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MAIN TEXT

Large clinical trials in type 1 diabetes have underlined the important role of tissues' prolonged exposure to hyperglycemia in the pathogenesis of microvascular complications [START_REF] Hainsworth | Complications Trial /Epidemiology of Diabetes I, Complications Research G: Risk Factors for Retinopathy in Type 1 Diabetes: The DCCT/EDIC Study[END_REF]. Endothelial dysfunction can occur very early in the disease history, i.e., before overt vascular complications [START_REF] Ceriello | Simultaneous Control of Hyperglycemia and Oxidative Stress Normalizes Endothelial Function in Type 1 Diabetes[END_REF], hence altering metabolites and oxygen (O2) supply to major tissues. Hyperglycemia may also contribute to mitochondrial dysfunction leading to impairment of tissue energy production [START_REF] Munusamy | Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells[END_REF].

Long before developing overt clinical diabetes complications, oxygen supply and use can be challenged in daily-life situations such as aerobic exercise. Maximal oxygen consumption (V ̇O$%&' ), determined during exhaustive incremental exercise, reflects the highest achievable outcome of the integrated pathway. It relies on the serial steps of oxygen transfer from lungs to blood, delivery of oxygenated blood through the complicated branching networks of blood vessels, and its final use in skeletal muscle mitochondria. In type 1 diabetes, several studies have attempted to investigate some of these serial steps, albeit each of them in an isolated approach.

While a lower pulmonary diffusion capacity has been described in patients suffering from long-term diabetes complications (4), it does not appear as clearly in studies including uncomplicated patients (5; 6), possibly because of the wide range of patients' glycemic control [START_REF] Niranjan | Glycemic control and cardiopulmonary function in patients with insulin-dependent diabetes mellitus[END_REF]. The lungs represent a suitable target for hyperglycemia-induced vessel dysfunction and non-enzymatic glycation of collagen proteins, because of their wide capillary network and their significant amount of connective tissue. Concerning the second step of the oxygen supply process, we have previously suggested normal arterial oxygenation in uncomplicated patients with poorly-controlled type 1 diabetes, but impaired exercise-induced muscle vasodilatation [START_REF] Tagougui | Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes[END_REF].

The ultimate step of O2 utilization in the mitochondria has been only partially investigated in humans with type 1 diabetes. In vivo non-invasive approaches using either near-infrared spectroscopy (NIRS) (i.e., muscle oxygen extraction) during aerobic exercise [START_REF] Tagougui | Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes[END_REF] or 31P-magnetic resonance spectroscopy (i.e., calculated maximal rate of ATP oxidative resynthesis) following a local isometric exercise [START_REF] Crowther | Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes[END_REF][START_REF] Item | Mitochondrial capacity is affected by glycemic status in young untrained women with type 1 diabetes but is not impaired relative to healthy untrained women[END_REF][START_REF] Cree-Green | Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance[END_REF] indirectly opened up the possibility of an impaired muscle extraction and/or mitochondrial use of oxygen in comparison with non-diabetic controls, and more so in cases with a higher HbA1c level. However, the exact causes for lower in vivo muscle oxygen extraction and/or use cannot be inferred from these indirect non-invasive approaches. Studies using muscle biopsies reported normal maximal oxidative enzymatic capacities in subjects with type 1 diabetes (10; 12-14).

Nevertheless, enzymatic assays of the individual steps of the Krebs cycle, beta oxidation, and respiratory chain complexes cannot reveal how well all enzymes interact with each other and may mask some mitochondrial defects. In contrast, in situ gold-standard experiments in permeabilized muscle fibers, using a specific substrate/inhibitor titration approach, provide a detailed characterization of functional intact mitochondria in their normal intracellular position and assembly, preserving essential interactions [START_REF] Kuznetsov | Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells[END_REF]. Monaco et al. thus implemented this method to clarify mitochondrial (dys)function in type 1 diabetes and found a decreased complex II-supported respiration [START_REF] Monaco | Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes[END_REF]. However, the putative consequences of this ex vivo defect were not tested in vivo.

Therefore, by combining multiple in vivo (particularly during exercise) and ex vivo (in muscle biopsies) approaches in patients and their strictly matched healthy controls, the present study aims to gain a further indepth insight into the impact of type 1 diabetes and glycemic control on all steps of the integrated pathway for oxygen, from the atmosphere to the mitochondrial respiratory chain in skeletal muscle.

