D. P. Hainsworth, I. Bebu, L. P. Aiello, W. Sivitz, R. Gubitosi-klug et al., Complications Trial /Epidemiology of Diabetes I, Complications Research G: Risk Factors for Retinopathy in Type 1 Diabetes: The DCCT/EDIC Study, Diabetes Care, vol.42, pp.875-882, 2019.

A. Ceriello, S. Kumar, L. Piconi, K. Esposito, and D. Giugliano, Simultaneous Control of Hyperglycemia and Oxidative Stress Normalizes Endothelial Function in Type 1 Diabetes, Diabetes Care, vol.30, pp.649-654, 2007.

S. Munusamy and L. A. Macmillan-crow, Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells, Free Radic Biol Med, vol.46, pp.1149-1157, 2009.

D. C. Weir, P. E. Jennings, M. S. Hendy, A. H. Barnett, and P. S. Burge, Transfer factor for carbon monoxide in patients with diabetes with and without microangiopathy, Thorax, vol.43, pp.725-726, 1988.

A. E. Scaramuzza, M. Morelli, M. Rizzi, S. Borgonovo, D. Palma et al., Impaired diffusing capacity for carbon monoxide in children with type 1 diabetes: is this the first sign of long-term complications, Acta Diabetol, vol.49, pp.159-164, 2012.

M. J. Lee, J. R. Coast, S. C. Hempleman, and J. C. Baldi, Type 1 Diabetes Duration Decreases Pulmonary Diffusing Capacity during Exercise, Respiration, vol.91, pp.164-170, 2016.

V. Niranjan, D. G. Mcbrayer, L. C. Ramirez, P. Raskin, and C. C. Hsia, Glycemic control and cardiopulmonary function in patients with insulin-dependent diabetes mellitus, Am J Med, vol.103, pp.504-513, 1997.

S. Tagougui, E. Leclair, P. Fontaine, R. Matran, G. Marais et al., Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes, Med Sci Sports Exerc, vol.47, pp.231-239, 2015.

G. J. Crowther, J. M. Milstein, S. A. Jubrias, M. J. Kushmerick, R. K. Gronka et al., Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes, Am J Physiol Endocrinol Metab, vol.284, pp.655-662, 2003.

F. Item, S. Heinzer-schweizer, M. Wyss, P. Fontana, R. Lehmann et al., Mitochondrial capacity is affected by glycemic status in young untrained women with type 1 diabetes but is not impaired relative to healthy untrained women, Am J Physiol Regul Integr Comp Physiol, vol.301, pp.60-66, 2011.

M. Cree-green, B. R. Newcomer, M. S. Brown, A. D. Baumgartner, B. Bergman et al., Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance, Diabetes, vol.64, pp.383-392, 2015.

H. Wallberg-henriksson, R. Gunnarsson, J. Henriksson, J. Ostman, and J. Wahren, Influence of physical training on formation of muscle capillaries in type I diabetes, Diabetes, vol.33, pp.851-857, 1984.

A. R. Harmer, D. J. Chisholm, M. J. Mckenna, S. K. Hunter, P. A. Ruell et al., Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes, Diabetes Care, vol.31, pp.2097-2102, 2008.

K. Fritzsche, M. Bluher, S. Schering, I. B. Buchwalow, M. Kern et al., Metabolic profile and nitric oxide synthase expression of skeletal muscle fibers are altered in patients with type 1 diabetes, Exp Clin Endocrinol Diabetes, vol.116, pp.606-613, 2008.

A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. Saks, R. Margreiter et al., Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells, Nat Protoc, vol.3, pp.965-976, 2008.

C. Monaco, M. C. Hughes, S. V. Ramos, N. E. Varah, C. Lamberz et al., Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes, Diabetologia, vol.61, pp.1411-1423, 2018.

A. M. Kriska, W. C. Knowler, R. E. Laporte, A. L. Drash, R. R. Wing et al., Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians, Diabetes Care, vol.13, pp.401-411, 1990.

B. J. Whipp, M. B. Higgenbotham, and F. C. Cobb, Estimating exercise stroke volume from asymptotic oxygen pulse in humans, J Appl Physiol, vol.81, pp.2674-2679, 1985.

T. J. Barstow, CORP: Understanding near infrared spectroscopy (NIRS) and its application to skeletal muscle research, J Appl Physiol, 1985.

F. N. Daussin, J. Zoll, E. Ponsot, S. P. Dufour, S. Doutreleau et al., Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle, J Appl Physiol, vol.104, pp.1436-1441, 1985.

W. R. Komatsu, B. Neto, T. L. Chacra, A. R. Dib, and S. A. , Aerobic exercise capacity and pulmonary function in athletes with and without type 1 diabetes, Diabetes Care, vol.33, pp.2555-2557, 2010.

J. Ditzel, Oxygen transport impairment in diabetes, Diabetes, vol.25, pp.832-838, 1976.

A. P. Rissanen, H. O. Tikkanen, A. S. Koponen, J. M. Aho, and J. E. Peltonen, Central and peripheral cardiovascular impairments limit VO(2peak) in type 1 diabetes, Med Sci Sports Exerc, vol.47, pp.223-230, 2015.

S. Volianitis and N. H. Secher, Cardiovascular control during whole body exercise, J Appl Physiol, vol.121, pp.376-390, 1985.

S. Gusso, T. E. Pinto, J. C. Baldi, R. E. Cutfield, W. S. Hofman et al., Diastolic function is reduced in adolescents with type 1 diabetes in response to exercise, Diabetes Care, vol.35, pp.2089-2094, 2012.

