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Abstract: Ammonium-polyphosphate (APP) was modified by microencapsulation with a bio-based
sorbitol polyglycidyl ether (SPE)-type epoxy resin and used as a flame retardant additive in polylactic
acid (PLA) matrix. The bioresin-encapsulated APP (MCAPP) particles were characterized using
Fourier transform infrared (FTIR) spectroscopy and Raman mapping, particle size distribution was
determined by processing of scanning electron microscopic (SEM) images. Interaction between the
APP core and the bioresin shell was revealed by combined thermogravimetric analysis (TGA)-FTIR
spectroscopy. The APP to SPE mass ratio of 10 to 2 was found to be optimal in terms of thermal,
flammability, and mechanical properties of 15 wt% additive containing biocomposites. The bioresin
shell effectively promotes the charring of the APP-loaded PLA composites, as found using TGA
and cone calorimetry, and eliminates the flammable dripping of the specimens during the UL-94
vertical burning tests. Thus, the V-0 rating, the increased limiting oxygen index, and the 20% reduced
peak of the heat release rate was reached compared to the effects of neat APP. Furthermore, better
interfacial interaction of the MCAPP with PLA was indicated by differential scanning calorimetry and
SEM observation. The stiff interphase resulted in increased modulus of these composites. Besides,
microencapsulation provided improved water resistance to the flame retardant biopolymer system.

Keywords: polylactic acid; intumescent flame retardant; ammonium polyphosphate;
microencapsulation; bioepoxy

1. Introduction

The growing environmental awareness of society and the shortage of petroleum-based resources
has led to extensive research in developing bio-based plastics as a means of solving the disposal problem
and reducing the environmental impact of the non-degradable petrochemical-based plastics [1–5].

Among biodegradable polymers, polylactic acid (PLA) has received an increasing amount of
attention because of its controllable biodegradability and abundant renewable source (lactic acid can
be efficiently produced by fermentation from renewable resources [6]). Moreover, its mechanical
properties, processability at high melting temperature, and transparency are excellent [7]. PLA is
used not only for packaging and medical devices [8–12], but it is also applicable for producing long
life-cycle goods, such as in automotive components, the electrical industry, building materials, and the
aerospace industry due to ecological and economic advantages [13–16]. However, while these latter
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mentioned durable engineering products require a remarkable flame retardant grade, PLA is inherently
flammable because of its molecular structure. Without flame retardants (FRs), it cannot meet the safety
standards. This necessitates the continuous development of widely applicable, highly effective FRs
for the modification of PLA [17–20]. Intumescent flame retardants (IFRs), consisting of acid source,
a carbonization agent, and a blowing agent [21], are considered promising for this purpose, owing
to their low smoke emission, low toxicity, and low corrosion [22–26]. Upon heating, fire retardant
intumescent materials form foamed cellular charred layers on their surface, acting as a physical barrier,
which can insulate the heat transfer and prevent the diffusion of the oxygen and the volatile products
efficiently between gas and condensed phases [27–31]. In such systems, ammonium polyphosphate
(APP) can act both as the acid source and the blowing agent, while pentaerythritol (PER) is most
frequently used as the carbonization agent [32]. However, both APP and PER have poor compatibility
with polymer matrices and they are moisture-sensitive, which often results in the reduction of flame
retardancy and mechanical properties of the composites [33,34].

The microencapsulation process is one of the most effective methods to modify the surface
properties of a filler through forming an outer shell to modify the interface interaction, also, it possibly
results in the enhancement of flame retardancy, mechanical properties, and water resistance of some
polymer composites [12,35–38]. Chen and Jiao [39] co-microencapsulated APP and PER using a
hydroxyl silicone oil by in situ polymerization method. Increased limiting oxygen index (LOI) values
and UL-94 vertical burning test ratings, improved water resistance, and higher thermal stability were
found in the case of the microcapsule-containing PP composites compared to the composites with neat
additives. The heat release rate (HRR) and mass loss rate (MLR) values obtained from cone calorimeter
tests also decreased as a result of the microencapsulation.

Melamine is also often combined with APP, even in PLA matrix. Wang et al. microencapsulated
APP with a melamine-formaldehyde (MF) resin to produce an intumescent flame retarded PLA
biocomposite. In this system, microencapsulated ammonium polyphosphate (MCAPP) is used as the
acid source, melamine (MA) acts as the blowing agent, while starch functions as the charring agent.
With 30 wt% IFR, UL-94 V-0 rating and a high LOI value of 41% were reached [26].

Yang et al. [40] combined MF resin microencapsulated APP with PER. A beneficial effect was
evidenced on the intumescent char formation and also, an enhanced anti-dripping effect was found,
thus flame retardant PP composites passed the V-0 rating with an LOI of 23.4 wt%.

Cyclodextrin microencapsulated ammonium polyphosphate was prepared by Wang et al. [41]
with the goals of improving the water durability of APP, preparing a novel functional flame retardant
and improving the compatibility with ethylene-vinyl acetate copolymer (EVA), 40 wt% flame retardant
was required to achieve the V-0 rating in the case of the vertical burning test.

Shi et al. produced flame retardant PLA composites with resorcinol bis(diphenyl phosphate)
(RDP)-coated APP (C-APP), and RDP-coated distiller’s dried grains with solubles (C-DDGS) were also
prepared and required 15 wt% C-DDGS and 15 wt% C-APP for the biocomposites to pass the UL-94
V-0 rating and reach the LOI value of 32.0% [42].

