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Experimental evidence for circular inference
in schizophrenia
Renaud Jardri1,2, Sandrine Duverne1, Alexandra S. Litvinova3 & Sophie Denève1

Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of

hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls

(CTLs) report their level of confidence on a forced-choice task that manipulated the strength

of sensory evidence and prior information. Neither group’s responses can be explained by

simple Bayesian inference. Rather, individual responses are best captured by a model

with different degrees of circular inference. Circular inference refers to a corruption of

sensory data by prior information and vice versa, leading us to ‘see what we expect’

(through descending loops), to ‘expect what we see’ (through ascending loops) or both.

Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive

symptoms. Descending loops correlate with the severity of negative symptoms. Both loops

correlate with disorganized symptoms. The findings suggest that circular inference might

mediate the clinical manifestations of SCZ.
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S
chizophrenia (SCZ) is a serious and disruptive mental
disorder that has a massive effect on public health1.
Approximately 51 million people worldwide satisfy the

diagnostic criteria for SCZ, but the great heterogeneity in clinical
presentation has led some authors to break down SCZ into more
limited symptom clusters2–4. At the clinical level, psychotic,
negative, disorganized and affective dimensions have been
considered5. Despite intensive investigation, the neural basis of
SCZ remains largely unknown. SCZ does not appear to involve
focal brain lesions nor is it exclusively related to a particular
neurotransmission system. In fact, although five decades
of research has provided indirect pharmacological support
for dopamine dysfunction in SCZ, virtually all other
neuromodulation systems have also been shown to be
involved6,7. Moreover, SCZ not only affects relatively
‘high-level’ functions such as social behaviour and speech
perception but also ‘low-level’ mechanisms such as simple
perceptual illusions, centre-surround integration and
motor adaptation8,9. This substantial body of empirical data led
to the reconceptualization of SCZ as an equifinal entity10

(that is, a state of dysfunction that can arise from a variety of
aetiological dysfunctions that similarly affect global circuit
functions)11. Within recently advanced frameworks, the
impairment of the regulation of the excitatory/inhibitory
(E/I) balance figures prominently12. E/I balance is tightly
maintained in the mature cortex13,14, and it clearly plays crucial
roles in neural information processing.

On a normative side, the impairments associated with
SCZ described above might be understood within the framework
of Bayesian inference, predictive coding or both. In this
framework, feed-forward and feedback neural processing are
interpreted as a propagation of bottom-up sensory evidence and
top-down prior knowledge, which are combined using Bayes’
theorem. Through this mechanism, the brain is able to form
a deep hierarchical representation of the environment, from
low-level sensory features to high-level scene interpretations or
behavioural choices15,16. However, biases in the relative strength
of (that is, trust in) sensory evidence versus prior knowledge can
lead to the formation of aberrant beliefs (for example, psychotic
symptoms)17–20. For example, a pathologically high degree of
trust in prior beliefs might lead patients to perceive objects that
they expect but that are not really there. Similarly, too much trust
in sensory evidence can lead to the perception of a non-existent
conflict between unreliable sensory information and priors and,
eventually, the generation of a false belief system to account for
this conflict.

Although these two conceptualizations of SCZ (that is,
a ‘mechanistic’ imbalance in E/I regulation and a ‘normative’
impairment in Bayesian inference) can account for many
phenomena, they have not yet been coherently related. We
recently showed how E/I imbalances in hierarchical neural
processing can result in a pathological phenomenon called
‘circular inference’21. Most long-range connections in the
human brain are excitatory; the interplay between the
feed-forward and feedback connections creates strong recurrent
excitatory loops; as a result, the top-down influence of priors on
the sensory area can easily be misinterpreted as new sensory
evidence and reverberated back up, resulting in ‘descending
inference loops’. This neural architecture makes us ‘see what we
expect’. Similarly, sensory evidence might generate high-level
representations and be reverberated back down, leading to their
misinterpretation as prior knowledge (that is, ‘ascending
inference loops’). This neural architecture would make us
‘expect what we see’. Thankfully, the maintenance of the
E/I balance implies that any predictable (redundant) excitatory
input is cancelled by inhibition. This predictable input includes

reverberated sensory evidence and prior experience. Note
that this theory differs from impaired inhibition in predictive
coding, in which the top-down messages are prior estimates
that inhibit lower levels that transmit predictions errors22. In that
case, impaired inhibition creates systematic biases in the
estimates.

The present study attempts to validate the circular inference
hypothesis by quantifying how patients with SCZ and matched
healthy controls (CTLs) derive confidence from sensory evidence
and prior information as well as how this process is correlated
with symptom severity. We used the Fisher task, a variant of the
beads task probabilistic paradigm23,24. In the beads task,
participants must deduce from which of two jars a string of
beads has been drawn. Typically, the jars contain beads of two
colours in opposite ratios (for example, 8:2 and 2:8). A robust
finding in such tasks is that people suffering from psychotic
symptoms exhibit a ‘jumping-to-conclusions’ bias (that is, they
make decisions based on less evidence and with increased
confidence in their choice)25–27.