G. Pichler, B. Urlesberger, P. Jirak, H. Zotter, E. Reiterer et al., Reduced forearm blood flow in children and adolescents with type 1 diabetes (measured by near-infrared spectroscopy), Diabetes Care, vol.27, pp.1942-1946, 2004.

H. Steinberg and A. Baron, Vascular function, insulin resistance and fatty acids, Diabetologia, vol.45, pp.623-634, 2002.

A. S. Dye, H. Huang, J. A. Bauer, and R. P. Hoffman, Hyperglycemia increases muscle blood flow and alters endothelial function in adolescents with type 1 diabetes, Exp Diabetes Res, vol.2012, p.170380, 2012.

A. P. Fayh, M. Krause, J. Rodrigues-krause, J. L. Ribeiro, J. P. Ribeiro et al., Effects of L-arginine supplementation on blood flow, oxidative stress status and exercise responses in young adults with uncomplicated type I diabetes, Eur J Nutr, vol.52, pp.975-983, 2013.

T. Lauer, M. Preik, T. Rassaf, B. E. Strauer, A. Deussen et al., Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action, Proc Natl Acad Sci U S A, vol.98, pp.12814-12819, 2001.

C. J. Story, A. P. Roberts, and R. G. Ryall, Borderline maintenance of erythrocyte 2,3-diphosphoglycerate concentrations in normoxic type 1 (insulin dependent) diabetic subjects, Clin Sci (Lond), vol.70, pp.127-129, 1986.

A. L. Sverdlov, A. Elezaby, J. B. Behring, M. M. Bachschmid, I. Luptak et al., High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II, J Mol Cell Cardiol, vol.78, pp.165-173, 2015.

D. Ngo, A. L. Sverdlov, S. Karki, D. Macartney-coxson, R. S. Stubbs et al., Oxidative modifications of mitochondrial complex II are associated with insulin resistance of visceral fat in obesity, Am J Physiol Endocrinol Metab, vol.316, pp.168-177, 2019.

J. A. Keightley, K. C. Hoffbuhr, M. D. Burton, V. M. Salas, W. S. Johnston et al., A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria, Nat Genet, vol.12, pp.410-416, 1996.

K. B. Choksi, W. H. Boylston, J. P. Rabek, W. R. Widger, and J. Papaconstantinou, Oxidatively damaged proteins of heart mitochondrial electron transport complexes, Biochim Biophys Acta, vol.1688, pp.95-101, 2004.

J. Chen, S. Schenker, T. A. Frosto, and G. I. Henderson, Inhibition of cytochrome c oxidase activity by 4-hydroxynonenal (HNE), Biochim Biophys Acta, vol.1380, pp.336-344, 1998.

J. M. Gregory, G. Kraft, M. F. Scott, D. W. Neal, B. Farmer et al., AD: Insulin Delivery Into the Peripheral Circulation: A Key Contributor to Hypoglycemia in Type 1 Diabetes, Diabetes, vol.64, pp.3439-3451, 2015.

F. R. Wiedemann and W. S. Kunz, Oxygen dependence of flux control of cytochrome c oxidase --implications for mitochondrial diseases, FEBS Lett, vol.422, pp.33-35, 1998.

M. P. Krause, M. C. Riddell, and T. J. Hawke, Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms, Pediatr Diabetes, vol.12, pp.345-364, 2011.

D. Thapa, C. E. Nichols, S. E. Lewis, D. L. Shepherd, R. Jagannathan et al., Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction, J Mol Cell Cardiol, vol.79, pp.212-223, 2015.

A. D. Baron, G. Brechtel, P. Wallace, and S. V. Edelman, Rates and tissue sites of non-insulin-and insulin-mediated glucose uptake in humans, Am J Physiol, vol.255, pp.769-774, 1988.

, Group: P <0.001

, Group: NS

, Group: NS

, Group: NS

, Exercise: P <0.05

, Group: P < 0.05

, Exercise: P < 0, Group: P < 0.05, vol.001

. Legend, Values are means ± SD. Main effects from mixed models: Exercise, Exercise effect

. Group, Post hoc analyses for group effect: significantly different from controls at * P < 0.05; post hoc analyses for time effect: significantly different from rest at ? P

, HR: heart rate; RER: respiratory exchange ratio; DLCO and DLNO: lung diffusion capacity for carbon monoxide and for nitric oxide

, ?, corrected by individual hemoglobin concentrations

, Dm: membrane transfer capacity; Vc: capillary lung volume, vol.2, p.3

K. Potassium,

, Plasma (fluorinated) glucose was measured with hexokinase enzymatic assay on modular automatic analyzer; serum free insulin with noncompetitive radioimmunoassay (Cisbio), plasma (heparin, metabisulfite) catecholamines with HPLC, serum free fatty acids and glycerol with colorimetric assays (RANDOX reagents), arterialized (vasodilatory pomade applied 5 min before) erythrocyte 2,3-DPG using spectrophotometry (Sigma-Aldrich), and arterialized pH, K + , PaCO2 by potentiometry, SaO2 and Hb by spectrophotometry, p.2

, Main effects from mixed models: Exercise, Exercise effect

. Group, Post hoc analyses for group effect: significantly different from controls at *** P<0.001. Post hoc analyses for time effect: significantly different from rest at ? ? P<0.01, and ? ? ? P<0.001. Change in ?THb (A)

, The 40 mm-interspersed emitter-detector pair was placed on the belly of the right vastus lateralis muscle. NIRS outcomes changes are displayed according to exercise intensities expressed as relative values (% V?O %&'( ). Mixed models revealed almost identical results when studying NIRS according to absolute exercise intensities (i.e., expressed as absolute work rates in Watts