suarez et al., O -GlcNAcylation of 8-Oxoguanine DNA Glycosylase (Ogg1) Impairs Oxidative Mitochondrial DNA Lesion Repair in Diabetic Hearts, J Biol Chem, vol.291, pp.26515-26543, 2016.

J. R. Ha, L. Hao, G. Venkateswaran, Y. H. Huang, E. Garcia et al., ?-Catenin is O-GlcNAc glycosylated at Serine 23: Implications for ?-catenin's subcellular localization and transactivator function, Exp Cell Res, vol.321, pp.153-66, 2014.

S. Hardivillé and G. W. Hart, Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation, Cell Metab, vol.20, pp.208-221, 2014.

M. R. Bond and J. Hanover, A little sugar goes a long way: the cell biology of O-GlcNAc, J Cell Biol, vol.208, pp.869-80, 2015.

J. Ma and G. W. Hart, Protein O-GlcNAcylation in diabetes and diabetic complications, Expert Rev Proteom, vol.10, pp.365-80, 2013.

S. B. Peterson and G. W. Hart, New insights: A role for O-GlcNAcylation in diabetic complications, Crit Rev Biochem Mol Biol, vol.9238, pp.1-12, 2016.

Y. Fardini, V. Dehennaut, T. Lefebvre, T. Issad, and . O-glcnacylation, A new cancer hallmark? Front Endocrinol, vol.4, p.99, 2013.

R. M. De-queiroz, Ã. Carvalho, and W. B. Dias, O-GlcNAcylation: the sweet side of the cancer, Front Oncol, vol.4, p.132, 2014.

Y. Zhu, X. Shan, S. A. Yuzwa, and D. J. Vocadlo, The emerging link between O -GlcNAc and Alzheimer Disease, J Biol Chem, vol.289, pp.34472-81, 2014.

C. Gong, F. Liu, and K. Iqbal, O-GlcNAcylation: a regulator of tau pathology and neurodegeneration, vol.12, pp.1078-89, 2016.

K. Vaidyanathan, T. Niranjan, N. Selvan, C. F. Teo, M. May et al., Identification and characterization of a missense mutation in the O -linked ?-N -acetylglucosamine ( O -GlcNAc) transferase gene that segregates with X-linked intellectual disability, J Biol Chem, vol.292, pp.8948-63, 2017.

S. Nakamura, S. Nakano, M. Nishii, S. Kaneko, and H. Kusaka, Localization of O-GlcNAc-modified proteins in neuromuscular diseases, Med Mol Morphol, vol.45, pp.86-90, 2012.

S. Dassanayaka and S. P. Jones, O-GlcNAc and the cardiovascular system, Pharmacol Ther, vol.142, pp.62-71, 2014.

J. N. Wright, H. E. Collins, A. R. Wende, J. C. Chatham, C. O-glcnacylation et al., Biochem Soc Trans, vol.45, pp.545-53, 2017.

P. S. Banerjee, O. Lagerlöf, and G. W. Hart, Roles of O-GlcNAc in chronic diseases of aging, Mol Aspects Med, vol.51, pp.1-15, 2016.

W. R. Frontera and J. Ochala, Skeletal muscle: a brief review of structure and function, Calcif Tissue Int, vol.96, pp.183-95, 2015.

H. Westerblad, J. D. Bruton, and A. Katz, Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability, Exp Cell Res, vol.316, pp.3093-3102, 2010.

G. W. Hart, N. O-glcnacylation-;-taniguchi, T. Endo, G. Hart, P. Seeberger et al., Nutrient Sensor that Regulates Cell Physiology, pp.1193-1202, 2015.

C. Cieniewski-bernard, B. Bastide, T. Lefebvre, J. Lemoine, Y. Mounier et al., Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry, Mol Cell Proteomics, vol.3, pp.577-85, 2004.

C. Cieniewski-bernard, V. Montel, S. Berthoin, and B. Bastide, Increasing O-GlcNAcylation level on organ culture of soleus modulates the calcium activation parameters of muscle fibers, PLoS ONE, vol.7, p.48218, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01406895

J. Hedou, C. Cieniewski-bernard, Y. Leroy, J. C. Michalski, Y. Mounier et al., O-linked N-acetylglucosaminylation is involved in the Ca2+ activation properties of rat skeletal muscle, J Biol Chem, vol.282, pp.10360-10369, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00250067

J. Hédou, B. Bastide, A. Page, J. C. Michalski, and W. Morelle, Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle, Proteomics, vol.9, pp.2139-2187, 2009.