RESEARCH DESIGN AND METHODS

This study was approved by the regional ethical committee (N°EudraCT:2009-A00746-51). Written consent was obtained before inclusion. Sixteen patients (18-40 years of age) with type 1 diabetes for at least 1 year and free from microvascular and macrovascular complications, were recruited (T1D group, Table 1). They were compared to 16 healthy subjects (CON group, normal glucose tolerance checked with OGTT, WHO criteria) selected (by verbal questioning) to strictly match each of the T1D patients according to gender and to preestablished ranges or values for age (± 7 years), body mass index (± 4 kg.m -2 ), moderate-to-vigorous leisure time physical activity level (±1 h . wk -1 when the patients' physical activity category was 0 h . wk -1 , ± 2 h . wk -1 for category 2-6 h . wk -1 , ± 4 h . wk -1 for category > 6 h . wk -1 ; pairs of patient/control being in the same category), and tobacco use (grouped according to no smoking, < 10 cigarettes a day, and > 10 cigarettes a day). The matching of participants in terms of body composition and physical activity was further checked using dual-energy X-ray absorptiometry (HOLOGIC-Inc., USA),the validated Modified Activity Questionnaire [START_REF] Kriska | Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians[END_REF] and accelerometry (GT1M;Actigraph) over 7 consecutive days.

Subjects came twice to the laboratory. They were requested to refrain from vigorous activity for 48 h prior to the visits and from using tobacco the morning of both visits.

During the first visit, patients received their usual morning insulin bolus and all subjects consumed a breakfast (mean ± SD: 8.1 ± 4.7% proteins, 43.3 ± 16.1% lipids, 48.6 ± 15.2% carbohydrates) based on their usual breakfast and previously verified by a dietitian. Afterwards, lung diffusion capacity for carbon monoxide (DLCO) and nitric oxide (DLNO) was assessed. An incremental maximal cycling exercise was performed 3.4 ± 0.5 h after breakfast, with concomitant measurements of respiratory gas exchanges, arterial O2 transport, skeletal muscle perfusion, and O2 extraction. After a 2-min resting period (baseline) sitting on the cycle ergometer (Excalibur-Sport, Lode, The Netherlands), the test started at 30W and was increased by 20W every 2 min until exhaustion (ambient temperature, 18-20°C).

Following an 8 h overnight fast, on the morning of the second visit, a muscle biopsy was taken from the vastus lateralis to assess ex vivo intrinsic mitochondrial respiratory capacity in permeabilized skinned muscle fibers.

Alveolar-capillary membrane diffusion capacity (DLCO)

DLCO was assessed following the international guidelines with apnea maintained for at least 8 sec (Medisoft, Dinant, Belgium). To gain access to the determinants of DLCO, i.e., membrane transfer capacity (Dm) and capillary lung volume (Vc), DLNO was further evaluated.

Cardiopulmonary response

The electrocardiogram and pulmonary gas exchanges were measured continuously throughout exercise (breathby-breath system, Ergocard®). V ̇O$%&' (the highest 15-s average value at test termination) was obtained for all the subjects (Table 2). O2 pulse (ratio V ̇O$ /heart rate) was used as a stroke volume indicator during exercise [START_REF] Whipp | Estimating exercise stroke volume from asymptotic oxygen pulse in humans[END_REF].

Muscle perfusion and O2 extraction

Subjects were equipped with an NIRS probe (Oxymon MkIII, Artinis, The Netherlands) to monitor, at 10 Hz, light absorption (two continuous wavelengths, 780 and 850 nm) across vastus lateralis microvessels throughout exercise [START_REF] Tagougui | Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes[END_REF]. Using the Beer-Lambert law and a normalization against the baseline period, we determined the changes in muscle oxygenation (oxyhemoglobin, ΔO2Hb), deoxygenation due to O2 extraction (deoxyhemoglobin, ΔHHb), and blood volume (total hemoglobin, ΔTHb, as the arithmetical sum of ΔO2Hb and ΔHHb) [START_REF] Barstow | CORP: Understanding near infrared spectroscopy (NIRS) and its application to skeletal muscle research[END_REF].

Blood analyses (details about assays in Table 2 legend)

Forearm venous (catheter) blood samples were taken at rest and at maximal exercise for measurement of plasma glucose, catecholamines, serum free insulin, free fatty acids, and glycerol. Likewise, at rest and at maximal exercise, microcapillary arterialized ear-lobe blood was collected for determination of erythrocyte 2,3diphosphoglycerate, lactate, pH, K + , PaCO2 and components of arterial O2 content (CaO2) (i.e., arterial O2 saturation (SaO2), PaO2, Hb).

