R. D. Pullan, Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis, Gut, vol.35, p.353, 1994.

C. Schultsz, The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls, Gastroenterology, vol.117, p.1089, 1999.

K. S. Bergstrom, Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa, PLoS. Pathog, vol.6, p.1000902, 2010.

M. E. Johansson, Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis, Gut, vol.63, p.281, 2013.

C. Manichanh, The gut microbiota in IBD, Nat. Rev. Gastroenterol. Hepatol, vol.9, p.599, 2012.

G. Hajishengallis, R. P. Darveau, and M. A. Curtis, The keystone-pathogen hypothesis, Nat. Rev. Microbiol, vol.10, p.717, 2012.

A. Swidsinski, Comparative study of the intestinal mucus barrier in normal and inflamed colon, Gut, vol.56, p.343, 2007.

E. Theodoratou, The role of glycosylation in IBD, Nat. Rev. Gastroenterol. Hepatol, vol.11, p.588, 2014.

T. Lang, G. C. Hansson, and T. Samuelsson, Gel-forming mucins appeared early in metazoan evolution, Proc. Natl. Acad. Sci. USA, vol.104, p.16209, 2007.

D. J. Thornton, K. Rousseau, and M. A. Mcguckin, Structure and function of the polymeric mucins in airways mucus, Annu. Rev. Physiol, vol.70, p.459, 2008.

V. Gouyer, F. Gottrand, and J. L. Desseyn, The extraordinarily complex but highly structured organization of intestinal mucus-gel unveiled in multicolor images, PLoS One, vol.6, p.18761, 2011.

K. Godl, The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment, J. Biol. Chem, vol.277, p.47248, 2002.

I. Brockhausen, Pathways of O-glycan biosynthesis in cancer cells, Biochim. Biophys. Acta, vol.1473, p.67, 1999.

M. E. Johansson, G. C. Hansson, and . Microbiology, Keeping bacteria at a distance, Science, vol.334, p.182, 2011.

M. E. Johansson, J. M. Larsson, and G. C. Hansson, The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of hostmicrobial interactions, Proc. Natl. Acad. Sci. USA, vol.108, p.4659, 2011.

J. L. Desseyn, Mucin CYS domains are ancient and highly conserved modules that evolved in concert, Mol. Phylogenet. Evol, vol.52, p.284, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02177076

R. Bansil and B. S. Turner, Mucin structure, aggregation, physiological functions and biomedical applications, Curr. Opin. in Colloid & Interface Science, vol.11, p.164, 2006.

R. Brunelli, Globular structure of human ovulatory cervical mucus, FASEB J, vol.21, p.3872, 2007.

X. Cao, pH-dependent conformational change of gastric mucin leads to solgel transition, Biophys. J, vol.76, p.1250, 1999.

Z. Hong, Atomic force microscopy reveals aggregation of gastric mucin at low pH, Biomacromolecules, vol.6, p.3458, 2005.

A. N. Round, Heterogeneity and persistence length in human ocular mucins, Biophys. J, vol.83, p.1661, 2002.

A. Maleki, Effect of pH on the association behavior in aqueous solutions of pig gastric mucin, Carbohydr. Res, vol.343, p.328, 2008.

D. Ambort, Function of the CysD domain of the gel-forming MUC2 mucin, Biochem. J, vol.436, p.61, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00591704

J. Madsen, Tissue localization of human trefoil factors 1, 2, and 3, J. Histochem. Cytochem, vol.55, p.505, 2007.

N. W. Toribara, Human gastric mucin. Identification of a unique species by expression cloning, J. Biol. Chem, vol.268, p.5879, 1993.

V. Gouyer, The characterization of the first anti-mouse Muc6 antibody shows an increased expression of the mucin in pancreatic tissue of Cftr-knockout mice, Histochem. Cell Biol, vol.133, p.517, 2010.

J. L. Desseyn, D. Tetaert, and V. Gouyer, Architecture of the large membranebound mucins, Gene, vol.410, p.215, 2008.

N. Moniaux, Characterization of human mucin MUC17. Complete coding sequence and organization, J. Biol. Chem, vol.281, p.23676, 2006.