V. Kooij, G. Stienen, and J. Van-der-velden, The role of protein kinase Cmediated phosphorylation of sarcomeric proteins in the heart-detrimental or beneficial?, Biophys Rev, vol.3, pp.107-124, 2011.

R. Mounier, M. Théret, L. Lantier, M. Foretz, and B. Viollet, Expanding roles for AMPK in skeletal muscle plasticity, Trends Endocrinol Metab, vol.26, pp.275-86, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01171734

B. Egan and J. R. Zierath, Exercise metabolism and the molecular regulation of skeletal muscle adaptation, Cell Metab, vol.17, pp.162-84, 2013.

W. J. Smiles, J. A. Hawley, and D. M. Camera, Effects of skeletal muscle energy availability on protein turnover responses to exercise, J Exp Biol, vol.219, pp.214-239, 2016.

B. H. Goodpaster and L. M. Sparks, Metabolic flexibility in health and disease, Cell Metab, vol.25, pp.1027-1063, 2017.

S. Marshall, V. Bacote, and R. R. Traxinger, Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance, J Biol Chem, vol.266, pp.4706-4718, 1991.

M. Hawkins, N. Barzilai, R. Liu, M. Hu, W. Chen et al., Role of the glucosamine pathway in fat-induced insulin resistance, J Clin Invest, vol.99, pp.2173-82, 1997.

A. D. Lee, P. A. Hansen, and J. O. Holloszy, Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle, FEBS Lett, vol.361, pp.51-55, 1995.

E. A. Richter and M. Hargreaves, Exercise, GLUT4, and skeletal muscle glucose uptake, Physiol Rev, vol.93, pp.993-1017, 2013.

E. O. Ojuka, V. Goyaram, and J. Smith, The role of CaMKII in regulating GLUT4 expression in skeletal muscle, Am J Physiol Metab, vol.303, pp.322-353, 2012.

J. P. Myslicki, D. D. Belke, and J. Shearer, Role of O-GlcNAcylation in nutritional sensing, insulin resistance and in mediating the benefits of exercise, Appl Physiol Nutr Metab, vol.39, pp.1205-1218, 2014.

D. D. Belke, Swim-exercised mice show a decreased level of protein O-GlcNAcylation and expression of O-GlcNAc transferase in heart, J Appl Physiol, vol.111, pp.157-62, 2011.

H. M. Medford, K. Porter, and S. A. Marsh, Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy, Am J Physiol Heart Circ Physiol, vol.305, pp.114-137, 2013.

C. E. Bennett, V. L. Johnsen, J. Shearer, and D. D. Belke, Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice, Life Sci, vol.92, pp.657-63, 2013.

V. L. Johnsen, D. D. Belke, C. C. Hughey, D. S. Hittel, R. T. Hepple et al., Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity, Physiol Genomics, vol.45, pp.17-25, 2013.

E. J. Cox and S. A. Marsh, Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart, Cardiovasc Diabetol, vol.12, p.101, 2013.

T. T. Peternelj, S. A. Marsh, N. A. Strobel, A. Matsumoto, D. Briskey et al., Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle, Mol Cell Biochem, vol.400, pp.265-75, 2014.

K. H. Hortemo, J. M. Aronsen, I. G. Lunde, I. Sjaastad, P. K. Lunde et al., Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle, Physiol Rep, vol.3, p.12285, 2015.

H. Hortemo, K. Lunde, K. Anonsen, J. H. Kvaløy, H. Munkvik et al., Exercise training increases protein O-GlcNAcylation in rat skeletal muscle, Physiol Rep, vol.4, p.12896, 2016.

B. A. Nelson, K. A. Robinson, J. S. Koning, and M. G. Buse, Effects of exercise and feeding on the hexosamine biosynthetic pathway in rat skeletal muscle, Am J Physiol, vol.272, pp.848-55, 1997.

C. Cieniewski-bernard, Y. Mounier, J. C. Michalski, and B. Bastide, O-GlcNAc level variations are associated with the development of skeletal muscle atrophy, J Appl Physiol, vol.100, pp.1499-505, 2006.

H. Shi, A. Munk, T. S. Nielsen, M. R. Daughtry, L. Larsson et al., Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity, Mol Metab, vol.11, pp.160-77, 2018.