Ran et al. prepared APP microencapsulated with polysiloxane (Si) and polyborosiloxane (BSi),
and introduced into PLA to improve the flame retardancy, water-resistance, and mechanical properties
of flame retarded PLA composite. The flammability evaluation for the PLA with 5% BSi microcapsuled
APP (BSi-APP) samples revealed that the LOI value increased to 26.7%, the UL-94 grade reached up to
V-0, and the peak heat release rate (HRR) was decreased significantly. The microencapsulation of APP
also improved the compatibility of APP with PLA, resulting in better mechanical properties than the
control APP-contained composites under the same loading. The water-resistance of the PLA composite
was also significantly improved by the introduction of microencapsulated APP [43].

In this work, a new type of microencapsulated APP was designed and prepared through in-situ
polymerization. A sorbitol polyglycidyl ether-based epoxy resin shell was prepared for APP not only
to improve its compatibility with PLA but also, as a biobased carbonization agent, to enhance the
flame retardant efficacy of the IFR system. The effect of the thickness of the bioresin shell of APP was
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investigated on the thermal properties, flame retardancy, mechanical performance, and water-resistance
of flame retarded PLA composites.

2. Results and Discussion

2.1. Characterization of the Microcapsules

2.1.1. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR absorbance spectra (Figure 1) taken from the microcapsules confirmed that the resin was
present on the surface of the filtered and dried solid APP particles after the encapsulation procedure.
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Figure 1. Fourier transform infrared (FTIR) absorbance spectra of the microcapsules and components.

Resin-specific bands, such as 2918 cm−1 CH2-stretching, 1460 cm−1 CH2 bending, 1126 cm−1 C-O
ether bond, and 746 cm−1 CH2 rockings appear most intensively in the spectrum of the MCAPP3
sample with the thickest bioepoxy shell.

2.1.2. Raman Spectroscopy

The bioresin coating on the APP particles after encapsulation was examined by Raman mapping.
For this purpose, reference spectra were taken from the starting materials, from the neat APP and the
cured bioresin. Figure 2 shows the obtained reference spectra together with two Raman spectra taken
from two different locations from the surface of an MCAPP3 particle with the thickest bioresin shell.

It can be observed that while APP has intense peaks at 1140 and 647 cm−1 assigned to the
(PO4)3− symmetric stretching vibrations and the (PO4)3− ν4 bending, the resin exhibits Raman activity
between 2870 and 2956 cm−1 (corresponding to C-H stretching vibrations; symmetric CH2 and CH3

and asymmetric CH2 stretch, respectively). Such significantly differing spectra makes the calculation
of the spectral concentration at each point of a Raman map simple and accurate.

The Raman maps taken from the microcapsuled additives contribute to the visualization of the
core-shell structure of the prepared bioresin-encapsulated APP particles. Figure 3 shows the maps of
the calculated Raman scores (i.e., spectral concentrations) obtained from an MCAPP3 particle, which
visualizes the compositions calculated at each point with a two-way image.
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Figure 3. The visualized score maps of the distribution of the two major components in the MCAPP3
microcapsule (at 100×magnification): (a) the calculated APP content, (b) the calculated resin content.

It can be seen that the APP is mainly detected in the inside of the particle, while a large amount
of resin is present on the outside of it. Although in the inner parts of particle the APP content was
measured to be close to 90% of the calculated composition, the resin was detectable at every location of
the surface, proving that the APP was completely covered with the resin.

2.1.3. Scanning Electron Microscopy (SEM)

The SEM micrographs taken from the neat and encapsulated APP particles (shown in Figure 4)
demonstrate that neat APP has a blocky structure with a rough surface, while with thickening bioepoxy
shell layer the surface becomes smoother and the particles are more spheroidal. Nevertheless, it can be
observed that with the increasing amount of bioresin added to the solution, the particles increasingly
tend to stick together (see Figure 4d) and form aggregates, which may reduce their dispersibility in the
polymer matrix.
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Figure 4. Scanning electron microscopic (SEM) images of microcapsules of different composition with
1000×magnification: (a) APP, (b) MCAPP1, (c) MCAPP2, and (d) MCAPP3.

2.1.4. Determination of the Particle Size and Distribution

SEM micrographs with identical 500×magnification obtained from the microcapsules and neat
APP particles were analyzed. The average values of dEC (diameter of a circle with an equivalent area
of the measured particles) and dM (maximum diameter (caliper), the maximum distance within the
boundaries of a particle), calculated by the used software, are reported in Table 1 with the relative
standard deviation value.

Table 1. Equivalent circle diameter and the maximum diameter of the particles.

Computed Parameters APP MCAPP1 MCAPP2 MCAPP3

Average dEC (µm) 9.0 ± 3.9 10.1 ± 4.7 11.1 ± 5.1 15.7 ± 6.1
Average dM (µm) 11.5 ± 5.1 12.8 ± 6.2 13.5 ± 6.4 19.4 ± 7.4

For a better visibility, Figure 5 shows the dEC values plotted with a box plot. From these data, it can
be concluded that the coating layers of MCAPP1 and MCAPP2 are around 1 µm and 2 µm, respectively.
It can also be seen that the MCAPP3 sample shows a steep increase in the particle size distribution.
This also suggests that particles with thicker bioresin shell layers are prone to form aggregates.
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2.1.5. Thermogravimetric Analysis (TGA)

According to the TGA results, with increasing resin ratio, the initial decomposition temperature
of the microencapsulated APP shifted to lower temperatures (see Figure 6a). This decrease of
decomposition temperature showed a greater tendency than expected on the basis of the composition
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Figure 6. (a) Thermogravimetric analysis (TGA) curves of polylactic acid (PLA), APP and MCAPP
additives as measured under N2 atmosphere with the heating ramp of 10 ◦C/min. (b) Difference
between the measured and the theoretical TGA curves. (c) Difference between the measured and the
theoretical TGA curves in the temperature range of 200–400 ◦C.