L. Bry, A model of host-microbial interactions in an open mammalian ecosystem, Science, vol.273, p.1380, 1996.

L. V. Hooper, A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem, Proc. Natl. Acad. Sci. USA, vol.96, p.9833, 1999.

M. Tomita, Molecular cloning of mouse intestinal trefoil factor and its expression during goblet cell changes, Biochem. J, vol.311, p.293, 1995.

S. Melgar, A. Karlsson, and E. Michaelsson, Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation, Am. J. Physiol Gastrointest. Liver Physiol, vol.288, p.1328, 2005.

M. Drouet, AIEC colonization and pathogenicity: influence of previous antibiotic treatment and preexisting inflammation, Inflamm. Bowel. Dis, vol.18, p.1923, 2012.

A. Darfeuille-michaud, Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease, Gastroenterology, vol.115, p.1405, 1998.

A. Darfeuille-michaud, High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease, Gastroenterology, vol.127, p.412, 2004.

M. E. Johansson, The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria, Proc. Natl. Acad. Sci. USA, vol.105, p.15064, 2008.

M. E. Johansson, Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis, Gut, vol.63, p.281, 2014.

J. L. Desseyn, Evolutionary history of the 11p15 human mucin gene family, J. Mol. Evol, vol.46, p.102, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02177697

F. Spada, Molecular patterning of the oikoplastic epithelium of the larvacean tunicate Oikopleura dioica, J Biol. Chem, vol.276, p.20624, 2001.

C. Atuma, The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo, Am. J. Physiol Gastrointest. Liver Physiol, vol.280, p.922, 2001.

H. Ota and T. Katsuyama, Alternating laminated array of two types of mucin in the human gastric surface mucous layer, Histochem. J, vol.24, p.86, 1992.

S. Bel, Loss of TMF/ARA160 protein renders colonic mucus refractory to bacterial colonization and diminishes intestinal susceptibility to acute colitis, J. Biol. Chem, vol.287, p.25631, 2012.

S. Bel, Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF-/-mice, Proc. Natl. Acad. Sci. USA, vol.111, p.4964, 2014.

M. A. Von-schillde, Lactocepin secreted by Lactobacillus exerts antiinflammatory effects by selectively degrading proinflammatory chemokines, Cell Host. Microbe, vol.11, p.387, 2012.

P. J. Sansonetti, War and peace at mucosal surfaces, Nat. Rev. Immunol, vol.4, p.953, 2004.

L. V. Hooper, Molecular analysis of commensal host-microbial relationships in the intestine, Science, vol.291, p.881, 2001.

G. Patsos and A. Corfield, Management of the human mucosal defensive barrier: evidence for glycan legislation, Biol. Chem, vol.390, p.581, 2009.

A. A. Salyers and M. Pajeau, Competitiveness of different polysaccharide utilization mutants of Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice, Appl. Environ. Microbiol, vol.55, p.2572, 1989.

D. J. Becker and J. B. Lowe, Fucose: biosynthesis and biological function in mammals, Glycobiology, vol.13, p.41, 2003.

P. Gutierrez-castrellon, Diarrhea in preschool children and Lactobacillus reuteri: a randomized controlled trial, Pediatrics, vol.133, p.904, 2014.

, /scientificreports SCIENTIFIC REPORTS |, vol.5

S. Oliva, Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis, Aliment. Pharmacol. Ther, vol.35, p.327, 2012.

L. Moal, V. Servin, and A. L. , Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal antiinfectious biotherapeutic agents, Clin Microbiol Rev, vol.27, p.167, 2014.

R. M. Nardi, Purification and molecular characterization of antibacterial compounds produced by Lactobacillus murinus strain L1, J. Appl. Microbiol, vol.99, p.649, 2005.

M. L. Van-tassell and M. J. Miller, Lactobacillus adhesion to mucus, Nutrients, vol.3, p.613, 2011.

S. Etzold, Structural basis for adaptation of lactobacilli to gastrointestinal mucus, Environ. Microbiol, vol.16, p.888, 2014.