K. J. Davies, A. T. Quintanilha, G. A. Brooks, and L. Packer, Free radicals and tissue damage produced by exercise, Biochem Biophys Res Commun, vol.107, pp.1198-205, 1982.

J. A. Groves, A. Lee, G. Yildirir, and N. E. Zachara, Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis, Cell Stress Chaperones, vol.18, pp.535-58, 2013.

V. V. Lima, K. Spitler, H. Choi, R. C. Webb, R. C. Tostes et al., O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter?, Clin Sci, vol.123, pp.473-86, 2012.

P. Chen, C. Boyce, and M. , Functional crosstalk among oxidative stress and O-GlcNAc signaling pathways, Glycobiology, vol.28, pp.556-64, 2018.

K. Murata, K. Morino, S. Ida, N. Ohashi, M. Lemecha et al., Lack of O-GlcNAcylation enhances exercise-dependent glucose utilization potentially through AMP-activated protein kinase activation in skeletal muscle, Biochem Biophys Res Commun, vol.495, pp.2098-104, 2018.

W. Yi, P. M. Clark, D. E. Mason, M. C. Keenan, C. Hill et al., Phosphofructokinase 1 glycosylation regulates cell growth and metabolism, Science, vol.337, pp.975-80, 2012.

V. Champattanachai, P. Netsirisawan, P. Chaiyawat, T. Phueaouan, R. Charoenwattanasatien et al., Proteomic analysis and abrogated expression of O -GlcNAcylated proteins associated with primary breast cancer, Proteomics, vol.13, pp.2088-99, 2013.

P. Chaiyawat, D. Chokchaichamnankit, K. Lirdprapamongkol, C. Srisomsap, J. Svasti et al., Alteration of O-GlcNAcylation affects serine phosphorylation and regulates gene expression and activity of pyruvate kinase M2 in colorectal cancer cells, Oncol Rep, vol.34, pp.1933-1975, 2015.

V. Dehennaut, M. C. Slomianny, A. Page, A. Vercoutter-edouart, C. Jessus et al., Identification of Structural and Functional O -Linked N -Acetylglucosamine-bearing Proteins in Xenopus laevis Oocyte, Mol Cell Proteomics, vol.7, pp.2229-2274, 2008.

L. Wells, K. Vosseller, R. N. Cole, J. M. Cronshaw, M. J. Matunis et al., Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications, Mol Cell Proteomics, vol.1, pp.791-804, 2002.

P. M. Clark, J. F. Dweck, D. E. Mason, C. R. Hart, S. B. Buck et al., Direct in-gel fluorescence detection and cellular imaging of O -GlcNAcmodified proteins, J Am Chem Soc, vol.130, pp.11576-11583, 2008.

Z. A. Bacigalupa, C. H. Bhadiadra, and M. J. Reginato, O-GlcNAcylation: key regulator of glycolytic pathways, J Bioenerg Biomembr, vol.50, pp.189-98, 2018.

N. S. Sharma, A. K. Saluja, and S. Banerjee, Nutrient-sensing" and self-renewal: O-GlcNAc in a new role, J Bioenerg Biomembr, vol.50, pp.205-216, 2018.

S. F. Baldini, A. Steenackers, S. Olivier-van-stichelen, A. Mir, M. Mortuaire et al., Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation, Biochem Biophys Res Commun, vol.478, pp.942-950, 2016.

J. Ma, P. Banerjee, S. A. Whelan, T. Liu, A. Wei et al., Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts, J Proteome Res, vol.15, pp.2254-64, 2016.

W. Cao, J. Cao, J. Huang, J. Yao, G. Yan et al., Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods, PLoS ONE, vol.8, p.76399, 2013.

C. J. Barclay, Energy demand and supply in human skeletal muscle, J Muscle Res Cell Motil, vol.38, pp.143-55, 2017.

D. Rakus, P. Mamczur, A. Gizak, D. Dus, and A. Dzugaj, Colocalization of muscle FBPase and muscle aldolase on both sides of the Z-line, Biochem Biophys Res Commun, vol.311, pp.294-303, 2003.

P. Mamczur, D. Rakus, A. Gizak, D. Dus, and A. Dzugaj, The effect of calcium ions on subcellular localization of aldolase-FBPase complex in skeletal muscle, FEBS Lett, vol.579, pp.1607-1619, 2005.

F. M. Clarke and C. J. Masters, Interactions between muscle proteins and glycolytic enzymes, Int J Biochem, vol.7, pp.90058-90064, 1976.