In the case of the MCAPP2 (representing SPE to APP mass ratio of 2:10) sample, the onset of
decomposition is approximately at the midpoint of those of the two pure starting materials; therefore
the difference from the expected decomposition properties was further investigated. It was assumed
that the composition of the capsule was close to the concentration of the substances used during the
microencapsulation process, i.e., 11.76, 21.10, and 28.57 wt% bioresin content. Using these ratios,
theoretical decay curves were obtained by summing the TGA curves of the starting materials according
to the calculated composition percentages (e.g., the theoretical TGA curve of the MCAPP1 is composed
of 88.24% of the APP curve and 11.76% of the crosslinked resin curve) and compared to the measured
TGA curves. For comparison, the theoretical curves were subtracted from the real curves. The resultant
comparative curves are shown in Figure 6b.

The most important range of the comparative curves is between 200 and 400 ◦C (see Figure 6c)
since the thermal decomposition of the PLA starts around 325 ◦C. While in the case of the MCAPP1
sample, only a slight difference between the theoretical and measured curves can be observed, with
increasing the amount of the resin, the degradation rate of the coated particles is higher at a given
temperature than expected from the theoretical curves. This phenomenon can be explained by the
interaction between APP and the bioepoxy resin.

2.1.6. Thermogravimetry-FTIR Spectrometry

In order to further investigate the decomposition process of the MCAPPs and the potential
APP–bioresin interaction, TG-FTIR tests were carried out. Measurements were performed on three
types of samples: untreated APP, cryo-ground cross-linked bio-resin, and MCAPP3 microcapsule.
The time course of the spectra was observed in three-dimensional (3D) graphs. In the lower temperature
range, two characteristic peaks appear in the FTIR spectrum at 3150 and 3050 cm−1 wavelengths,
corresponding to amine functional groups from the decomposition of the bioresin. The decomposition
of neat APP is associated with the appearance of the two intense peaks of ammonia at 966 and 931 cm−1.
In Figure 7, the intensities of these typical wavelength values of the degradation products were plotted
against temperature. It can be observed that in the case of the MCAPP3 particles, after the appearance
of the resin’s degradation products, the decomposition of APP is more intense and reaches its maximal
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rate at a lower temperature than that of untreated APP. This faster degradation occurs at around 320 ◦C,
just like the anomaly observed between the measured and theoretical TGA curves (Figure 6c). It is
assumed that the decomposition of APP is facilitated by the degradation products of the bioresin.
This effect can be beneficial in terms of flame retardant efficacy because the formation of the foamed
protective layer begins closer to the decomposition temperature of polylactic acid, thus keeping more
of its decomposition products in the solid phase.
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2.2. Characterization of Flame Retarded Polylactic Acid (PLA) Composites

All the test methods were performed on PLA composites with 15 wt% loading of neat or
microencapsulated APP, meaning that the MCAPP-containing samples have lower phosphorus content
than the neat APP-containing composite. Where applicable, two types of neat PLA were examined to
study the effect of the processing method on the polymer. PLA_GRAN was hot-pressed from dried
PLA granulates while PLA_MIX was first kneaded in the internal mixer and then hot-pressed.

2.2.1. Scanning Electron Microscopy (SEM)

SEM images were taken from the cryo-fractured surfaces of the flame retarded PLA composites
to investigate the distribution of the additives within the matrix and also their interfacial interaction.
In Figure 8a, clear detached boundaries can be seen between the neat APP particles and PLA,
the particles are pulled out of the matrix indicating poor compatibility between them.

On the contrary, the PLA + MCAPP1 (Figure 8b) and PLA + MCAPP2 (Figure 8c) samples show
less separated particles and unsharp phase boundaries, indicating better interfacial interaction of the
bioepoxy encapsulated APPs with PLA. In Figure 8d, agglomeration of the MCAPP3 particles can
be observed, the APP particles stuck by the bioepoxy resin capsules could not be dispersed perfectly
during thermomechanical preparation of the sample. The inhomogeneous distribution of the MCAPP3
particles might affect the flammability and mechanical properties of the PLA composites.
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2.2.2. Gel Permeation Chromatography (GPC)

In order to preserve the mechanical properties of PLA, it is very important to avoid noticeable
degradation, i.e., a significant reduction of the molecular weight during the processing steps.
To investigate this effect, gel permeation chromatography (GPC) was performed on the samples.
The obtained refractive index chromatograms can be seen in Figure 9.Molecules 2019, 24, x 10 of 25 
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The number-average molecular weight (Mn) thus obtained from the analysis of the chromatograms
is illustrated in Figure 10. The degree of polydispersity, which was calculated by the quotient of
the weight-average molecular (Mw) weight and the number-average molecular weight (Mn), is also
presented in Figure 10.
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According to the official datasheet, the used PLA grade has a number-average molecular weight
of 68,000 g/mol, which was verified with good approximation by our measurement. The GPC results
show that the molecular weight loss of the MCAPP-containing samples is larger than that of the
additive-free or neat APP-containing PLA, which can possibly affect its physical properties. This
molecular weight loss can be caused by acid-catalyzed degradation during processing.