In our variant of the bead task, participants were asked to
report the ‘chance’ (and not an actual decision) that a red fish
caught by a fisher came from one of two lakes (left versus right
lake)28. Each trial started with the presentation of two baskets of
different sizes associated with the two lakes. Participants were
told to interpret the relative size of the baskets as representing the
preference of the fisher for each lake. We interpreted this
information as the prior for each lake. The baskets then
disappeared and were replaced by two lakes, each containing
50 fishes of two possible colours (red or black), and a fisher
between the two lakes holding a red fish (the colour of the caught
fish did not change across trials). Each lake contained a different
proportion of black and red fishes that varied anti-symmetrically
(for example, if the proportion of red fish was 0.1 on one side,
then it was 0.9 on the other side), including completely
unambiguous trials with proportions of 0:1 and 1:0. This
experimental set-up resulted in different quantifiable sensory
evidence for the two lakes. The sensory evidence remained
available until the response occurred. Importantly, the
participants provided a single response regarding their level of
confidence about the fish’s origins on a scale ranging from totally
certain regarding the left lake to totally certain regarding the right
lake (rather than signalling a right/left choice; See ‘Methods’
section and Fig. 1a). Together, these adaptations made our variant
of the Fisher task well suited to test the Bayesian inference of
patients with SCZ and generate qualitative and quantitative
model-based predictions regarding how patients and CTLs
integrate prior and sensory evidence to drive probabilistic
reasoning. We report converging results indicating that
the behaviour of SCZ patients and CTLs could not be explained
by simple Bayes but fit well in a parametric circular inference
model.

Results
Model-free analysis of behavioural performance. Twenty-five
patients with SCZ and 25 matched healthy CTLs performed the
task (see ‘Methods’ section and Table 1 for a full description
of the samples). The participants responded by clicking a position
on a chance scale that varied from c¼ 0 (absolute certainty for
the left lake) to c¼ 1 (absolute certainty for the right lake).
The average c was close to 0.5 (equal chance for right and
left lake) and did not differ between the groups, excluding a bias
for one of the two lakes (Supplementary Fig. 1).

We first used a model-free analysis to confirm that
the participants account for the different types of information
(that is, fish proportions and basket size) to derive and report a
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graded level of confidence about the origin of the fish.
The participant’s absolute confidence (defined as 2 jc� 0:5 j )
varied between 0 (completely uncertain; that is, clicking in
the middle of the chance scale) and 1 (absolutely certain;
that is, clicking at one of the extremes of the chance scale).
Sensory evidence was quantified as 2 jPR � 0:5 j , where
PR denoted the proportion of red fishes in the right lake.
According to the experimental design, the proportion of red
fishes in the left lake was always 1�PR. Thus, a sensory evidence
value of 0 corresponded to a case in which the proportions of the
fishes in the two lakes were equal (no sensory evidence), and a
sensory evidence value of 1 corresponded a case in which all of
the red fishes were found in only one of the lakes (completely
unambiguous). Finally, the prior congruency was defined as the
basket size for the lake with the largest proportion of red fishes
minus the basket size for the opposite lake (set to 0 when the
proportions of fishes in both lakes were equal). This difference
was scaled to vary from � 1 (in which the prior contradicted the
sensory evidence most strongly) to 1 (in which the prior
confirmed the sensory evidence most strongly).

Among the CTLs, the absolute confidence monotonically
increased with sensory evidence and increased notably when the
sensory evidence was unambiguous (Fig. 1b,c, left panel;
main effect of sensory evidence using a general linear mixed
model (see ‘Methods’ section), F1,144¼ 14.534, Po0.001).
Moreover, the absolute confidence was substantially lower when
the prior was incongruent with sensory evidence (Fig. 1c, left

panel; main effect of prior congruency: F1,328¼ 943, Po0.001),
although the effect of prior congruency was strongly modulated
by the type of sensory evidence (Fig. 1c, left panel; interaction
prior congruency � sensory evidence: F1,353¼ 884, Po0.001). In
trials with unambiguous sensory evidence, the effect of prior
congruency was totally abolished (Fo1), confirming that
the CTLs disregarded prior evidence when the sensory evidence
was unambiguous. In trials with ambiguous sensory evidence,
the effect of sensory evidence was larger in trials with congruent
priors than in trials with incongruent priors (interaction prior
congruency � sensory evidence: F1,312¼ 8, P¼ 0.006). These
results confirm that the CTLs accounted for prior evidence
when the sensory evidence was ambiguous and revealed that
the effect of sensory evidence was steeper when this piece
of information was congruent with prior evidence.