C. Méjean, F. Pons, Y. Benyamin, and C. Roustan, Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments, Biochem J, vol.264, pp.671-678, 1989.

A. L. Klein, M. N. Berkaw, M. G. Buse, and L. E. Ball, O -Linked N -Acetylglucosamine modification of insulin receptor substrate-1 occurs in close proximity to multiple SH2 domain binding motifs, Mol Cell Proteomics, vol.8, pp.2733-2778, 2009.

X. Yang, P. P. Ongusaha, P. D. Miles, J. C. Havstad, F. Zhang et al., Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance, Nature, vol.451, pp.964-973, 2008.

S. A. Whelan, M. D. Lane, and G. W. Hart, Regulation of the O-linked beta-Nacetylglucosamine transferase by insulin signaling, J Biol Chem, vol.283, pp.21411-21418, 2008.

X. Yang and K. Qian, Protein O-GlcNAcylation: emerging mechanisms and functions, Nat Rev Mol Cell Biol, vol.18, pp.452-65, 2017.

G. J. Parker, K. C. Lund, R. P. Taylor, and D. A. Mcclain, Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine, J Biol Chem, vol.278, pp.10022-10029, 2003.

G. Parker, R. Taylor, D. Jones, and D. Mcclain, Hyperglycemia and inhibition of glycogen synthase in streptozotocin-treated mice: role of O-linked N-acetylglucosamine, J Biol Chem, vol.279, pp.20636-20678, 2004.

C. Cieniewski-bernard, E. Dupont, E. Richard, and B. Bastide, Phospho-GlcNAc modulation of slow MLC2 during soleus atrophy through a multienzymatic and sarcomeric complex, Pflügers Arch Eur J Physiol, vol.466, pp.2139-51, 2014.

P. Bonaldo, M. Sandri, D. L. Allen, T. G. Unterman, A. Amirouche et al., Cellular and molecular mechanisms of muscle atrophy, Dis Model Mech, vol.6, pp.25-39, 2013.

S. Schiaffino, K. A. Dyar, S. Ciciliot, B. Blaauw, and M. Sandri, Mechanisms regulating skeletal muscle growth and atrophy, FEBS J, vol.280, pp.4294-314, 2013.

F. Zhang, K. Su, X. Yang, D. B. Bowe, A. J. Paterson et al., O-GlcNAc modification is an endogenous inhibitor of the proteasome, Cell, vol.115, pp.715-740, 2003.

S. Özcan, S. S. Andrali, and J. Cantrell, Modulation of transcription factor function by O-GlcNAc modification, Biochim Biophys Acta Gene Regul Mech, vol.1799, pp.353-64, 2010.

J. Walgren, T. S. Vincent, K. L. Schey, and M. G. Buse, High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin, Am J Physiol Endocrinol Metab, vol.284, pp.424-458, 2003.

C. Guinez, J. Lemoine, J. Michalski, and T. Lefebvre, 70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked Nacetylglucosamine, Biochem Biophys Res Commun, vol.319, pp.21-26, 2004.

C. Guinez, M. Losfeld, R. Cacan, J. Michalski, and T. Lefebvre, Modulation of HSP70 GlcNAc-directed lectin activity by glucose availability and utilization, Glycobiology, vol.16, pp.22-30, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00086696

N. E. Zachara, O. Donnell, N. Cheung, W. D. Mercer, J. J. Marth et al., Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells, J Biol Chem, vol.279, pp.30133-30175, 2004.

C. Guinez, A. Mir, Y. Leroy, R. Cacan, J. Michalski et al., Hsp70-GlcNAc-binding activity is released by stress, proteasome inhibition, and protein misfolding, Biochem Biophys Res Commun, vol.361, pp.414-434, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00250045

J. Gong and L. Jing, Glutamine induces heat shock protein 70 expression via O-GlcNAc modification and subsequent increased expression and transcriptional activity of heat shock factor-1, Minerva Anestesiol, vol.77, pp.488-95, 2011.

H. Naito, S. K. Powers, H. A. Demirel, T. Sugiura, S. L. Dodd et al., Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats, J Appl Physiol, vol.88, pp.359-63, 2000.

E. P. Roquemore, M. R. Chevrier, R. J. Cotter, and G. W. Hart, Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin, Biochemistry, vol.35, pp.3578-86, 1996.