Mitochondrial respiratory capacity in muscle fibers

A sample of vastus lateralis muscle, obtained by the percutaneous Bergstrom technique after local anesthesia (lidocaine 2%), was immediately placed into an ice-cold solution mimicking the intracellular fluid [START_REF] Daussin | Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle[END_REF]. The muscle fibers were separated under a binocular microscope and permeabilized with saponin (50µg/mL) for 30 min (dissolving the sarcolemma but not the outer mitochondrial membrane). After being placed for 10 min in a respiration buffer [START_REF] Daussin | Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle[END_REF] to wash out adenine nucleotides and creatine phosphate, skinned fibers were transferred in a 1 mL water-jacketed oxygraphic cell (Hansatech Instruments, UK) equipped with a Clark electrode.

Oxygen consumption (flux) reflects the first time derivative of oxygen concentration in the respiration chambers, expressed as µmol O2 . min -1. g dry weight -1 . Relative contributions of the respiratory complexes I, II, and IV (CI, CII, CIV), and of oxidation/phosphorylation were assessed using the following sequential additions of substrates/inhibitors: glutamate-malate (10:5 mM), generating NADH,H+ (( ̇GM); the phosphate acceptor, ADP (2mM) (( ̇GM-ADP); the CI inhibitor, rotenone (0.2 µM); the electron donor for CII, succinate (25 mM) (( ̇Succ); the uncoupler, CCCP (carbonyl cyanide m-chloro phenyl hydrazone, 1µ M) (( ̇Succ-CCCP); the CIII inhibitor, antimycin A (2.5 µM); and the artificial electron donor to cytochrom c, N,N,N',N'-tetramethyl-pphenylenediamine dihydrochloride (TMPD)-ascorbate (0.5:2 mM), assessing CIV capacity as an isolated step of the respiratory chain (( ̇TMPD). The respiratory control ratio (RCR, ( ̇GM-ADP/( ̇GM) was calculated as an index of coupling efficiency between oxidation (O2 consumption) and phosphorylation (of ADP to ATP) with CI substrates. ( ̇Succ/( ̇GM-ADP and ( ̇TMPD/( ̇GM-ADP were calculated as internal normalizations to assess specific CII and CIV relative capacities independently of mitochondrial content. Mitochondrial capacities to oxidize carbohydrates (( ̇Pyr) and fatty acids (( ̇PC) were assessed in separate samples in the respiration buffer, in the presence of ADP (2 mM) and malate (2 mM), using sequential additions of pyruvate (1 mM) and palmitoylcarnitine (135 µM). Maximal citrate synthase activity (expressed per milligrams of protein) was assessed on muscle samples, immediately frozen in liquid nitrogen and preserved at -80°C, using spectrophotometric assay.

Statistical analyses

Statistical analyses were performed with IBM SPSS 19.0 software. Results are reported as means ± SD unless otherwise indicated. Non-repeated data were compared between groups with the Wilcoxon matched-pairs test.

Repeated data (normally distributed according to Shapiro-Wilk) were compared between groups (fixed effect) and according to exercise (fixed effect: rest vs. peak exercise or, for NIRS, ventilatory expiratory flow [V ̇)], and O2 pulse outcomes, relative exercise intensities with a value every 10% V ̇O$%&' as well as absolute exercise intensities in Watts) using linear mixed models for repeated measurements. If significant main effects or interactions were observed, Bonferroni post hoc comparisons were applied. Correlations were tested using Spearman's rho. P<0.05 was considered statistically significant.

RESULTS

Demographic and anthropometric data did not differ between groups (Table 1). T1D had lower V ̇O$%&' (Table 2) than CON despite comparable levels of habitual physical activity (Table 1) as well as comparable heart rates at exhaustion. Plasma glucose increased during exercise in both groups, with overall higher values in T1D (Table 2). No hypoglycemia occured in T1D during exercise.

Alveolar-capillary diffusion (Table 2)

DLCO, as well as its determinants Dm and Vc, did not differ between groups. Vc is influenced by the number of pulmonary capillaries in contact with ventilated alveoli, which increases during exercise because pulmonary blood flow and lung volumes increase. O2 pulse, indirectly reflecting stroke volume, as well as V ̇) and its components (tidal volume, respiratory rate), increased throughout exercise without intergroup differences (data not shown, mixed models: Group and Interaction: NS).

Oxygen arterial transport (Table 2)

Although PaO2 was slightly lower in T1D vs. CON, CaO2 and correspondingly [Hb] were not impaired, and they increased even more during exercise in T1D vs. CON.