In accordance with previous findings29,30, the patients with
SCZ were overall more confident than CTLs (Fig. 1b, left panel;
F1,935¼ 660, Po0.001). The conventional indices for jumping
to conclusions are provided in Supplementary Fig. 1. Similar
to the CTLs, the absolute confidence in patients with
SCZ increased with sensory evidence (F1,520¼ 319, Po0.001)
and prior congruency (F1,340¼ 10, P¼ 0.002). As Fig. 1 shows,
however, these two effects were much smaller in patients with
SCZ than CTLs (two-way interactions with group: Fs4151,
pso0.001). The significant group � sensory evidence � prior
congruency three-way interaction (F1,797¼ 100, Po0.001)
captured the differential effects of prior congruency between
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Figure 1 | The Fisher task: experimental procedure and behavioural performance. (a) Each trial can be decomposed into four steps (see ‘Methods’

section). After a fixation cross was presented (1), the prior information was provided (2). The size of the baskets represented the chance that the fisher

caught a fish from the left or right lake. This prior was then removed (3), and the likelihood information was provided (4). The likelihood information

consisted of the proportions of black and red fishes within both the left and right lakes. The participants reported their confidence that a red fish originated

from one of the two lakes using a semi-circular scale. Confidence levels and RTs were recorded. (b,c) Mean confidence rates and RTs (in sec) in

CTL participants (n¼ 25) and patients with SCZ (n¼ 25). The data are presented as the mean ± the s.e.m. (b) The effects of the sensory evidence on the

absolute confidence and RTs in the SCZ and CTL groups. (c) The effects of prior congruency on the confidence levels and RTs in the SCZ and CTL groups.

Three levels of sensory evidence were plotted: small amount of evidence¼ likelihood of 0.2 or 0.4; large amount of evidence¼ likelihood of 0.6 or 0.8; and

unambiguous¼ likelihood of 1. The circular inference model predictions ±s.d. (estimated with a noise term of s.d.¼0.02 added to the likelihood) are

shown as lines with shaded contours (see ‘Methods’ section and Supplementary Fig. 2 for predictions of the noiseless model for all trials).
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the two groups based on the type of sensory evidence. In
trials with unambiguous sensory evidence, the effect of
prior congruency remained significant in patients with
SCZ (F1,125¼ 9.11, P¼ 0.003), in contrast with CTLs
(interaction group � prior congruency: F1,248¼ 7, P¼ 0.01).
However, in trials with ambiguous sensory evidence, the
combination of prior and sensory evidence was similar between
the two groups (interaction group � sensory evidence � prior
congruency Fo1, P¼ 0.8). Similar to the CTLs, the effect of
sensory evidence on patients with SCZ was larger in trials with
congruent priors than in those with incongruent priors
(interaction prior congruency � sensory evidence: F1,334¼ 4,
P¼ 0.05). Together, these results reveal that patients with
SCZ integrated prior and sensory evidence differently from
the CTLs, and they were incapable of disregarding prior evidence
when sensory evidence was unambiguous.

Excluding the potential confounding effect of speed/accuracy
trade-offs, similar reaction time (RT) patterns were observed
for both groups. Both groups responded faster in cases of sensory
evidence (Fig. 1b, right panel; F1,1,127¼ 305, Po0.001) and prior
congruency (Fig. 1c, right panel; F1,665¼ 13, Po0.001).
The patients with SCZ responded more slowly than the
CTLs (Fig. 1b, right panel; F1,973¼ 24, Po0.001). No interaction
was significant (P40.075), although the patterns of variation for
RT closely resemble those for the confidence rate, as was evident
after comparing the two columns of Fig. 1b,c.

Model predictions. To compare the participants’ behaviour with
predictions from exact or circular Bayesian inference, we
constructed different models, the predictions of which are
displayed in Fig. 2. Note that all of the predictions and data are
now reported as logits and not as probabilities. Thus, the chance
logit Lc ¼ logð c

1� cÞ is predicted as a function of the likelihood
logit Ls ¼ logð PR

1�PR
Þ, with PR and 1� PR corresponding to the

colour proportion of the fishes in the right and left lake,

respectively. The prior logit was defined as the ratio of the sizes of
the two baskets, Lp ¼ logðSrSLÞ, with Sr and SL corresponding to the
size of the right and left fish baskets, respectively. For example, if
the right basket was twice as large as the left basket, then the prior
logit was log(2). Note that logits can vary between negative infi-
nity (when certain left lake) and positive infinity (when certain
right lake). Only trials with ambiguous sensory evidence (that is,
finite likelihood logits) were used to fit the model parameters. The
model prediction for unambiguous trials is reported in
Supplementary Fig. 2. To avoid numerical issues, the confidence
c was re-scaled to range between 0.01 and 0.99 (these boundaries
were chosen to not significantly affect the results reported here).
To avoid confusion, note that the term ‘prior’ is not used to
describe the probability of the sample given for each lake as it has
been in previous studies. We interpreted the (sampleþ fish)
proportions as sensory evidence because all of the corresponding
information was visually available at the time of the response. In
contrast, the basket size information was provided before the
response display, and the response required a prediction based on
memorized information. Also note that the target fish colour
(for example, red fish) did not vary across trials. Thus, the prior
was not predictive of the visual display.