2.2.3. Differential Scanning Calorimetry (DSC)

The thermal properties of the flame retarded PLA composites were examined by performing
heating/cooling/heating differential scanning calorimetry (DSC) runs (Table 2). From the first heating,
fairly high crystalline content ranging between 45%–51% was obtained for all the examined samples,
indicating that under the hot-pressing conditions, highly crystallized solid structures were formed.
Such high relative crystalline contents are generally associated with increased moduli. During cooling
from the melt, the additive-free PLA_MIX experienced noticeably less crystallisation than the flame
retardant containing composites. The polymer/filler interface can play the role of a nucleator facilitating
crystallization during cooling. This additive induced crystallization is more emphasized when MCAPPs
were added. The increase of crystallization percentage during cooling is associated with the increased
total crystalline percentage obtained after the second heating run. It can also be seen that the cooling
crystallization peak shifts to higher temperatures in the case of MCAPP-containing PLA composites,
which indicate increasing nucleation efficiency of the PLA/bioresin interface compared to the PLA/APP
interface. Based on this, the APP particles with bioresin shell are assumed to have better interfacial
bonding to PLA than the neat APP, as also suggested based on the SEM observation (Figure 8).
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Table 2. Thermal properties of the PLA composites as measured by heating/cooling/heating differential
scanning calorimetry (DSC) experiments.

Thermal Properties Symbol
and Unit

PLA
MIX

PLA +
APP

PLA +
MCAPP1

PLA +
MCAPP2

PLA +
MCAPP3

Recrystallisation enthalpy 1 ∆Hm (J/g) 4.27 3.47 3.47 3.30 4.24
Melting enthalpy ∆Hm (J/g) 44.82 38.63 39.92 40.48 43.10

Crystallinity 1 (%) 51.3 44.5 46.1 47.0 49.2
Cooling crystallization heat 2 ∆Hc (J/g) 2.91 34.02 37.69 39.14 40.13
Cooling crystallization peak 2 Tc (◦C) 109.7 105.6 112.4 116.6 112.4

Melting enthalpy 3 ∆Hm (J/g) 13.60 38.65 42.23 43.05 41.59
Crystallinity 3 (%) 17.1 48.5 53.0 54.1 52.2

1 denotes the first DSC run (heating); 2 denotes second DSC run (cooling), 3 denotes third DSC run (heating) in
heat/cool/heat DSC procedure, respectively.

2.2.4. Thermal Degradation

The thermal stability and degradation of the samples were investigated under N2 atmosphere.
For better visibility, the thermal gravimetric curves of the flame retarded composites can be seen in
Figure 11, while the gained data of all the samples are given in Table 3.
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Table 3. The TGA data of the samples.

Formulation Tmax (◦C) 1 T5% (◦C) 2 Weight at 800 ◦C (%) Mass loss rate at Tmax (%/◦C)

PLA_GRAN 360 325 0.0 3.0
PLA_MIX 365 327 0.0 3.4

PLA + APP 363 327 4.7 2.4
PLA + MCAPP1 363 322 5.8 2.4
PLA + MCAPP2 366 315 6.3 2.2
PLA + MCAPP3 368 310 8.4 2.0

1 The temperature corresponding to maximum-rate decomposition. 2 The temperature corresponding to a 5%
weight loss.

The degradation of all the samples occurs in one step. When comparing the TGA curves of the
kneaded PLA sample (PLA_MIX) with the original pellet (PLA_GRAN), the decrease of the weight loss
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rate can be ascribed to the molecular weight reduction that occurred during the thermo-mechanical
processing of the polymer.

Compared with the reference kneaded PLA (PLA_MIX), Tmax and char residue values of all the
flame retarded PLA composites increased while maximum weight loss rates decreased as a result of
intumescent char formation. This char layer can act as a thermal barrier and inhibits the transition of
heat and flammable gases. It can also be seen that T5% of all the MCAPP-containing PLA composites
are lower than that of the PLA composite with neat APP (PLA + APP), which is due to the earlier
decomposition and possible interactions between APP and the epoxy resin (as also observed based on
Figures 6c and 7) while releasing gas and transforming to foamed char.

Among the examined flame retardants, the lowest weight loss rate and the highest amount of
char, i.e., the best thermal stabilizing effect, were obtained with the MCAPP3 additive (in spite of its
somewhat lower dispersibility), which represents 10.7 wt% APP and 4.3 wt% bioresin content in the
PLA composite. These results indicate that the epoxy resin shell on the APP particle can effectively
facilitate the formation of the char layer in the high-temperature range, which can delay the thermal
degradation of PLA and protect PLA from further decomposition during a fire.

2.2.5. Water-Resistance Tests

The mass loss of the flame retarded biocomposite sample after the water soaking test can be
seen in Figure 12. All the samples lost some weight during the process, likely due to abrasion and
dissolution of APP. It can be seen that the PLA + APP lost the most mass during the soaking process,
67% and 40% more than the neat PLA samples. In contrast, the mass loss of the microencapsulated
additives is noticeably lower. Even with the thinnest bioresin shell (MCAPP1), the mass loss is only
0.37% greater than that of the additive-free PLA_MIX sample.Molecules 2019, 24, x 13 of 25 
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Figure 12. The average mass loss of the samples after water soaking test.

