G. M. Aldridge, D. M. Podrebarac, W. T. Greenough, and I. J. Weiler, The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting, J. Neurosci. Methods, vol.172, pp.250-254, 2008.

J. D. Bartlett, T. S. Hwa-joo, J. Jeong, A. J. Louhelainen, M. J. Cochran et al., Matched work highintensity interval and continuous running induce similar increases in PGC-1 mRNA, AMPK, p38 and p53 phosphorylation in human skeletal muscle, J. Appl. Physiol, vol.112, pp.1135-1143, 2012.

A. P. Braun and H. Schulman, The multifunctional calcium/calmodulin-dependent protein kinase: from form to function, Annu. Rev. Physiol, vol.57, pp.417-445, 1995.

K. A. Burgomaster, K. R. Howarth, S. M. Phillips, M. Rakobowchuk, M. J. Macdonald et al., Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans, J. Physiol. (Lond), vol.586, pp.151-160, 2008.

E. R. Chin, Role of Ca2 + /calmodulin-dependent kinases in skeletal muscle plasticity, J. Appl. Physiol, vol.99, pp.414-423, 2005.

A. J. Cochran, M. E. Percival, S. Tricarico, J. P. Little, N. Cermak et al., Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations, Exp. Physiol, vol.99, pp.782-791, 2014.

V. G. Coffey and J. A. Hawley, The molecular bases of training adaptation, Sports Med, vol.37, pp.737-763, 2007.

F. N. Daussin, J. Zoll, S. P. Dufour, E. Ponsot, E. Lonsdorfer-wolf et al., Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.295, pp.264-272, 2008.

S. P. Davies, N. R. Helps, P. T. Cohen, and D. G. Hardie, 0 -AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC, FEBS Lett, vol.5, pp.421-425, 1995.

J. Edge, N. Eynon, M. J. Mckenna, C. A. Goodman, R. C. Harris et al., Altering the rest interval during high-intensity interval training does not affect muscle or performance adaptations, Exp. Physiol, vol.98, pp.481-490, 2013.

B. A. Edgett, W. S. Foster, P. B. Hankinson, C. A. Simpson, J. P. Little et al., Dissociation of Increases in PGC-1a and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise, PLoS ONE, vol.8, p.71623, 2013.

B. Egan, B. P. Carson, P. M. Garcia-roves, A. V. Chibalin, F. M. Sarsfield et al., Exercise intensitydependent regulation of peroxisome proliferator-activated receptor c coactivator-1a mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle, J. Physiol, vol.588, pp.1779-1790, 2010.

M. J. Gibala, J. P. Little, M. Van-essen, G. P. Wilkin, K. A. Burgomaster et al., Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance, J. Physiol. (Lond), vol.575, pp.901-911, 2006.

E. T. Howley, D. R. Bassett, and H. G. Welch, Criteria for maximal oxygen uptake: review and commentary, Med. Sci. Sports Exerc, vol.27, pp.1292-1301, 1995.

S. Jager, C. Handschin, J. St-pierre, and B. M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, Proc. Natl Acad. Sci. USA, vol.104, pp.12017-12022, 2007.

K. Kato, T. Iwamoto, and S. Kida, Interactions between aCaMKII and calmodulin in living cells: conformational changes arising from CaM-dependent andindependent relationships, Mol. Brain, vol.6, p.37, 2013.

D. P. Kelly and R. C. Scarpulla, Transcriptional regulatory circuits controlling mitochondrial biogenesis and function, Genes Dev, vol.18, pp.357-368, 2004.

L. Kim, L. Rio, B. A. Butcher, T. H. Mogensen, S. R. Paludan et al., p38 MAPK autophosphorylation drives macrophage IL-12 production during intracellular infection, J. Immunol, vol.174, pp.4178-4184, 2005.

W. S. Kunz, Control of oxidative phosphorylation in skeletal muscle, Biochim. Biophys. Acta, vol.1504, pp.12-19, 2001.

N. Lamarra, B. J. Whipp, S. A. Ward, and K. Wasserman, Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics, J. Appl. Physiol, vol.62, pp.2003-2012, 1987.

Y. Li, R. K. Dash, J. Kim, G. M. Saidel, and M. E. Cabrera, Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies, Am. J. Physiol. Cell Physiol, vol.296, pp.25-46, 2009.

L. Li, R. Pan, R. Li, B. Niemann, A. Aurich et al., Mitochondrial biogenesis and peroxisome proliferatoractivated receptor-c coactivator-1a (PGC-1a) deacetylation by physical activity: intact adipocytokine signaling is required, Diabetes, vol.60, pp.157-167, 2011.

Y. Liu, W. R. Randall, and M. F. Schneider, Activitydependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle, J. Cell Biol, vol.168, pp.887-897, 2005.

M. H. Malek, M. H?-uttemann, I. Lee, and J. W. Coburn, Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training, Exp. Physiol, vol.98, pp.807-818, 2013.

A. S. Mathai, A. Bonen, C. R. Benton, D. L. Robinson, and T. E. Graham, Rapid exercise-induced changes in PGC-1alpha mRNA and protein in human skeletal muscle, J. Appl. Physiol, vol.105, pp.1098-1105, 2008.

M. Mohr, P. Krustrup, J. J. Nielsen, L. Nybo, M. K. Rasmussen et al., Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.292, pp.1594-1602, 2007.

P. Puigserver, J. Rhee, J. Lin, Z. Wu, J. C. Yoon et al., Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1, Mol. Cell, vol.8, pp.971-982, 2001.

A. Saleem, H. N. Carter, and D. A. Hood, 2014. p53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise, Am. J. Physiol. Cell Physiol, vol.306, pp.241-249

S. I. Singla, A. Hudmon, J. M. Goldberg, J. L. Smith, and H. Schulman, Molecular characterization of calmodulin trapping by calcium/calmodulin-dependent protein kinase II, J. Biol. Chem, vol.276, pp.29353-29360, 2001.

M. Suter, U. Riek, R. Tuerk, U. Schlattner, T. Wallimann et al., Dissecting the role of 5 0 -AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase, J. Biol. Chem, vol.281, pp.32207-32216, 2006.

D. M. Thomson, S. T. Herway, N. Fillmore, H. Kim, J. D. Brown et al., AMP-activated protein kinase phosphorylates transcription factors of the CREB family, J. Appl. Physiol, vol.104, pp.429-438, 2008.

C. Welinder and L. Ekblad, Coomassie Staining as Loading Control in Western Blot Analysis, J. Proteome Res, vol.10, pp.1416-1419, 2011.

U. Wisløff, S. M. Najjar, Ø. Ellingsen, P. M. Haram, S. Swoap et al., Cardiovascular risk factors emerge after artificial selection for low aerobic capacity, Science, vol.307, pp.418-420, 2005.

A. Woods, D. Vertommen, D. Neumann, R. Turk, J. Bayliss et al., Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis, J. Biol. Chem, vol.278, pp.28434-28442, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00390850

D. C. Wright, P. C. Geiger, D. H. Han, T. E. Jones, and J. O. Holloszy, Calcium induces increases in peroxisome Proliferator-Activated Receptor Coactivator-1 and mitochondrial biogenesis by a pathway leading to p38, 2007.

, Mitogen-activated Protein Kinase Activation, J. Biol. Chem, vol.282, pp.18793-18799

B. Xiao, M. J. Sanders, E. Underwood, R. Heath, F. V. Mayer et al., Structure of mammalian AMPK and its regulation by ADP, Nature, vol.472, pp.230-233, 2011.