N. Armstrong, J. R. Welsman, C. A. Williams, and B. J. Kirby, Longitudinal changes in young people's short-term power output, Med. Sci. Sports Exerc, vol.32, pp.1140-1145, 2000.

N. Armstrong and J. R. Welsman, Development of aerobic fitness during childhood and adolescence, Ped. Exerc. Sci, vol.12, pp.128-149, 2000.

S. Berthoin, G. Baquet, F. Mantéca, G. Lensel-corbeil, and M. Gerbeaux, Maximal aerobic speed and running time to exhaustion for children 6 to 17 years old, Ped. Exerc. Sci, vol.8, pp.234-244, 1996.

V. Billat, J. C. Renoux, J. Pinoteau, B. Petit, and J. P. Koralsztein, Times to exhaustion at 90, 100 and 105 % of velocity at VO2max (maximal aerobic speed) and critical speed in elite long distance runners, Arch. Physiol. Biochem, vol.103, pp.129-135, 1995.

D. Bishop and D. G. Jenkins, The influence of recovery duration between periods of exercise on the critical power function, Eur. J. Appl. Physiol, vol.72, pp.115-120, 1995.

J. M. Bland and D. G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, vol.1, pp.307-310, 1986.

N. Blondel, S. Berthoin, V. Billat, and G. Lensel, Relationship between run times to exhaustion at 90, 100, 120, 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity, Int. J. Sports Med, vol.22, pp.27-33, 2001.

J. Carlson and G. A. Naughton, Assessing oxygen deficit in children, 1998.

. Vanpraagh, Pediatric Anaerobic Performance, Human Kinetics, pp.119-136

J. T. Daniels, N. Oldridge, F. Nagle, and N. With, Differences and changes in VO2 among young runners 10-18 years of age, Med. Sci. Sports, vol.10, pp.200-203, 1978.

B. S. Denadai, C. C. Greco, and M. Teixeira, Blood lactate response and critical speed in swimmers aged 10-12 years of different standards, J. Sports Sci, vol.18, pp.779-784, 2000.

J. H. Ettema, Limits of human performance and energy production, Int. J. Angew. Physiol, vol.22, pp.45-54, 1966.

G. Falgairette, M. Bedu, N. Fellmann, E. Van-praagh, and J. Coudert, Bioenergetic profile in 144 boys aged from 6 to 15 years with special reference to sexual maturation, Eur. J. Appl. Physiol, vol.62, pp.151-156, 1991.

S. G. Fawkner and N. Armstrong, Assessment of critical velocity with children, Ped. Exerc. Sci, vol.14, pp.258-268, 2002.

H. Hebestreit, K. Mimura, and O. Bar-or, Recovery of muscle power after highintensity short-term exercise: comparing boys and men, J. Appl. Physiol, vol.74, pp.2875-2880, 1993.

D. W. Hill, The critical power concept: A review, Sports Med, vol.16, pp.237-354, 1993.

D. W. Hill, C. S. Ferguson, and K. L. Ehler, An alternative method to determine maximal accumulated O2 deficit in runners, Eur. J. Appl. Physiol, vol.79, pp.114-117, 1998.

D. W. Hill, R. P. Steward, and C. J. Lane, Application of the critical power concept to young swimmers, Ped. Exerc. Sci, vol.7, pp.281-293, 1995.

T. J. Housh, G. O. Johnson, S. L. Mcdowell, D. J. Housh, and M. L. Pepper, The relationship between anaerobic running capacity and peak plasma lactate, J. Sports Med. Phys. Fitness, vol.32, pp.117-122, 1992.

D. G. Jenkins and B. M. Quigley, The y-intercept of the critical power function as a measure of anaerobic work capacity, Ergonomics, vol.34, pp.13-22, 1991.

M. Kachouri, H. Vandewalle, V. Billat, M. Huet, M. Thomaïdis et al., Critical velocity of continuous and intermittent running exercise. An example of the limits of the critical power concept, Eur. J. Appl. Physiol, vol.73, pp.484-487, 1996.

J. M. Lechevalier, H. Vandewalle, J. C. Chatard, A. Gandrieu, F. Besson et al., Relationship between the 4 mmol running velocity, the time-distance relationship and the Léger-Boucher test, Arch. Int. Physiol. Bioch. Biophys, vol.97, pp.355-360, 1989.

L. Leger, Measurement in pediatric exercise science, Human Kinetics, pp.183-223, 1996.

L. Leger and R. Boucher, An indirect continuous running multistage field test: the Université de Montréal Track Test, Can. J. Appl. Spt. Sci, vol.5, pp.77-84, 1980.

R. Mocellin, M. Heusgen, and H. P. Gildein, Anaerobic threshold and maximal steady-state blood lactate in prepubertal boys, Eur. J. Appl. Physiol, vol.62, pp.56-60, 1991.

T. Reybrouck, M. Weymans, H. Stijns, J. Knops, and J. Vanderhauwaert, , 1985.

, Ventilatory anaerobic threshold in healthy children, Eur. J. Appl. Physiol, vol.54, pp.278-284

J. Scherrer, M. Samson, and A. Paleologue, Etude du travail musculaire et de la fatigue, Données ergométriques obtenues chez l'homme, J. Physiol. (Paris), vol.46, pp.887-916, 1954.

B. Sid-ali, H. Vandewalle, K. Chaïr, A. Moreaux, and H. Monod, Lactate steady state velocity and distance-exhaustion time relationship in running, Arch. Int. Physiol. Bioch. Biophys, vol.99, pp.297-301, 1991.

J. M. Tanner, Growth at Adolescence, 1962.

K. Tolfrey, I. G. Campbell, and A. M. Batterham, Aerobic trainability of prepubertal boys and girls, Ped. Exerc. Sci, vol.10, pp.248-263, 1998.

H. Vandewalle, J. F. Vautier, M. Kachouri, J. M. Lechevallier, and H. Monod, , 1997.

, Work-exhaustion time relationships and the critical power concept: A critical Review, J. Sports Med. Phys. Fitness, vol.37, pp.89-102

K. Wakayoshi, M. Yoshida, T. Udo, T. Kasai, Y. Moritani et al., A simple method for determining critical speed as swimming fatigue threshold in competitive swimming, Int. J. Sports Med, vol.13, pp.367-371, 1992.

, Tlim110: time to exhaustion at 110% of maximal aerobic velocity; peakVO2: peak oxygen uptake; VEmax: maximal ventilation; RER: respiratory exchange ratio; HRmax: maximal heart rate

, *: significantly different from graded test for the same group, p.5

. ***, significantly different from graded test for the same group, p.1