H. Uchida, Lactic acid bacteria (LAB) bind to human B-or H-antigens expressed on intestinal mucosa, Biosci. Biotechnol. Biochem, vol.70, p.3073, 2006.

H. Uchida, Lactobacilli binding human A-antigen expressed in intestinal mucosa, Res. Microbiol, vol.157, p.659, 2006.

S. Roos and H. Jonsson, A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components, Microbiology, vol.148, p.433, 2002.

N. Kumar and N. S. , Probiotic administration alters the gut flora and attenuates colitis in mice administered dextran sodium sulfate, J. Gastroenterol. Hepatol, vol.23, p.1834, 2008.

A. R. Mackos, Probiotic Lactobacillus reuteri attenuates the stressorenhanced severity of Citrobacter rodentium infection, Infect. Immun, vol.81, p.3253, 2013.

I. Ingrassia, A. Leplingard, and A. Rfeuille-michaud, Lactobacillus casei DN-114 001 inhibits the ability of adherent-invasive Escherichia coli isolated from Crohn's disease patients to adhere to and to invade intestinal epithelial cells, Appl. Environ. Microbiol, vol.71, p.2880, 2005.

N. K. Ho, Immune signalling responses in intestinal epithelial cells exposed to pathogenic Escherichia coli and lactic acid-producing probiotics, Benef. Microbes, vol.4, p.195, 2013.

H. Itoh, N. Inoue, and D. K. Podolsky, Goblet-cell-specific transcription of mouse intestinal trefoil factor gene results from collaboration of complex series of positive and negative regulatory elements, Biochem. J, vol.341, p.461, 1999.

R. Heim, A. B. Cubitt, and R. Y. Tsien, Improved green fluorescence, Nature, vol.373, p.663, 1995.

J. L. Desseyn, Human mucin gene MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. Structural evidence for a 11p15.5 gene family, J. Biol. Chem, vol.272, p.3168, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02177070

K. Rousseau, New monoclonal antibodies to non-glycosylated domains of the secreted mucins MUC5B and MUC7, Hybrid. Hybridomics, vol.22, p.293, 2003.

C. Wickstrom, MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage, Biochem. J, vol.334, p.685, 1998.

J. L. Desseyn, Genomic organization of the 3' region of the human mucin gene MUC5B, J. Biol. Chem, vol.272, p.16873, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02177047

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

J. W. Gordon, Production of transgenic mice, Methods Enzymol, vol.225, p.747, 1993.

Q. Wu, A simple, rapid method for isolation of high quality genomic DNA from animal tissues, Nucleic Acids Res, vol.23, p.5087, 1995.

Y. Rossez, Almost all human gastric mucin O-glycans harbor blood group A, B or H antigens and are potential binding sites for Helicobacter pylori, Glycobiology, vol.22, p.1193, 2012.

J. Montreuil, , 1986.

D. Tetaert, Dietary n-3 fatty acids have suppressive effects on mucin upregulation in mice infected with Pseudomonas aeruginosa, Respir. Res, vol.8, p.39, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02178627

G. Pineton-de-chambrun, Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice, Mucosal. Immunol, vol.7, p.589, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01935809

L. A. Dieleman, Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines, Clin. Exp. Immunol, vol.114, p.385, 1998.

W. Han, Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase, Inflamm. Bowel. Dis, vol.12, p.1044, 2006.

D. Borenshtein, Development of fatal colitis in FVB mice infected with Citrobacter rodentium, Infect. Immun, vol.75, p.3271, 2007.

V. Gouyer, L. Dubuquoy, C. Robbe-masselot, C. Neut, E. Singer et al.,

, Supplemental Figure 2: RT-qPCR analysis of mucin expression. a. Muc2 and Muc6 expression was measured by RT-qPCR (TaqMan) in triplicate using colonic cDNA from wildtype (WT; n = 8) and transgenic (Tg, n = 12) mice. b. Muc1, Muc3 and Muc4 expression was measured by RT-qPCR (TaqMan) in triplicate using colonic cDNA from wild-type (WT; n = 5) and transgenic (Tg, n = 6) mice. ns, nonsignificant. Supplemental Figure 3: The gut barrier epithelium of Tg mice is not modified