The simple Bayes model (Fig. 2a) assumed that sensory
evidence and prior information are directly combined using
Bayes’ theorem. Thus, the likelihood logit and the prior logit
were summed. The weighted Bayes model allowed the partici-
pants to assign different degrees of trust to the sensory
information (that is, fish proportions) and prior (that is, basket
size) information. Thus, this model had two free parameters, the
sensory weight, ws, and the prior weight, wp (Fig. 2b). For
example, the participants might have believed that even if the
baskets had indicated a left choice, a non-zero probability
(1�wp) would still exist stating that this prediction was incorrect
(due to sensory noise, imperfect memory, the fisher changing
his mind, a trick of the experimenters and so on). The weighted

Table 1 | Characteristics of the recruited samples.

SCZ mean (±s.d.) CTL mean (±s.d.) P value

Demographics
Sample size (n) 25 25 NA
Age (y.o.) 33.2 (±11.3) 31.2 (±7.5) 0.3924
Gender (m/f) 15/10 12/13 0.3946
Years of education (from first year of primary school) 11.4 (±0.9) 11.9 (±1) 0.1567

Neuropsychological evaluation
Spatial attention (Bells cancellation task) 0.5 (±1.5) 0.6 (±1.6) 0.9879
Cognitive inhibition (Stroop interference) 1.5 (±0.8) 1.4 (±0.5) 0.1591
Working memory (backward digit-span) 4.5 (±1.3) 6.4 (±2.1) 0.0005*
Non clinical beliefs (PDI-21 score) 10.3 (±6.3) 2.5 (±2.3) 2.6e–6*

Illness course, psychopathological evaluation and medication status
Illness duration (years) 9.6 (±4.8) — NA
Unemployed or disabled (n, %) 17 (68%) — NA
Hospitalization/patient 2.9 (±1.2) — NA
Clinical dimensions (PANSS scale)
PANSS total score 73.7 (±20.5) — NA
PANSS positive factor 11 (±4.1) — NA
PANSS negative factor 17.6 (±7.5) — NA
PANSS disorganized factor 9.2 (±3.4) — NA
PANSS excited factor 5.7 (±1.9) — NA
PANSS depressed factor 7.2 (±2.8) — NA

Antipsychotic equivalence dose (OLZ-Eq, in mg) 19.6 (±6.6) — NA

CTL, control subjects; NA, not applicable; m/f, male or female; OLZ-Eq, antipsychotic dosage using Olanzapine equivalency; PANSS, positive and negative syndrome scale; PDI: Peters et al. Delusions
Inventory 21 items scale; r/l: right or left; SCZ, patients with schizophrenia; y.o., years old.
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Figure 2 | Model predictions. The predictions of each model are plotted as the chance logit against the prior logit and against the likelihood logit

(middle and right panels, respectively). In the plots, the likelihood and prior information is colour-coded (from dark blue to yellow) according to the true

probability that the fish originated from one of the two lakes in the Fisher task. The simple Bayes model is presented in a, with the strength of the prior and

the value of the likelihood equal to 1 (wp¼ 1; ws¼ 1). The first variant of the model (that is, the weighted model) is presented in b, in which the strength of

the messages was manipulated (wp¼0.75; ws¼0.9, arrow size in the graph model). This model enables the modulation of the chance/prior/likelihood

relationship. The circular inference model is implemented in c,d. The addition of inhibitory factors at each level of the hierarchy enables the flow of

information to be controlled. This inhibitory control can act independently for feed-forward and feedback propagation. Predictions for large levels of

descending loops (ap¼ 1.8) are presented in c whereas predictions for large levels of ascending loops (as¼ 1.8) are presented in d.
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Bayes model is the binary-choice equivalent of the weighted
combination of sensory and prior estimates used in many other
studies for continuous variables.

Finally, by including two additional free parameters, as and
ap,which represented the strength of ascending loops
(sensory over-counting) and descending loops (prior over-
counting), respectively, the circular inference model enabled
the sensory evidence, the prior or both to be ‘reverberated’
and counted multiple times (Fig. 2c; see ‘Methods’ section for
a detailed description of the implementation and optimization
of these models). The specific case of a no-reverberation model
has also been tested and is presented in the Supplementary
Material.