Analysis of variance (ANOVA) was performed with Statistica (TIBCO Software Inc. 3307 Palo
Alto, CA, USA) to evaluate the effect of water treatment. The results indicated that the type of the
additive had a significant influence on the measured mass loss (p-value = 0.0000, significance level:
5%). Making post-hoc investigations with Fisher’s Least Significant Difference (LSD) test, it was
confirmed with pairwise comparison, that the MCAPP-containing samples significantly differ from the
PLA_APP sample, but the difference between the MCAPP samples with different shell thickness is
not significant. Based on these results, it was concluded that the microencapsulation with bioepoxy
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shell effectively improved the water-resistance of APP and thus, the water durability of the flame
retarded biocomposites.

2.2.6. Tensile Tests

Tensile tests were performed to investigate the effect of bioepoxy encapsulation of APP on the
mechanical properties of the flame retarded PLA composites. In Figure 13a, the tensile strength and
elongation at yield values of the composites are shown, while the measured moduli are plotted in
Figure 13b.
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(b) Young’s modulus.

APP, both in neat and encapsulated form, acts as a non-reinforcing filler in the polymer matrix.
The tensile strength of the flame retarded PLA composites is about 30% lower than that of the
additive-free PLA, as expected based on the relatively large particle size and low aspect ratio of the
additive. On the other hand, modulus of the PLA composites shows an increasing tendency with the
thickness of the bioepoxy shell which is explained by the presence of stiff interphase with properties
somewhere between those of PLA and APP and also related to the increased crystalline contents of the
MCAPP-containing samples (see Table 4). Analysis of variance (ANOVA) was performed to evaluate
the effect of the additives on Young’s modulus. Results indicated that the type of the additive had a
significant influence on the measured properties (p-value = 0.0031, significance level: 5%). Making
post-hoc investigations with the Fisher’s LSD test, it was confirmed with the pairwise comparison
that the PLA + MCAPP2 and PLA + MCAPP3 samples significantly differ from both PLA_MIX and
PLA+APP samples. In parallel, the rigid filler reduces deformability and thus elongation at yield,
which is more pronounced when the APP is encapsulated with bioepoxy resin.

Table 4. The results of the limiting oxygen index (LOI) and UL-94 tests on the reference and flame
retarded biocomposite samples.

Sample LOI (%)
UL-94 (3 mm)

t1/t2 (s) 1 Cotton Ignition Rating

PLA_GRAN 21.5 -/- yes N.R. 2

PLA_MIX 20.5 11/- yes N.R. 2
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Table 4. Cont.

Sample LOI (%)
UL-94 (3 mm)

t1/t2 (s) 1 Cotton Ignition Rating

PLA + APP 28.0 4.8/1.4 yes V-2
PLA + MCAPP1 28.5 1.3/1.4 no V-0
PLA + MCAPP2 29.0 2.8/0.9 no V-0
PLA + MCAPP3 28.0 2.2/0.6 no V-0

1 represent the average after-flame time after the flame application of first and second 10 s, and “-” means complete
combustion for samples. 2 No rating.

2.2.7. Flame Retardancy Tests

The flame-retardant efficiency of the additives in the PLA matrix was evaluated at 15 wt% loading
using the limiting oxygen index (LOI), UL-94 tests, and mass loss type calorimetry (MCC). It has to
be noted that 15 wt% of APP by itself is generally insufficient to reach the V-0 rating according to
the standard UL-94 test in PLA matrix [44]. With the modification of APP, our aim was to achieve
better flame retardant performance in PLA at this relatively low total weight percentage (15 wt%) of
additives. The measured LOI values and UL-94 vertical burning classifications, including the average
burning times and the results of the cotton ignition tests, are given in Table 4.

The two types of reference PLA samples (PLA_GRAN and PLA_MIX) are easily flammable
materials with low LOI values and cannot be classified according to the horizontal UL-94 test. In the
case of the PLA_MIX sample, the thermo-mechanical processing even resulted in enhanced flammability.
The addition of APP and MCAPPs with different composition (APP to bioresin shell ratio) significantly
increased the LOI value of PLA. Comparing the values of the FR loaded samples, there is a slight
increase in the case of the PLA + MCAPP2 sample.

The UL-94 rating of the 15 wt% neat APP-containing PLA is V-2 due to the formation of flaming
droplets. However, using the microencapsulated additives, V-0 ratings were reached. Even the thinnest
examined bioepoxy shell layer (MCAPP1) proved to be effective in eliminating the flaming dripping of
the PLA composite and also in reducing the after-flame time.

Figure 14 shows the heat release rate curves obtained during mass loss calorimeter tests, while the
detailed combustion parameters gained from the mass loss calorimetry measurements are summarized
in Table 5.
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Table 5. The average ignition time, the peak of heat release rate (pHRR), total heat release (THR),
and average residual mass for the samples.

Formulation tign (s) pHRR
(kW/m2)

pHRR
Decrease *

(%)

THR
(MJ/m2)

THR
decrease *

(%)

Residue
(wt%)

PLA GRAN 82 ± 2 284 ± 7 1.4 61.9 ± 1.7 –0.3 1.7 ± 0.4
PLA MIX 87 ± 2 288 ± 18 0 62.1 ± 1.2 0 1.4 ± 0.2

PLA + APP 82 ± 4 189 ± 13 34.2 44.4 ± 2.0 28.2 26.6 ± 3.0
PLA + MCAPP1 82 ± 3 175 ± 14 38.9 42.1 ± 3.8 32.0 28.0 ± 4.3
PLA + MCAPP2 80 ± 3 154 ± 8 46.2 38.5 ± 3.5 37.9 28.8 ± 2.8
PLA + MCAPP3 84 ± 4 167 ± 17 41.7 42.4 ± 2.2 31.5 26.2 ± 4.7

* compared to PLA_MIX.