Muscle perfusion (ΔTHb) and O2 extraction (ΔHHb) (Figure 1)

Despite higher serum insulin and normal catecholamine concentrations (Table 2), the levels and the increase in ΔTHb were lower in T1D vs. CON, especially at exercise intensities above 30% of V ̇O$%&' . The levels and the increase in ΔHHb were lower in T1D vs. CON, particularly at exercise intensities above 50% of V ̇O$%&' , and this, in spite of higher 2,3-diphosphoglycerate concentrations in T1D (Table 2).

Muscle O2 mitochondrial use (Figure 2)

Citrate synthase activity was similar in T1D and CON (92 ± 47 and 85 ± 31 pmol . min -1. mg protein -1 , respectively).

Oxygen fluxes with the different mitochondrial substrates, ( ̇GM-ADP and ( ̇Pyr (electrons through CI to CIII, CIV), as well as ( ̇Succ (electrons through CII to CIII, CIV) and ( ̇PC (electrons through CI and CII to CIII, CIV), did not differ between groups. The comparable ( ̇PC and ( ̇Pyr, measured in vitro in muscle, were in accordance with in vivo whole-body lipid and carbohydrate estimated oxidation rates throughout exercise (i.e., comparable V ̇+,$ /V ̇,$ , data not shown). Neither alterations in ATP synthase (( ̇Succ-CCCP minus ( ̇Succ, data not shown) nor in global electron transport system capacity (from CII: ( ̇Succ-CCCP), or oxidation/phosphorylation coupling efficiency (RCR) were noticeable in T1D. However, specific examination of the different mitochondrial chain complexes revealed impairment in CIV relative capacity (( ̇TMPD/( ̇GM-ADP) in T1D while CII relative capacity (( ̇Succ/( ̇GM-ADP) was unaltered.

It is noteworthy that in T1D, diabetes duration correlated negatively with CIV relative capacity (( ̇TMPD/( ̇GM-ADP, r = -0.59, P<0.05), and HbA1c tended to negatively correlate with CIV capacity (( ̇TMPD, r = -0.47, P<0.07). Moreover, longer diabetes duration and lower CIV relative capacity were predictors (covariates in mixed models) of a smaller ∆HHb rise with exercise intensity (interaction with exercise intensity, e = -0.004, P<0.001 and e = +0.02, P<0.001, respectively). The other steps of O2 transport from lung to mitochondria were not significantly associated with HbA1c or diabetes duration.

In CON, ( ̇TMPD correlated with V ̇O$%&' and maximal aerobic power (r>0.64, P<0.01).

CONCLUSIONS

The novelty of the present study resides in the examination of all steps of the pathway of oxygen from air to mitochondria by combining both in vivo and ex vivo approaches in patients with uncomplicated type 1 diabetes and strictly matched healthy controls (Supplemental Figure S1). We showed that alveolarcapillary membrane diffusion capacity and arterial O2 transport were normal at this stage of the disease.

However, we confirmed that these patients display blunted perfusion and oxygen extraction in active skeletal muscle microvessels at moderate-to-maximal exercise intensities. The defect in oxygen extraction occurred despite an overall normal intrinsic mitochondrial maximal respiratory capacity. The only detectable alteration in the mitochondrial chain appeared at the level of CIV, and all the more among patients with poorly-controlled longstanding diabetes.

Considering our results and the very few studies having matched their control population on physical activity levels (6; 21), it seems that DLCO, Dm, and Vc are not impaired and do not correlate with glycemic control in patients with uncomplicated type 1 diabetes. Thus, the thickening of the pulmonary capillary basal lamina and pulmonary vasculature dysfunction are probably still absent, or without detectable consequences, when clinical complications are not overt. It is, however, still possible that some subtle alterations are already present in the T1D participants, as suggested by the reduced PaO2. Notwithstanding, CaO2 was adequately maintained throughout exercise in T1D. Subtle alterations in lung function might have been balanced by a higher affinity for O2 when hemoglobin is glycated [START_REF] Ditzel | Oxygen transport impairment in diabetes[END_REF], leading to normal SaO2. It could have also been the case in previous study in which patients with longstanding type 1 diabetes displayed alterations of DLCO and Dm in a more demanding situation (intense exercise in a hypoxic environment) without any repercussion on SaO2 [START_REF] Lee | Type 1 Diabetes Duration Decreases Pulmonary Diffusing Capacity during Exercise[END_REF].

While the first steps of oxygen supply occurring in the lungs and arteries resulted in a normal arterial O2 transport throughout exercise in T1D, the subsequent steps in muscle microvessels appeared to be impaired.