Comparison between predictions and participants’ behaviours.
The chance logits (Lc) for the CTLs and patients with SCZ as
a function of likelihood logit (Ls) and prior logit (Lp) are provided
in Fig. 3a,b, respectively. The behaviours of the participants
(in the SCZ group and, to a lesser extent, the CTL group)
significantly differed from the simple Bayes prediction shown
in Fig. 2a. In particular, Bayes’ rule predicted linear curves
for slope 1 for all of the curves. In contrast, the experimental
curves were sigmoidal.

The weighted Bayes model predicted the saturation
of the curves around the extreme prior and likelihood
values (see Fig. 2b). However, the weighted Bayes model
also predicted that the slopes of the curves approximately
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Figure 3 | Participant confidence and predictions based on the circular inference model. The mean chance logit is plotted as a function of the likelihood

logit or the prior logit. The likelihood and prior information is colour-coded (from dark blue to yellow) according to the true probability that the fish

originated from one of the two lakes in the Fisher task. For each plot, the data fits obtained using the circular inference model are overlaid as solid lines

using the same colour code. (a) Chance logit plotted against the likelihood (left) and prior (right) among healthy CTLs; (b) Chance logit plotted against the

likelihood (left) and prior (right) among the patients with SCZ. (c,e) Data from two CTL participants. Note that one participant (e) exhibited a tendency to

jump to conclusions (sigmoidal), whereas the other (c) made Bayesian decisions (linear) in the Fisher task. (d,f) Data from two participants in the

SCZ group. Participant (d) exhibited an extreme jumping-to-conclusions pattern compared with participant (f); once again, however, the circular

inference model provided the best fit for these data despite their heterogeneity. (Data and model fits for each participant are provided in Supplementary

Figs 3 and 4.)
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0 should not exceed 1 and that all of the curves should
be parallel to each other. These predictions were clearly incorrect,
especially regarding the prior logit and the likelihood
logit associated with patients with SCZ. Slopes larger than
1 suggest that the same evidence is accounted for more than once.
The fact that the slope of Ls is larger when Lp approximates
0 (and vice versa) indicates that prior and likelihood are not
treated as two independent sources of information. Rather, the
likelihood information is corrupted by the prior information, or
vice-versa, before they are combined. Both phenomena can be
considered as a signature of circular inference (see ‘Methods’
section and Fig. 2c).

The weighted bias and circular inference models
were individually fitted on each participant’s responses
(see ‘Methods’ section). To estimate the models’ performances
while accounting for the difference in their number of
free parameters (four per participants for the circular inference
versus two for the weighted Bayes versus none for the
simple Bayes), we measured each model’s Bayesian Information
Criteria (BIC) score (Fig. 4). Smaller BIC values denote a better
fit. Over all the participants, the BIC of the circular inference
model (1,220) was considerably smaller than that of the
simple Bayes model (8,464) and the weighted Bayes model
(5,293), confirming that the circular inference model provided
a better explanation of the data than the two other models.
The same was true within both the CTL and SCZ groups.
Interestingly, the performance of the circular inference
model surpassed that of the weighted Bayes model
(BIC¼ � 4,730 for circular inference versus BIC¼ � 4,313 for
weighted Bayes) even for the CTLs, suggesting that the CTLs also
displayed some degree of circular inference. To confirm these
results, we created a Bayesian model comparison for group
studies31 and found a strong dominance of the circular inference
model over the simple and weighted Bayes models (CTL group:
a¼ 25.99 for circular inference versus a¼ 1 for both the weighted
and simple Bayes models; patient group: a¼ 24.01 for circular
inference versus a¼ 2 for both the weighted and simple Bayes
models, respectively).

Subsequently, all of the reported parameter values (that is, the
parameters for weights and loops) refer to those fit with the
circular inference model. In Fig. 1b,c as well as Fig. 3a,b,
the average circular inference model prediction is presented as an
overlaid solid line for the CTL and SCZ groups. Example sessions
averaged at the participant level are displayed in Fig. 3c–f
(Individual data for the whole sample and model fits are provided
in the Supplementary Material). Note that the optimized circular
inference model accounted for the behaviour of the SCZ and
CTL groups with considerable accuracy (Fig. 4a–d). In particular,
it successfully captured the inter-participant variability of the
SCZ group (Supplementary Figs 3 and 4).

Parameter estimates of the circular inference models. The
mean parameter values for the two groups are shown in Fig. 5a.
The mean sensory weight (ws) and prior weight (wp) of the
CTLs were 0.64 and 0.56, respectively. This result is not
surprising given the qualitative nature of the basket size
information (see ‘Methods’ section), while the smaller sensory
weights might reflect uncertainty about the exact fish proportion
in the two lakes. The amount of ascending loops (as) and
descending loops (ap) was moderate in the CTLs, although
the contribution of these loops to behaviour remained significant
(see the BIC scores). Overall, the behaviour of the CTLs was
relatively close to Bayesian, which accounts for the acceptable
fit between their responses and the simple Bayes model (Fig. 4b).
In contrast, the simple Bayes model failed to capture the
behaviour of the SCZ group (Fig. 4c).