There was no significant difference in the time to ignition of either of the samples; however,
a meaningful change can be observed in the total amount of heat release (THR) and the peak of heat
release rate (pHRR) values of the APP-containing samples. One can see from Figure 14, that the
pHRR value of the reference PLA_MIX sample is 288 kW/m2 and the presence of 15 wt% of neat
APP decreased the pHRR to 189 kW/m2, which means a 34% reduction. By adding MCAPPs at the
same loading, even lower pHRR values were achieved. All the MCAPPs have better fire retardant
efficiency than neat APP in PLA matrix, and the MCAPP2 additive is the most effective among the
three additives, with the average of 154 kW/m2 pHRR, which is 19% lower than that of the untreated
APP-containing composite and 46% lower than that of the pure PLA.

Similarly to the pHRR results, the MCAPPs successfully reduced the total heat release (THR) too,
from 62.1 MJ/m2 of the neat PLA_MIX sample to 42.1, 38.5, and 42.4 MJ/m2 in the order of shell thickness
(which corresponds to a 32.0%, 37.9%, and 31.5% decrease), respectively. Considering these results,
the MCAPP2 additive was found to be the most effective by providing the lowest THR, 37.9% lower
compared to the neat polymer and 13.3% lower than the heat emission of the untreated APP-containing
PLA sample.

Formation of an expanded charred layer, with an uneven surface and a height of about 1–3 cm, was
observed for all the additive-containing samples (Figure 15). The residues were also analyzed using
SEM, the typical microstructure of the intumescent chars are shown in Figure 16. All the expanded
chars showed flexible character with mainly closed cells. The formation of such a char structure can
effectively prevent the heat transfer between the flame zone and the burning substrate and thus protect
the underlying materials from further combustion [45].
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Table 5 shows the average residual mass obtained after the mass loss calorimetric measurements:
from the PLA + APP 26.6% residue remained and from the MCAPP samples, 28.0%, 28.8%, and 26.2%
remained, respectively. It can be concluded that the bioepoxy shell, as an available carbonizing
component, is effective in increasing the flame retardant efficiency of APP, especially considering that
the bio-resin was added at the expense of APP to keep constant loading percentage in the PLA matrix.

Although based on the TGA analyses the best char promoting behavior was found for the MCAPP3
additive with the thickest bioresin shell (Table 6), the better flame retardant performance was evinced
for the MCAPP2 during all the performed flammability tests. This observation is likely connected with
the different dispersion of the MCAPPs in the PLA matrix, as found during SEM observation (Figure 8).
The bioepoxy shell is an effective bio-based charring agent, but it can only be effectively utilized when
adequate dispersion is achieved. The inhomogeneous distribution of the MCAPP3 particles is assumed
to be highly responsible for the deterioration of the flammability and mechanical properties of the
PLA + MCAPP3 composite compared to the PLA composites flame retarded with encapsulated APP
particles with thinner bioepoxy shell.

Table 6. Theoretical composition of the microcapsules.

Sample Code APP (wt%) SPE (wt%) Curing Agent
(wt%)

MCAPP1 88.24 8.83 2.93
MCAPP2 78.90 15.80 5.30
MCAPP3 71.43 21.43 7.14

3. Materials and Methods

3.1. Materials

Ingeo™Biopolymer 4032D-type extrusion grade PLA, supplied by NatureWorks LLC (Minnetonka,
MN, USA), was used as polymer matrix material. It contains mainly polylactic acid of l configuration,
but according to its datasheet, it also contains 0.2% residual monomer, and also 1.5% of d-isomer.
Exolit® AP 422-type ammonium-polyphosphate, received from Clariant (Clariant AG, Muttenz,
Switzerland), was applied in neat and encapsulated form as a flame retardant. For the preparation of
bioresin shells, sorbitol polyglycidyl ether (SPE, epoxide equivalent weight 160–195 g/eq, ERISYS®

GE-60) purchased from Emerald Performance Materials LLC (Vancouver, WA, USA) bio-based
epoxy component was combined with Ipox MH 3122 (Ipox Chemicals Kft., Budapest, Hungary)
(2,2′-dimethyl-4,4′-methylenebis(cyclohexylamine)) cycloaliphatic amine-type cross-linking agent.
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Absolute ethanol was purchased from Merck (Merck KGaA, Darmstadt, Germany). The structures of
the aforementioned materials can be seen in Figure 17.
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agent and the structure of the cured epoxy resin network.

3.2. Preparation of Microencapsulated Ammonium-Polyphosphate (APP)

The sorbitol polyglycidyl ether (SPE) bioepoxy component (4, 8, and 12 g, representing 1:10, 2:10,
and 3:10 mass ratio of SPE to APP, respectively) and the cyclic amine-type cross-linking agent (33 wt% of
the SPE) were dispersed in 50 mL absolute ethanol and stirred until the resin was dispersed in the solvent.
Then, pure APP (40 g) was added into the mixture with continuous stirring. Then, it was refluxed at the
boiling point of the ethanol (at 78 ◦C) for 4 h. Then, the mixture was cooled to room temperature, filtered,
washed with absolute ethanol, and dried (and post-cured) at 120 ◦C for 48 h. The clumped particles
were powdered in a hand mortar and finally, the microencapsulated ammonium-polyphosphate
additives (MCAPP) were obtained. Table 6 shows the theoretical composition of the prepared tree
types of MCAPP additives differing in the thickness of the bioepoxy resin shell layers.