Very few studies have investigated exercise-induced muscle vasoreactivity in type 1 diabetes. Rissanen et al.

reported reduced muscle blood flow in the active leg of adults with type 1 diabetes, at the peak intensity of an incremental cycling exercise, using an indirect method based on deoxygenation patterns (%∆HHb) and theoretical values of peripheral arterial-venous O2 difference [START_REF] Rissanen | Central and peripheral cardiovascular impairments limit VO(2peak) in type 1 diabetes[END_REF]. In the current work and in our previous study [START_REF] Tagougui | Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes[END_REF], we as well highlighted an impaired exercise-induced increase in muscle blood volume in response to maximal incremental exercise.

Admittedly, cardiac output is one determinant of muscle perfusion [START_REF] Volianitis | Cardiovascular control during whole body exercise[END_REF]. We used an indirect marker of stroke volume which appeared normal throughout exercise in T1D. The available literature related to cardiac output in uncomplicated patients with type 1 diabetes and physical activity-matched controls is conflicting, with one report highlighting lower cardiac output during submaximal exercise in adolescents [START_REF] Gusso | Diastolic function is reduced in adolescents with type 1 diabetes in response to exercise[END_REF], while others found no intergroup differences in adults at submaximal [START_REF] Rissanen | Central and peripheral cardiovascular impairments limit VO(2peak) in type 1 diabetes[END_REF] or peak exercise (6; 10). Even if the involvement of central cardiovascular factors cannot be totally discarded in the understanding of lower muscle blood volume, the latter is probably also triggered by peripheral microvascular alterations. Supporting this hypothesis, Pichler et al.

found an impaired increase in brachioradialis muscle blood flow in children with type 1 diabetes in the recovery period of a short rhythmic handgrip test, a local exercise involving a very small muscle mass where muscle blood flow is unlikely to be limited by cardiac output [START_REF] Pichler | Reduced forearm blood flow in children and adolescents with type 1 diabetes (measured by near-infrared spectroscopy)[END_REF].

Following the few previous studies on exercise-induced muscle microvascular reactivity limits in type 1 diabetes (8; 23), we go here a step further into the understanding of putative underpinning mechanisms.

Although their relative contribution remains controversial, it is well recognized that arterial, capillary, and venous compartments all participate in the muscle microvascular THb signal [START_REF] Barstow | CORP: Understanding near infrared spectroscopy (NIRS) and its application to skeletal muscle research[END_REF]. Within muscle arterioles, while norepinephrine represents a vasoconstrictor devoted to blood pressure regulation, epinephrine, as well as insulin [START_REF] Steinberg | Vascular function, insulin resistance and fatty acids[END_REF], can promote endothelial nitric oxide production and hence vasorelaxation. In our study, while plasma catecholamines were comparable, serum free insulin was markedly elevated in T1D vs. CON. The high insulin concentrations, concomitant with higher plasma glucose levels, reflect the well-described state of insulin resistance in type 1 diabetes, which could presumably also apply at the endothelial cell level, as already proven in obesity and type 2 diabetes [START_REF] Steinberg | Vascular function, insulin resistance and fatty acids[END_REF]. This might explain the impaired muscle vasoreactivity despite higher insulin concentrations observed in the T1D group. Of note, the higher plasma glucose levels observed in T1D throughout exercise can certainly not explain the concomitant lower increase in regional blood volume. Dye et al. [START_REF] Dye | Hyperglycemia increases muscle blood flow and alters endothelial function in adolescents with type 1 diabetes[END_REF] indeed found an inverse effect with an increased post-occlusive reactive hyperemia-induced vasodilatation in hyperglycemic (200 mg.dL -1 ) compared to euglycemic conditions in patients with type 1 diabetes. The other vasoactive moieties that we considered (PaCO2, K+, pH) did not significantly differ between the two groups. While muscle microvascular density is presumably normal in uncomplicated type 1 diabetes (10; 16), further studies are needed to fully determine the molecular mechanisms of the reduced exercise-induced muscle vasoreactivity. Although Fayh et al. [START_REF] Fayh | Effects of L-arginine supplementation on blood flow, oxidative stress status and exercise responses in young adults with uncomplicated type I diabetes[END_REF] hypothesized that nitric oxide production is not involved in the lower post-exercise blood flow that they observed in young adults with type 1 diabetes, this result is worth a confirmation since they did not distinguish nitrates from nitrites in their measurements. Only nitrites are known to sensitively reflect acute changes in nitric oxide synthase activity [START_REF] Lauer | Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action[END_REF].