The SCZ group differed from the CTLs as demonstrated by
the significant effect of parameter type (F3,144¼ 134.3, Po0.000).
The interaction between parameter type and group was
also significant (F3,144¼ 18.1, P¼ 0.001). In particular,
the patients with SCZ severely over-counted the sensory evidence,
as demonstrated by the amount of ascending loops, as, which
was significantly larger than that for CTLs (z¼ � 5.25,
Po0.001). The mean sensory weight, ws, was also slightly larger
in patients with SCZ than CTLs (z¼ � 3.05, P¼ 0.046).
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In contrast, the mean prior weight, wp, was substantially smaller
in the patients with SCZ than in the CTLs (z¼ 4.67, Po0.001;
see Fig. 1c,d); however, the two groups did not differ with regard
to the extent to which the priors were over-counted, as evaluated
by the amount of descending loops, ap (P¼ 0.99).

Thus far, we applied the model to ambiguous trials with
finite likelihood logits (that is, trials in which probabilistic
reasoning was required). In unambiguous trials, the participants
were instructed to click on the extremity of the scale, which
the CTLs did (Fig. 1c). Interestingly, patients with SCZ continued
to be influenced by the prior in those trials (Fig. 1d).
The particular case of unambiguous trials is presented and
discussed in the Supplementary Material.

Prior weight was correlated with working memory performance.
The parameter wp must be treated with some caution because
the prior is somewhat qualitative, in contrast with the sensory
evidence. For example, part of the logit non-linearity might be
because of the distortion in perceived sizes. However, because
we have no particular reason to believe that this effect would
differ between the CTL and SCZ groups, we continued to inter-
pret differences in wp as representing differences in prior
weighting. Because this information must be memorized, the
between-group differences in wp might solely be a manifestation
of the types of cognitive dysfunction that are highly prevalent
in patients with SCZ32,33. We collected independent measures of
working memory (WM) performance through post-experimental
psychometric tests. The WM performance of the patients
with SCZ was poorer than that of the CTLs (P¼ 3.1e–06,
Table 1) and correlated with wp over the whole sample (r¼ 0.29,
P¼ 0.039). However, WM did not differentially affect the
other parameters values within the SCZ and CTL groups
(for example, non-significant correlations were observed with
regard to ws, as and ap, but a positive interaction was found
between WM and the four model parameters, P¼ 0.02).

Ascending loops were correlated with positive SCZ symptoms.
The amount of ascending loops (as) were positively correlated
with non-clinical beliefs, which were measured across the
whole sample using the 21-item Peter’s Delusional Inventory
(PDI-21) scale (b¼ 0.59, F1¼ 15.6, Po0.000 and b¼ 1.1,
F1¼ 16.7, Po0.000; Fig. 5b,c). However, this correlation was
not significant among the CTLs. A regression model using

backward selection excluded the potential association between
beliefs and WM performance (P¼ 0.3).

Additional analyses were restricted to the SCZ group.
The associations between the model parameters and
psychopathology were tested using the Positive and Negative
Syndrome Scale (PANSS) scores measured in the SCZ sample.
Global severity was associated with the number of ascending
loops (or sensory over-counting), as, (r¼ 0.48, P¼ 0.03) and
the total number of loops, as þ ap (r¼ 0.54, P¼ 0.01; Fig. 5b).
More precisely, ascending loops were associated with the severity
of psychotic symptoms (PANSSp; r¼ 0.45, P¼ 0.05; Fig. 6a)
but not with the severity of negative symptoms (P¼ 0.14),
with a significant interaction (P¼ 0.04). Interestingly, as was
particularly strongly associated with delusions (item P1, r¼ 0.61,
Po0.01), hallucinations (item P3, r¼ 0.47, P¼ 0.03),
and unusual thought content (item G9, r¼ 0.45, P¼ 0.05).

Descending loops were correlated with negative SCZ symptoms.
Although the severity of descending loops, ap, did not
significantly differ between the SCZ and CTL groups, it
varied greatly from patient to patient. Among patients with
SCZ, ap (but not as) was correlated with the severity of negative
symptoms (PANSSn; r¼ 0.51, P¼ 0.02), with a significant
interaction (P¼ 0.03). The ap parameter was particularly
correlated with emotional withdrawal (item N2, r¼ 0.5, P¼ 0.02),
poor rapport (item N3, r¼ 0.62, P¼o0.01), and lack of
spontaneity (item N6, r¼ 0.49, P¼ 0.03). Thus, the severity
of negative SCZ symptoms might be associated with an
over-counting of prior beliefs.