Y. Atomi, S. Yamada, and Y. M. Hong, Dynamic expression of ALPHA.Bcrystallin in skeletal muscle effects of unweighting, passive stretch and denervation, Proc Japan Acad Ser B Phys Biol Sci, vol.66, pp.203-211, 1990.

L. Massaccesi, G. Goi, C. Tringali, A. Barassi, B. Venerando et al., Dexamethasone-induced skeletal muscle atrophy increases O-GlcNAcylation in C2C12 Cells, J Cell Biochem, vol.117, pp.1833-1875, 2016.

S. Lokireddy, C. Mcfarlane, X. Ge, H. Zhang, S. K. Sze et al., Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting, Mol Endocrinol, vol.25, pp.1936-1985, 2011.

T. P. Braun and D. L. Marks, The regulation of muscle mass by endogenous glucocorticoids, Front Physiol, vol.6, p.12, 2015.

D. Ratman, W. Vanden-berghe, L. Dejager, C. Libert, J. Tavernier et al., How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering, Mol Cell Endocrinol, vol.380, pp.41-54, 2013.

M. Li, H. Ruan, J. P. Singh, L. Zhao, T. Zhao et al., O-GlcNAc transferase is involved in glucocorticoid receptor-mediated transrepression, J Biol Chem, vol.287, pp.12904-12916, 2012.

B. L. Wong, I. Rybalsky, K. C. Shellenbarger, C. Tian, M. A. Mcmahon et al., Long-term outcome of interdisciplinary management of patients with duchenne muscular dystrophy receiving daily glucocorticoid treatment, J Pediatr, vol.182, pp.296-303, 2017.

M. Ogawa, H. Mizofuchi, Y. Kobayashi, G. Tsuzuki, M. Yamamoto et al., Terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAc glycosylation, Biochim Biophys Acta -Gen Subj, vol.1820, pp.24-32, 2012.

M. Ogawa, Y. Sakakibara, and K. Kamemura, Requirement of decreased O-GlcNAc glycosylation of Mef2D for its recruitment to the myogenin promoter, Biochem Biophys Res Commun, vol.433, pp.558-562, 2013.

X. Wang, Z. Feng, X. Wang, L. Yang, S. Han et al., O-GlcNAcase deficiency suppresses skeletal myogenesis and insulin sensitivity in mice through the modulation of mitochondrial homeostasis, Diabetologia, vol.59, pp.1287-96, 2016.

P. Huang, S. R. Ho, K. Wang, B. C. Roessler, F. Zhang et al., Muscle-specific overexpression of NCOATGK, splice variant of O-GlcNAcase, induces skeletal muscle atrophy, Am J Physiol Cell Physiol, vol.300, pp.456-65, 2011.

A. K. Nagel and L. E. Ball, Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation, Adv Cancer Res, vol.126, pp.137-66

C. X. Qin, R. Sleaby, A. J. Davidoff, J. R. Bell, D. Blasio et al., Insights into the role of maladaptive hexosamine biosynthesis and O-GlcNAcylation in development of diabetic cardiac complications, Pharmacol Res, vol.116, pp.45-56, 2017.

D. M. Lehman, D. Fu, A. B. Freeman, K. J. Hunt, R. J. Leach et al., A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-beta-D glucosaminidase is associated with type 2 diabetes in Mexican Americans, Diabetes, vol.54, pp.1214-1235, 2005.

C. Toleman, A. J. Paterson, T. R. Whisenhunt, and J. E. Kudlow, Characterization of the Histone Acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities, J Biol Chem, vol.279, pp.53665-73, 2004.

C. Keembiyehetty, D. C. Love, K. R. Harwood, O. Gavrilova, M. E. Comly et al., Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis, J Biol Chem, vol.290, pp.7097-113, 2015.

M. S. Macauley, Y. He, T. M. Gloster, K. A. Stubbs, G. J. Davies et al., Inhibition of O-GlcNAcase using a potent and cell-permeable inhibitor does not induce insulin resistance in 3T3-L1 adipocytes, Chem Biol, vol.17, pp.937-985, 2010.

E. B. Arias, J. Kim, and G. D. Cartee, Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle, Diabetes, vol.53, pp.921-951, 2004.

H. Yki-järvinen, A. Virkamäki, M. C. Daniels, D. Mcclain, and W. K. Gottschalk, Insulin and glucosamine infusions increase O-linked N-acetylglucosamine in skeletal muscle proteins in vivo, Metabolism, vol.47, pp.449-55, 1998.