Since muscle O2 and high-energy phosphate stores are small, any sustained elevation in muscle ATP turnover in active skeletal muscle during exercise requires that the rate of O2 delivery to muscle mitochondria precisely matches its O2 requirements. In the current study, the last step of oxygen delivery to skeletal muscle before its utilization, i.e., muscle O2 extraction (∆HHb), was significantly blunted in response to increased exercise intensity in T1D. This was more pronounced in the case of longstanding diabetes, and it occurred despite higher erythrocyte 2,3-diphosphoglycerate concentrations. As previously suggested [START_REF] Tagougui | Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes[END_REF], this result obtained in a sample with rather poorly-controlled diabetes could be partly explained by an impairment in oxyhemoglobin dissociation near active skeletal muscle, induced by the greater affinity of HbA1c for O2 compared to the nonglycated one [START_REF] Ditzel | Oxygen transport impairment in diabetes[END_REF]. It is noteworthy that adjustments in 2,3-diphosphoglycerate concentrations compensatory to increased HbA1c formation in type 1 diabetes may be insufficient to maintain the normal erythrocyte oxygen dissociation (31).

Besides the putative reduced oxyhemoglobin dissociation, the influence of impaired mitochondrial O2 use on the blunted ∆HHb signal cannot be ruled out. To clarify the partition between both mechanisms, we combined, in an integrated approach, an ex vivo analysis in muscle biopsies with the in vivo exploration of O2 extraction during exercise. In the T1D group, no major alteration in mitochondrial oxidative capacity appeared.

Mitochondrial content (citrate synthase activity) was comparable in both groups as previously suggested (12; 13). We also found normal overall intrinsic mitochondrial maximal respiratory capacity with the different mitochondrial substrates. Of note, while ex vivo mitochondrial intrinsic capacity to oxidize palmitate as well as in vivo free fatty acid oxidation rate were normal in T1D, it remains that lipolysis might be blunted as suggested by the lower circulating glycerol at rest and at maximal exercise. The latter observation must be considered in conjunction with the concomitant higher circulating insulin in T1D, since insulin is a potent inhibitor of lipolysis.

To date, only one other research group ( 16) provided insight into mitochondrial oxidative capacities in functional intact mitochondria under in situ-like conditions in type 1 diabetes. In line with our results, Monaco et al. did not observe any alteration in CI-supported mitochondrial respiration, regardless of the substrate used, in a smaller sample of subjects (11 patients vs. 8 healthy subjects) [START_REF] Monaco | Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes[END_REF]. However, in contrast to our results and to previous studies examining isolated maximal capacity of succinate dehydrogenase (12; 14), Monaco et al.

observed a lower capacity of CII-supported respiration by succinate [START_REF] Monaco | Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes[END_REF]. In the latter study, Body Mass Index was higher in the patients with type 1 diabetes compared to the healthy controls. This intergroup difference might partly explain the discordance with our results about CII-supported respiration capacity. Diet-induced obesity in animals has indeed been shown to decrease the rate of CII substrate-driven ATP synthesis in cardiac muscle [START_REF] Sverdlov | High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II[END_REF], and weight loss in obese humans is associated with improvement in adipose tissue CII activity [START_REF] Ngo | Oxidative modifications of mitochondrial complex II are associated with insulin resistance of visceral fat in obesity[END_REF]. Accordingly, by further testing correlations between participants' characteristics and mitochondrial respiration among T1D patients, we found that fat mass percentage, as objectively measured by DEXA, inversely correlated with ( ̇Succ (r = -0.51, P<0.05).

Complex IV of the electron transport chain was not specifically investigated in the study of Monaco et al., although it represents a major site for mitochondrial diseases [START_REF] Keightley | A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria[END_REF]. Complex IV is the terminal component of the mitochondrial respiratory chain and is essential for mitochondrial energy transduction. It catalyzes electron transfer from cytochrome c to molecular oxygen, generating a proton gradient required for ATP synthesis.

Strikingly, the CIV relative contribution was significantly reduced (by ~29%) in T1D patients involved in our study, and mostly in cases of longer diabetes duration and higher HbA1c levels. The underlying mechanisms of such an impairment remain to be investigated, but chronic hyperglycemia-induced oxidative stress may be part of the picture. It is well known that excessive glucose provision to mitochondria elevates reactive oxygen species (3), and as demonstrated on bovine heart muscle, CIV represents an important target for oxidative damage [START_REF] Choksi | Oxidatively damaged proteins of heart mitochondrial electron transport complexes[END_REF], thereby contributing to mitochondrial dysfunction [START_REF] Chen | Inhibition of cytochrome c oxidase activity by 4hydroxynonenal (HNE). Role of HNE adduct formation with the enzyme subunits[END_REF]. Particularly in type 1 diabetes, the low insulin concentrations in the portal circulation due to the peripheral mode of insulin administration, shifts glucose metabolism into an excessive hepatic glucose production, while skeletal muscle is forced to accept the high glucose load in a context of high peripheral circulating insulin [START_REF] Gregory | Insulin Delivery Into the Peripheral Circulation: A Key Contributor to Hypoglycemia in Type 1 Diabetes[END_REF].