Both loops were correlated with disorganized symptoms.
In addition, disorganized symptoms (PANSSdis) were correlated
with as (r¼ 0.46, P¼ 0.04) and ap (r¼ 0.48, P¼ 0.03) as well
as with asþ ap (r¼ 0.54, P¼ 0.01; Fig. 6c). The total number
of loops (asþ ap) was particularly strongly associated with
conceptual disorganization (item P2, r¼ 0.55, Po0.00), difficulty
in abstraction (item N5, r¼ 0.51, P¼ 0.02) and poor attention
(item G11, r¼ 0.45, P¼ 0.05).

In contrast, affective symptoms were not significantly
correlated with the parameters evaluated using the PANSS
excitation and depressive factors. This result suggests
that different mechanisms are involved in these dimensions,
which are common to both SCZ and bipolar disorder.
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Discussion
Using the Fisher task paradigm, we compared the degree
of confidence that the SCZ and CTL groups derived from
combining prior information and sensory evidence. By fitting
a model inspired by a hierarchical neural network with impaired
E/I balance, we interpreted the between-group differences in
terms of specific impairment in Bayesian inference mechanisms.
The model successfully captured not only the group-averaged
behaviour but also the large inter-participant variability, within
both the SCZ and CTL groups.

The most salient results of this study are the large over-
counting of sensory evidence and the under-weighting of priors
in SCZ. Importantly, the over-counting of sensory evidence
cannot be simply explained by an overly large amount of trust
placed in the sensory evidence compared with the prior. Although
the patients assigned slightly more trust (that is, sensory weight,
ws) to the likelihood information, most of the difference between
the patients with SCZ and the CTLs came from the large number
of ascending loops, as, in the patients with SCZ. In particular,
when the fish proportion only slightly differed between
lakes, patients with SCZ showed strong differences in confidence
(that is, a tiny change in the likelihood logit near 0 might cause
a large change in the chance logit). This result cannot be
explained by Bayes’ theorem alone, regardless of how reliable the
sensory information was assumed to be. Even when maximal
trust was placed in the sensory evidence (ws¼ 1), a change in the
likelihood logit caused an equal change in the chance logit.

We attributed this phenomenon to the presence of ascending
inference loops that allow sensory evidence to be combined
with itself and the prior multiple times21. More concretely,
a slightly higher proportion of fishes in the right lake might have
generated a top-down prediction favouring the right lake. In the

absence of a proper inhibitory control, this ‘redundant’ prediction
(as opposed to an independent source of prior information
such as basket size) could be re-combined with the sensory
and prior data, further inflating the patients’ confidence in the
right lake interpretation. This phenomenon might have caused
the patients with SCZ to experience high confidence levels that
were disproportionate with the available sensory data.

Crucially, the amount of ascending loops was correlated with
the amount of non-clinical and delusional beliefs. These findings
are compatible with the theoretically predicted effects of circular
inference, which include the inappropriate causal attributions
that might be the root of psychotic symptoms21,34. This result
also suggests that psychotic symptoms are linked to sensory
over-counting and not a dominance of prior beliefs.

The sensory over-counting interpretation of SCZ might explain
the paradoxical finding that patients with SCZ, most notably
those with psychotic symptoms, can be less susceptible to visual
illusions35–37. This attenuation has also been observed in people
who exhibit high delusional belief scores38, but it appears to be
independent of affective symptomatology39 in accordance with
the present findings. Within the framework of Bayes’ theory,
illusions likely arise from weak or conflicting sensory evidence
and from strong prior evidence40. Interestingly, this pattern of
results regarding the illusions associated with SCZ, although
frequently reported, has not always been replicated in the
literature9. We predict that patients with preeminent negative
symptoms (in whom we found an increased amount of
descending loops) will exhibit unchanged, or even augmented,
sensitivities to illusions.

Our results are also consistent with previous studies describing
jumping to conclusions in people with SCZ (for example,
refs 28,41,42) and with reports showing that people with higher
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PDI-21 scores tend to request fewer beads before making
a decision in probabilistic reasoning tasks26. More discussion
regarding this literature is available in the Supplementary
Material.

Finally, comparing our approach with other models in which
the prior and sensory estimates were summed with weights
corresponding to their assumed precision is interesting. This
comparison includes both free energy models43 and predictive
coding models44. Note that such models are appropriate
for continuous variables, such as position or direction, but
not for binary choices, such as right or left. For example, this
finding would lead to an aberrant confidence estimate of ‘2’ when
both the prior and likelihood unambiguously favour the right lake
(that is, an estimate of 1). For binary variables, the closest
equivalent is the weighted Bayes model (that is, a Bayesian model
in which the precision of the sensory and prior information
is allowed to vary). If the variables were continuous and the
probability distributions were Gaussians, then circular inference
might also result in a weighted combination of prior and sensory
estimates. However, in the presence of strong circular inference,
the weights reflect the amount of loops as and ap and not with
the subjective precision of sensory and prior information. Please
note that our model stays compatible with alternative
computational frameworks. Jumping from attractor to attractor
in a dynamic framework could for instance be interpreted as the
generation of aberrant beliefs in the circular inference framework.