3.3. Preparation of Flame Retarded PLA Composites

3.3.1. Kneading

The flame retarded PLA composites were prepared using a HAAKE™Rheomix OS Lab Mixer-type
internal mixer (Haake Technik GmbH, Vreden, Germany) in 200 g batches. The previously dried PLA
granules were melted at 185 ◦C and then mixed with the dried APP-based additives (15 wt% each) for
15 min with a rotor speed of 50 min−1. In Table 7, the compositions of the prepared flame retarded PLA
composites are shown.
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Table 7. Formulations of the PLA composites.

Sample Code PLA (wt%)
MCAPP (wt%)

APP (wt%) SPE Bioresin (wt%)

PLA_GRAN 100 0 0
PLA_MIX 100 0 0

PLA + APP 85 15 0
PLA + MCAPP1 85 13.4 1.6
PLA + MCAPP2 85 11.8 3.2
PLA + MCAPP3 85 10.7 4.3

3.3.2. Moulding

The kneaded materials were dried overnight at 70 ◦C and then hot-pressed using a Fontjine
LabEcon300 Junior heated platen press (Fontijne Grotnes Inc, Niles, MI, USA). About 40 g of each
mixed sample was heated to 185 ◦C in a mold of 100 × 100 × 3 mm3 size, then pressed under 20 kN
(2.048 MPa) for 2 min, then under 40 kN (4.096 MPa) for 8 min, and finally cooled to 50 ◦C under 40 kN
(4.096 MPa). The specimens for flammability and mechanical testing were obtained by cutting the
plates with a bandsaw.

3.4. Characterization Methods

3.4.1. Fourier Transform Infrared Spectroscopy

Infrared spectra (4000–400 cm−1) of the microcapsules were recorded using a Bruker Tensor
37-type Fourier transform infrared (FTIR) spectrometer (Bruker Corporation, Billerica, MA, USA)
equipped with deuterated triglycine sulfate (DTGS) detector with a resolution of 4 cm−1. Before testing,
the powder of the microcapsules was mixed with potassium bromide (KBr) powder and cold-pressed
into a suitable disk for FTIR measurement.

3.4.2. Raman Spectroscopy

Raman mapping was carried out using a Horiba Jobin–Yvon LabRAM (Longjumeau, France)
system coupled with an external 532 nm frequency-doubled Nd:YAG (neodymium-doped yttrium
aluminium garnet; Nd:Y3Al5O12) laser source and an Olympus BX-40 optical microscope. The surface
of a microencapsulated particle was mapped with an objective of 100× magnification (laser spot
size: 0.7 µm). The measured area was approximately 30 µm by 30 µm, with 1 µm step size in
both X and Y dimensions. The component concentrations were estimated with the classical least
squares (CLS) method using the reference spectra of the pure components collected on the same
device under the same conditions. Visualized score maps were created with LabSpec 5.41 (Horiba
Jobin–Yvon). The spectrograph was set to provide a spectral range of 100–3400 cm−1 and 2 cm−1

resolution. The acquisition time of a single spectrum was 5 s, and three spectra were averaged at each
measured point.

3.4.3. Scanning Electron Microscopy

Scanning electron microscopic (SEM) micrographs of the microcapsules and the cryogenic fracture
surface of the flame retarded PLA samples were taken using a JEOL JSM-5500 LV type apparatus (JEOL
Ltd., Akishima, Tokyo, Japan) at an accelerating voltage of 10 keV. Before the examination, all the
samples were sputter-coated with a conductive gold layer in order to prevent charge build-up on
the surface.
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3.4.4. Calculation of Particle Size Distribution

Particle size distribution was determined by image processing of SEM micrographs with 500×
magnification (Figure 18). The image processing was carried out with MATLAB’s (The MathWorks,
Inc., Natick, MA, USA) Image Processing Toolbox. In the SEM images, the outline of the identified
particles were selected (at least 100 for each type of particles), from which the values were calculated.
The program calculated the area of the particles, from this area the diameter of a circle of equal
projection area (dEC) was calculated, which is the diameter of a circle that has the same area as the
particle. Then, the maximum diameter (dM) was measured, that is the longest distance between any
two points along the selection boundary.Molecules 2019, 24, x 20 of 25 
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3.4.5. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) measurements were carried out using a Mettler Toledo
DSC 3+ (Mettler-Toledo International Inc., Columbus, Ohio, USA) DSC and monitored with STARe

Evaluation Software. Heating-cooling-heating cycle experiments were performed under 25 mL/min
nitrogen gas flow, covering a temperature range of 25–200 ◦C with a heating rate of 10 ◦C/min and a
cooling rate of 2 ◦C/min, respectively. About 10 mg of sample was used in each test. The degree of
crystallinity (χc) of the samples was calculated according to Equation (1), where ∆Hm indicates the
melting enthalpy, ∆Hc is the cold crystallization enthalpy, ∆Hm0 is the melting enthalpy of the 100%
crystalline PLA equal to 93 J/g [46], and ϕ is the weight fraction of the additives.

χc(%) =
∆Hm − ∆Hc

(1−φ)∆H0
m
× 100% (1)

3.4.6. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) measurements were carried out using a TA Discovery
Apparatus (TA Instruments LLC, New Castle, NH, USA) under 100 mL/min nitrogen gas flow.
Samples of about 10 mg were positioned in open alumina pans with gold foil and submitted to an
isotherm at 50 ◦C for 10 min, then followed by a heating ramp of 10 ◦C/min up to 800 ◦C (the precision
on the temperature measurements is ±1.5 ◦C in the temperature range of 50–800 ◦C). Interactions
between the compounds of the microcapsules can be revealed by comparing the experimental TG
curve with a “theoretical” TG curve (Wtheo), calculated as a linear combination of the TG curves of the
capsule ingredients weighted by their contents, as in Fontaine et al. [47].