In studies closely mimicking the in vivo conditions by using saponin-permeabilized human muscle fibers, it has been demonstrated that CIV exerts a tight control on respiration, with only a low excess capacity of cytochrome oxidase. This is even more pronounced in cases of the lower, physiological oxygen concentrations [START_REF] Wiedemann | Oxygen dependence of flux control of cytochrome c oxidase --implications for mitochondrial diseases[END_REF], which can explain the pathological phenotype of mild cytochrome c oxidase deficiencies in mitochondrial myopathies [START_REF] Keightley | A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria[END_REF]. Consistently, in our study, the relative CIV capacity defect in T1D may have implications for aerobic fitness: the lower CIV capacity significantly predicted the blunted exercise-induced increase in muscle O2 extraction in T1D, while higher CIV capacity was associated with higher aerobic fitness in CON.

Last, although changes in skeletal muscle have been intensively studied in rodent models of type 1 diabetes [START_REF] Krause | Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms[END_REF], further investigation in humans is required to supplement our mechanistic understanding of observed mitochondrial dysfunctions. Rodent models of diabetes are not directly transposable to humans because tight blood glucose control through multiple insulin injections is virtually impossible to achieve over long periods of time in animals. In particular, assessing complex IV supramolecular interactions with other complexes might be of great value. The structural and functional organization of the electron transport chain could indeed change from freely moving to assembled structures called supercomplexes, which are believed to increase the transport efficiency and limit the production of reactive oxygen species. In a mouse model of type 1 diabetes mellitus, overexpression of mitofilin, a protein that affect supercomplex assembly, was even able to restore mitochondrial function [START_REF] Thapa | Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction[END_REF].

In summary, maximal aerobic exercise could represent a physiological way to identify possible subclinical defects in the serial steps responsible for appropriate adjustments of O2 delivery and subsequent mitochondrial O2 utilization. This investigation revealed that relatively young patients with type 1 diabetes display blunted muscle microvascular reactivity to exercise along with lower relative capacity of CIV in the mitochondrial respiratory chain. Early microvascular and muscle oxidative capacity dysregulations, in addition to negatively impacting aerobic fitness-a strong predictor of cardiovascular risk-could also have deep long-term consequences on the primary determinants of diabetic complications. Defects in blood and nutrient delivery to skeletal muscle, as well as altered subsequent mitochondrial oxidation, can indeed have a direct impact on glycemic and lipid profiles. Skeletal muscle is actually known to be responsible for most of the insulinstimulated whole body glucose disposal and for roughly half of the non-insulin mediated glucose uptake in the presence of hyperglycemia [START_REF] Baron | Group: NS, Interaction: NS Peak 5.9 ± 1.0 .4 ± 0.8 Metabolic data Plasma glucose (mmol . L -1 ) Rest 7[END_REF]. It is also quantitatively the most dominant tissue with respect to lipid metabolism. In the face of these defects, implementing non-pharmacological interventions like specific exercise training programs might be of utmost clinical importance, especially since skeletal muscle is a highly malleable tissue with the capacity of metabolic adaptations in response to contractile activity. The challenge of future studies will be to ensure that these defects in peripheral tissues perfusion-observed even at light to moderate exercise intensities-could be improved by training and euglycemia. 
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 2 Figure 2. Mitochondrial respiratory capacity in saponin skinned muscle fibers of vastus lateralis Black bars, patients with type 1 diabetes; White bars, healthy controls. Results are expressed as means ± SD. Significantly different from CON: *P<0.05.
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 2A Figure 2A. Step-by-step analysis of various segments of the respiratory chain) ̇GM, basal adenylate-free leak CI respiration : oxygen flux with glutamate-malate (10:5 mM) to assess oxygen spent for maintenance of the membrane potential, with electron flow from malate dehydrogenase-produced NADH,H+, going though CI, CIII and CIV, i.e., respiration due to protons leaking and slipping back into the mitochondrial matrix, cation cycling and, to a small extent, to reactive oxygen species production-induced electron leak (malate at 2 mM is used to initiate the Krebs cycle while redirecting 2-oxoglutarate outside of the mitochondria instead of producing succinate)) ̇GM-ADP, oxidative phosphorylation (OXPHOS) capacity from CI (through CIII and CIV): oxygen flux after addition of the phosphate acceptor ADP at its saturating concentration (2 mM) ) ̇Succ, OXPHOS capacity from CII (through CIII and CIV): oxygen flux after sequential addition of the complex I inhibitor, rotenone (0.2 µM) and then, of the electron donor for complex II, succinate (25 mM), for assessing mitochondrial respiration from FADH2) ̇Succ-CCCP, global electron transport system capacity from CII and capacity of succinate dehydrogenase: oxygen flux after addition of the uncoupler CCCP (carbonyl cyanide m-chloro phenyl hydrazone, 1 µM) thereby bypassing the control of the phosphorylation system, for assessment of uncoupled O2 flux with electron supply from FADH2) ̇TMPD, CIV capacity : oxygen flux after the sequential addition of CIII inihibitor, antimycin A (2.5 µM) and then N,N,N',N'tetramethyl-p-phenylenediamine dihydrochloride (TMPD)-ascorbate (0.5:2 mM as an artificial electron donor to cytochrom cFigure 2B. Respiratory control ratios) ̇GM-ADP / ) ̇GM, oxidation-phosphorylation coupling efficiency (RCR): ratio of respiration rate before and after the addition of the saturating concentration of ADP ) ̇Succ / ) ̇GM-ADP and ) ̇TMPD / ) ̇GM-ADP: specific CII and CIV relative capacities, respectively.

