L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Sci, vol.323, issue.5914, pp.607-610, 2009.

K. Tanigaki, H. Ogi, H. Sumiya, K. Kusakabe, N. Nakamura et al., Observation of higher stiffness in nanopolycrystal diamond than monocrystal diamond, Nat. comm, vol.4, p.2343, 2013.

S. Pal, K. Gururaj, M. Meraj, and R. G. Bharadwaj, Molecular Dynamics Simulation Study of Uniaxial Ratcheting Behaviors for Ultrafine-Grained Nanocrystalline Nickel, J. Mat. Eng. Per, vol.28, issue.8, pp.4918-4930, 2019.

C. Suryanarayana and C. C. Koch, Nanocrystalline materials -Current research and future directions, Hyp. Int, vol.130, pp.5-44, 2000.

S. Pal, . Md, C. Meraj, and . Deng, Effect of Zr addition on creep properties of ultra-fine grained nanocrystalline Ni studied by molecular dynamics simulation, Comp. Mat. Sci, vol.126, pp.382-392, 2017.

D. G. Morris and M. A. Morris, Hardness, strength, ductility and toughness of nanocrystalline materials, In Mat. Sci. For. Trans. Tech. Pub, vol.235, pp.861-872, 1997.

S. Pal, S. Mishra, M. Meraj, A. K. Mondal, and B. C. Ray, On the comparison of interrupted and continuous creep behaviour of nanocrystalline copper: A molecular dynamics approach, Mat. Let, vol.229, pp.256-260, 2018.

X. Shen, J. Lian, Z. Jiang, and Q. Jiang, High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution, Mat. Sci. Eng. A, vol.487, issue.1-2, pp.410-416, 2008.

E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scr. Mat, vol.49, issue.7, pp.663-668, 2003.

Y. T. Zhu and X. Liao, Nanostructured metals: retaining ductility, vol.3, pp.351-352, 2004.

C. C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals, Scr. Mat, vol.49, issue.7, pp.657-662, 2003.

L. G. Bulusheva, V. I. Sysoev, E. V. Lobiak, Y. V. Fedoseeva, A. A. Makarova et al., Chlorinated holey double-walled carbon nanotubes for relative humidity sensors, Car, vol.148, pp.413-420, 2019.

A. Muhulet, F. Miculescu, S. I. Voicu, F. Schütt, V. K. Thakur et al., Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications, Mat. Tod. Ene, vol.9, pp.154-186, 2018.

V. R. Raphey, T. K. Henna, K. P. Nivitha, P. Mufeedha, C. Sabu et al., Advanced biomedical applications of carbon nanotube, Mat. Sci. Eng: C, vol.100, pp.616-630, 2019.

S. Li and Y. Yao, Synergistic improvement of epoxy composites with multi-walled carbon nanotubes and hyperbranched polymers, Com. Par. B: Eng, vol.165, pp.293-300, 2019.

R. Calderón-villajos, A. J. López, L. Peponi, J. Manzano-santamaría, and A. Ureña, 3D-printed self-healing composite polymer reinforced with carbon nanotubes, Mat. Let, vol.249, pp.91-94, 2019.

G. Lee, M. Sung, J. H. Youk, J. Lee, and W. R. Yu, Improved tensile strength of carbon nanotube-grafted carbon fiber reinforced composites, Comp. Str, vol.220, pp.580-591, 2019.

H. Yao, G. Zhou, W. Wang, and M. Peng, Effect of polymer-grafted carbon nanofibers and nanotubes on the interlaminar shear strength and flexural strength of carbon fiber/epoxy multiscale composites, Comp. Stru, vol.195, pp.288-296, 2018.

A. Y. Boroujeni and M. Al-haik, Carbon nanotube-Carbon fiber reinforced polymer composites with extended fatigue life, Comp. Par. B: Eng, vol.164, pp.537-545, 2019.

Q. Shen, Q. Song, H. Li, C. Xiao, T. Wang et al., Fatigue strengthening of carbon/carbon composites modified with carbon nanotubes and silicon carbide nanowires, Int. J. Fat, vol.124, pp.411-421, 2019.

H. J. Choi and D. H. Bae, Strengthening and toughening of aluminum by single-walled carbon nanotubes, Mat. Sci. Eng. A, vol.528, issue.6, pp.2412-2417, 2011.

A. Agarwal, S. R. Bakshi, and D. Lahiri, Carbon nanotubes: reinforced metal matrix composites, 2018.

Y. Shi, L. Zhao, Z. Li, Z. Li, D. B. Xiong et al., Strengthening and deformation mechanisms in nanolaminated single-walled carbon nanotube-aluminum composites, Mat. Sci. Engg. A, vol.764, p.138273, 2019.

J. Hou, W. Du, G. Parande, M. Gupta, and S. Li, Significantly enhancing the strength+ ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes, J. All. Comp, vol.790, pp.974-982, 2019.

S. R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix compositesa review, Int. Mat. Rev, vol.55, issue.1, pp.41-64, 2010.

B. Duan, Y. Zhou, D. Wang, and Y. Zhao, Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering, J. All. Comp, vol.771, pp.498-504, 2019.

D. H. Nam, S. I. Cha, B. K. Lim, H. M. Park, D. S. Han et al., Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites, Car, vol.50, issue.7, pp.2417-2423, 2012.

K. V. Reddy, C. Deng, and S. , Dynamic characterization of shock response in crystallinemetallic glass nanolaminates, Acta Mat, vol.164, pp.347-361, 2019.

M. Meraj, N. Yedla, and S. , The effect of porosity and void on creep behavior of ultra-fine grained nano crystalline nickel, Mat. Let, vol.169, pp.265-268, 2016.