Wtheo(T) =
n∑

i = 1

xiWi(T), (2)
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where xi is the content of compound “i” and Wi is the TG curve of the compound “i”. To determine the
potential interactions between the two components and their further effects on the thermal stability of
the systems, the curves of weight differences between experimental and theoretical TG curves were
computed as follows:

∆W(T) = Wexp(T) −Wtheo(T), (3)

where ∆W(T) is the curve of weight difference and Wexp(T) is the experimental TG curve of
the formulation.

3.4.7. Thermogravimetry-FTIR Spectrometry

The thermal behaviour and the relating evolved gaseous decomposition products of the additives
were assessed by thermogravimetry-FTIR (TG-FTIR) spectrometry, using a TA Instruments (New Castle,
NH, USA) Q5000 apparatus coupled to a Bruker Tensor 37 FTIR (Bruker Corporation, Billerica, MA,
USA) machine. A heating rate of 5 ◦C/min was applied within the temperature range of 25 to 500 ◦C
under ch atmosphere. Resolution in FTIR was set at 4 cm−1, spectrum scan frequency at 12 times per
minute, and the spectral region at 4000–650 cm−1.

3.4.8. Gel Permeation Chromatography

To determine the number-average molecular mass (Mn) of the neat and flame retarded PLA samples,
gel permeation chromatography (GPC) measurements were carried out in tetrahydrofuran (THF) at 40 ◦C,
with a flow rate of 1 mL/min and a polymer concentration of 2 µg/mL. The solutions were filtered with a
0.5 µm pore size filter. The measurements were performed with a Waters system (Separation Module
Waters e2695, Milford, MA, USA) equipped with three columns (Styragel HR1, Styragel HR3, and Styragel
HR4) placed in series and followed by a refractive index (RI) Wyatt detector (WYATT Optilab T-Rex, Santa
Barbara, CA, USA). To get the correct mass values for PLA, the experimental values obtained from the
GPC traces using polystyrene standards were multiplied by 0.58 [48].

3.4.9. Water-Resistance of Flame Retarded (FR) PLA Composites

18 samples with 100 × 10 × 3 mm3 dimensions from each composite were soaked in distilled
water for 96 h at 40 ◦C, the water was changed every 24 h. After the soaking, the samples were dried
until a constant weight was achieved for 60 h at 70 ◦C. The mass of the dried samples was measured
before and after the water soaking.

3.4.10. Tensile Tests

Comparative tensile tests were performed on rectangular specimens of 100 × 10 × 3 mm3 (width
× length × depth) (the gauge length was 70 mm) using a Zwick Z020 universal testing machine (Zwick
GmbH and Co. KG, Ulm, Germany) with a crosshead speed of 5 mm/min. 5 specimens were tested
from each composite sample. Based on the measured geometric data and the resulting stress-strain
curves, the tensile strength (σM), Young’s modulus (E), and the relative elongation at maximum force
were calculated for each specimen using the ISO 527-1:2012 standard.

3.4.11. Limiting Oxygen Index

Limiting oxygen index (LOI) was determined on specimens with 100 × 10 × 3 mm3 dimensions
according to ISO 4589 standard using an apparatus made by Fire Testing Technology Ltd.
(East Grinstead, West Sussex, UK). 3 specimens were tested in all cases.

3.4.12. UL-94

Standard UL-94 flammability tests (according to Standard for Safety of Flammability of Plastic
Materials for Parts in Devices and Appliances testing, from Underwriters Laboratories (UL LCC,
Northbrook, IL, USA)) were performed in a Fire Testing Technology (East Grinstead, West Sussex, UK)
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UL 94 Chamber (the device has a stopwatch that accurately measures tenths of a second) according to
ISO 9772 and ISO 9773, the specimen dimensions for the test were 100 × 10 × 3 mm3. 5 specimens were
tested in all cases.

3.4.13. Mass Loss Calorimetry

Mass loss-type calorimeter tests were carried out by an instrument delivered by Fire Testing
Technology Ltd., (East Grinstead, West Sussex, UK), using the ISO 13927 standard method. Specimens
(100 × 100 × 3 mm3) were exposed to a constant heat flux of 35 kW/m2 simulating a mild fire
scenario. The ignition was provided by a spark plug located 13 mm above the sample. The main
characteristic of fire properties, including heat release rate (HRR) as a function of time, time to ignition
(TTI), and total heat release (THR), were determined. When measured at 35 kW/m2, HRR and THR
values are reproducible to within ±10%. The data reported in this article are the worst of the three
replicated experiments.

4. Conclusions

Sorbitol-based epoxy resin was found to be an effective bio-based charring agent and successfully
applied on the surface of APP particles to create a complex (3 in 1) intumescent flame retardant additive
for PLA. Besides the noticeable improvement in the flame retardant properties, the encapsulation of
APP with bioepoxy resin provides a better filler–matrix interaction, increased modulus, and improved
water-resistance to the PLA composites. It is proposed that other types of bio-based epoxy resins (such
as sugar-based epoxy resins) could also be utilized in other polymer types/systems to provide a more
effective and green fire retardancy solution.
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