Figure 2C .

 2C Figure 2C. Mitochondrial capacities to oxidize carbohydrates and fatty acids) ̇Pyr and ) ̇PC: mitochondrial capacities to oxidize carbohydrates and fatty acids, respectively: assessed in separate samples in the respiration buffer, in the presence of ADP (2 mM) and malate (2 mM), using sequential additions of pyruvate (1 mM) (an index of glucose oxidation), and palmitoyl-carnitine (135 µM) (undergoing b-oxidation)

Table 1 .

 1 Participants'characteristics. † we also checked that subcutaneous skinfold was <1.5cm at the vastus lateralis to ensure accuracy of NIRS measurements; HbA1c was measured just before exercise in EDTA anticoagulated blood (VARIANT II TURBO System, Bio-Rad); usual daily macro nutrient intake was assessed using a 3-day diary (including 2 weekdays and 1 week end day), checked by a research trained dietitian during an appointment with the participant. Accelerometry (GT1M, Actigraph) data are displayed only for 8 subjects per group because 1 healthy control and 4 patients with type 1 diabetes did not strictly follow our recommendations (mainly, wearing the accelerometer during all waking hours) and the accelerometer devices worn by 2 patients with type 1 diabetes were defective (no signal recorded at the end of the week). The P-values (Wilcoxon test) for leisure activity (h.wk -1 and MET-h.wk -1 ), total activity (MET-h.wk -1 ) and moderate-to-vigorous physical activity (accelerometry, min.wk -1 ) were 0.53, 0.43, 0.64 and 0.26, respectively.

	T1D	CON

Table 2 .

 2 Aerobic fitness, alveolar-capillary exchanges, circulatory and metabolic data during incremental maximal exercise.

	T1D (n =16)	CON (n =16)	Mixed models main effects or Wilcoxon

. mL-1 red blood cells) Rest 3.97 ± 0.89 3.45 ± 0.68 Exercise: NS, Group: P < 0.05, Interaction: NS

. Recordings from near-infrared spectroscopy in vastus lateralis

  Change inΔTHb (A), change in ΔO2Hb (B), change in ΔHHb (C). The 40 mm-interspersed emitter-detector pair was placed on the belly of the right vastus lateralis muscle. NIRS outcomes changes are displayed according to exercise intensities expressed as relative values (% V ̇O%&'( ). Mixed models revealed almost identical results when studying NIRS according to absolute exercise intensities (i.e., expressed as absolute work rates in Watts, data not shown).

	Values are means ± SE
	Black squares, T1D, patients with type 1 diabetes; white squares, CON, healthy control group
	Main effects from mixed models: Exercise, Exercise effect; Group, Group effect; Interaction, Exercise × group interaction. Post hoc
	analyses for group effect: significantly different from controls at *** P<0.001. Post hoc analyses for time effect: significantly
	different from rest at † † P<0.01, and † † † P<0.001.
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