B. K. Choi, G. H. Yoon, and S. Lee, Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading, Comp. Par. B: Eng, vol.91, pp.119-125, 2016.

J. Xiang, L. Xie, S. A. Meguid, S. Pang, J. Yi et al., An atomic-level understanding of the strengthening mechanism of aluminum matrix composites reinforced by aligned carbon nanotubes, Comp. Mat. Sci, vol.128, pp.359-372, 2017.

Z. W. Xue, L. D. Wang, P. T. Zhao, S. C. Xu, J. L. Qi et al., Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion, Mat. Des, vol.34, pp.298-301, 2012.

N. Silvestre, B. Faria, and J. N. Lopes, Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics, Comp. Sci. Tech, vol.90, pp.16-24, 2014.

K. Duan, L. Li, Y. Hu, X. Wang, and X. , Damping characteristic of Ni-coated carbon nanotube/copper composite, Mat. Des, vol.133, pp.455-463, 2017.

B. Chen, K. Kondoh, H. Imai, J. Umeda, and M. Takahashi, Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions, Scr. Mat, vol.113, pp.158-162, 2016.

D. Chen, Structural modeling of nanocrystalline materials, Comp. Mat. Sci, vol.3, issue.3, pp.327-333, 1995.

P. Hirel, Atomsk: a tool for manipulating and converting atomic data files, Comp. Phy. Comm, vol.197, pp.212-219, 2015.

Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phy. Rev. B, vol.59, issue.5, p.3393, 1999.

S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Che. Phy, vol.112, issue.14, pp.6472-6486, 2000.

C. R. Dandekar and Y. C. Shin, Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics, Comp. Par. A: App. Sci. Manf, vol.42, issue.4, pp.355-363, 2011.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phy, vol.117, issue.1, pp.1-19, 1995.

A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Mod. Sim. Mat. Sci. Eng, vol.18, issue.1, p.15012, 2009.

A. Stukowski, V. V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces, Mod. Sim. Mat. Sci. Eng, vol.20, issue.8, p.85007, 2012.

J. D. Honeycutt and H. C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, J. Phy. Che, vol.91, issue.19, pp.4950-4963, 1987.

M. L. Falk and J. S. Langer, Dynamics of viscoplastic deformation in amorphous solids, Phy. Rev. E, vol.57, issue.6, p.7192, 1998.

F. Shimizu, S. Ogata, and J. Li, Theory of shear banding in metallic glasses and molecular dynamics calculations, Mat. Trans, vol.48, issue.11, pp.2923-2927, 2007.

M. Jafari, M. H. Abbasi, M. H. Enayati, and F. Karimzadeh, Mechanical properties of nanostructured Al2024-MWCNT composite prepared by optimized mechanical milling and hot pressing methods, Adv. Pow. Tech, vol.23, issue.2, pp.205-210, 2012.

W. Xu and L. P. Davila, Size dependence of elastic mechanical properties of nanocrystalline aluminum, Mat. Sci. Engg: A, vol.692, pp.90-94, 2017.

P. C. Tsai, Y. R. Jeng, J. T. Lee, I. Stachiv, and P. Sittner, Effects of carbon nanotube reinforcement and grain size refinement mechanical properties and wear behaviors of carbon nanotube/copper composites, Dia. Rel. Mat, vol.74, pp.197-204, 2017.

H. J. Choi, B. H. Min, J. H. Shin, and D. H. Bae, Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes, Comp. Par. A: App. Sci. Manf, vol.42, issue.10, pp.1438-1444, 2011.

D. Chunfeng, X. Zhang, M. A. Yanxia, and W. Dezun, Fabrication of aluminum matrix composite reinforced with carbon nanotubes, Rare Met, vol.26, issue.5, pp.450-455, 2007.

Z. Y. Liu, B. L. Xiao, W. G. Wang, and Z. Y. Ma, Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing, J. Mat. Sci. Tech, vol.30, issue.7, pp.649-655, 2014.

F. Ostovan, K. A. Matori, M. Toozandehjani, A. Oskoueian, H. M. Yusoff et al., Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites, Mat. Chem. Phy, vol.166, pp.160-166, 2015.

H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Car, vol.47, issue.3, pp.570-577, 2009.

H. Kwon, D. H. Park, J. F. Silvain, and A. Kawasaki, Investigation of carbon nanotube reinforced aluminum matrix composite materials, Comp. Sci. Tech, vol.70, issue.3, pp.546-550, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00466359

D. Hull and D. J. Bacon, Introduction to Dislocations, 2001.

A. G. Frøseth, P. M. Derlet, and H. Van-swygenhoven, Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance, Acta Mat, vol.52, issue.20, pp.5863-5870, 2004.

P. M. Derlet, A. Hasnaoui, and H. Van-swygenhoven, Atomistic simulations as guidance to experiments, Scr. Mat, vol.49, issue.7, pp.629-635, 2003.

Y. B. Lu, Q. S. Yang, X. Q. He, and K. M. Liew, Modeling the interfacial behavior of carbon nanotube fiber/polyethylene composites by molecular dynamics approach, Comp. Mat. Sci, vol.114, pp.189-198, 2016.

M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. Wang et al., Deformation twinning in nanocrystalline aluminium, Sci, vol.300, issue.5623, pp.1275-1277, 2003.

J. P. Hirth and J. Lothe, Theory of Dislocations, 1992.

Q. Lu and B. Bhattacharya, Effect of randomly occurring Stone-Wales defects on mechanical properties of carbon nanotubes using atomistic simulation, Nanotech, vol.16, issue.4, p.555, 2005.

G. Wilde and S. Divinski, Grain Boundaries and Diffusion Phenomena in Severely deformed, Materials, Mat. Trans, vol.60, issue.7, pp.1302-1315, 2019.