L. F. Hebert, M. C. Daniels, J. Zhou, E. D. Crook, R. L. Turner et al., Overexpression of glutamine:fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance, J Clin Invest, vol.98, pp.930-936, 1996.

M. Hazel, R. C. Cooksey, D. Jones, G. Parker, J. L. Neidigh et al., Activation of the hexosamine signaling pathway in adipose tissue results in decreased serum adiponectin and skeletal muscle insulin resistance, Endocrinology, vol.145, pp.2118-2146, 2004.

H. Yki-järvinen, M. C. Daniels, A. Virkamäki, S. Mäkimattila, R. A. Defronzo et al., Increased glutamine:fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM, Diabetes, vol.45, pp.302-309, 1996.

R. C. Cooksey, L. F. Hebert, J. Zhu, P. Wofford, W. T. Garvey et al., Mechanism of hexosamine-induced insulin resistance in transgenic mice overexpressing glutamine:fructose-6-phosphate amidotransferase: decreased glucose transporter GLUT4 translocation and reversal by treatment with thiazolidinedione, Endocrinology, vol.140, pp.1151-1158, 1999.

M. G. Buse, K. A. Robinson, B. A. Marshall, and M. Mueckler, Differential effects of GLUT1 or GLUT4 overexpression on hexosamine biosynthesis by muscles of transgenic mice, J Biol Chem, vol.271, pp.23197-202, 1996.

M. G. Buse, K. A. Robinson, B. A. Marshall, R. C. Hresko, and M. M. Mueckler, Enhanced O -GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles, Am J Physiol Endocrinol Metab, vol.283, pp.241-50, 2002.

M. G. Buse, Hexosamines, insulin resistance, and the complications of diabetes: current status, Am J Physiol Endocrinol Metab, vol.290, pp.1-8, 2006.

W. Zhang, J. Liu, L. Tian, Q. Liu, Y. Fu et al., TRIB3 mediates glucoseinduced insulin resistance via a mechanism that requires the hexosamine biosynthetic pathway, Diabetes, vol.62, pp.4192-200, 2013.

D. A. Mcclain, W. A. Lubas, R. C. Cooksey, M. Hazel, G. J. Parker et al., Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia, Proc Natl Acad Sci, vol.99, pp.10695-10704, 2002.

D. M. D'souza, D. Al-sajee, and T. J. Hawke, Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells, Front Physiol, vol.4, p.379, 2013.

G. A. Ramirez-correa, J. W. Wang, Z. Zhong, X. Gao, W. D. Dias et al., O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function, Circ Res, vol.103, pp.1354-1362, 2008.

Y. Hu, D. Belke, J. Suarez, E. Swanson, R. Clark et al., Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart, Circ Res, vol.96, pp.1006-1019, 2005.

G. A. Ramirez-correa, M. J. Slawson, C. Zeidan, Q. Lugo-fagundo, N. S. Xu et al., Removal of abnormal myofilament O-GlcNAcylation restores Ca 2+ sensitivity in diabetic cardiac muscle, Diabetes, vol.64, pp.3573-87, 2015.

A. R. Wende, Unsticking the broken diabetic heart: O-GlcNAcylation and calcium sensitivity, Diabetes, vol.64, pp.3339-3380, 2015.

J. Suarez, Y. Hu, A. Makino, E. Fricovsky, H. Wang et al., Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes, AJP Cell Physiol, vol.295, pp.1561-1569, 2008.

X. Zhu-mauldin, S. A. Marsh, L. Zou, R. B. Marchase, and J. C. Chatham, Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates storeoperated calcium entry in neonatal cardiomyocytes, J Biol Chem, vol.287, pp.39094-106, 2012.

H. Eshima, Y. Tanaka, T. Sonobe, T. Inagaki, T. Nakajima et al., In vivo imaging of intracellular Ca2+ after muscle contractions and direct Ca2+ injection in rat skeletal muscle in diabetes, AJP Regul Integr Comp Physiol, vol.305, pp.610-618, 2013.

Y. Safwat, N. Yassin, G. El-din, M. Kassem, and L. , Modulation of Skeletal muscle performance and SERCA by exercise and adiponectin gene therapy in insulin-resistant rat, DNA Cell Biol, vol.32, pp.378-85, 2013.

P. S. Banerjee, J. Ma, and G. W. Hart, Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria, Proc Natl Acad Sci, vol.112, pp.6050-6055, 2015.