The manner in which cognitive impairments might have
interfered with our results was of particular concern because
altered WM might affect the jumping-to-conclusions bias45.
Although associations between executive function and positive
symptoms have emerged from meta-analyses46, these associations
have not always replicated47, most notably because of the lack
of WM manipulation during data collection. By changing the
prior information in each trial, we were able to reveal only the
influence of WM on prior weight (wp). One explanation for
the tendency of patients with SCZ to mistrust the basket
information is that they could not always remember it well.
In fact, WM in patients with SCZ was correlated with prior
weight, wp, but not with the parameters directly associated with
the jumping-to-conclusions bias (that is, as, ws or even ap). This
result suggests that WM impairments are not a major factor in
the over-counting of sensory information and its association with
psychosis, which is consistent with the data showing the
independence of cognitive deficits and psychotic symptoms in
people with SCZ48,49.

To date, the central challenge of SCZ research has been the
lack of an integrative model that accounts for the heterogeneity of
the disorder. By fitting a circular inference model, we were able
to capture the three main clinical dimensions of SCZ: positive
symptoms (that is, psychosis), negative symptoms and disorga-
nization. These different clinical dimensions rely on partially
overlapping impairments, which correspond to the cortical circuit
correlates of the components of the circular inference model21.
This holistic approach to SCZ constitutes the major strength
of the circular Bayesian framework.

In addition to the association between ascending loops and
psychosis, we found a correlation between negative symptoms
and descending loops, which suggests that the tendency of
prior beliefs to overcome the sensory evidence is one of the
factors that lead to negative symptoms. We also found
a correlation between all of the loops and the dissociative features
of SCZ. This observation is in line with our theoretical predictions
because the presence of both types of circular inference results
in dissociations between low-level sensory representations and
their high-level interpretations21. This last result highlights the
need to question and reconsider disorganized symptoms as the

ultimate stage of the disorder. This perspective is reminiscent of
the seminal view of Eugen Bleuler, who proposed that the
‘splitting of psychic functions’ was a core feature of SCZ more
than a century ago50.

Finally, one intriguing result of this study was that circular
inference was necessary to account for the responses of both
patients with SCZ and CTLs. Only a minority of CTLs could be
considered as ideal Bayesian observers (that is, those who
matched a linear fit). Although we did not find a correlation
between the PDI score and ascending loops in our CTLs, such
a relationship might emerge in a larger, more heterogeneous
population (that is, in terms of range of beliefs), indicating
that moderate circular inference is not necessarily pathological
(see also refs 43,51). This finding appears compatible with recent
physiological recordings coupled with optogenetic inhibition,
which revealed that reverberation, with notably recurrent inputs
to sensory areas, is essential for accurate perception52. Future
studies will explore circular inference and its implications for
perception and decision making in CTLs.

Methods
Sample. A statistically valid sample size was defined at 21 participants/group,
based on an a priori power calculation performed on confidence rates from
pilot test data. Considering a pessimistic 15-to-20% drop-out rate, we enrolled
25 participants in each group (that is, 25 patients who satisfied the Diagnostic
and Statistical Manual, Fourth Edition, Text Revision (DSM-IV-TR) criteria for
SCZ53 and 25 healthy CTLs who were matched for age, gender and years of
education (see Table 1). Because no technical problems were encountered,
all 50 participants were included, and their data were analysed. All of the
participants were adults with normal or corrected-to-normal vision. They were all
tested for spatial attention using the Bells cancellation task, cognitive inhibition
using the Stroop interference task, WM using the digit span task and non-clinical
beliefs using the PDI-21 (ref. 54). Psychopathology was specifically explored in the
patient group using the PANSS55. A senior psychiatrist confirmed the absence of
psychiatric symptoms among the CTLs using the Mini International
Neuropsychiatric Interview (MINI-DSM-IV)56. The exclusion criteria were the
presence of an Axis-II diagnosis, a secondary Axis-I diagnosis, a neurological
or sensory disorder, a history of drug abuse based on the clinical interview and
at-admission urine tests and an IQ below 80. CPP Nord-Ouest IV provided ethical
approval for this study. All the volunteers provided written informed consent.

Stimuli and design. The participants viewed stimuli on a LCD monitor placed
50 cm away. After successfully performing three separate training blocks with the
prior only, likelihood only and the combination of the prior and likelihood
information, all 50 participants completed the Fisher task, which consisted
of 8 blocks of 30 trials each for a total of 240 trials/participant. The participants
were allowed to take breaks between each block. Figure 1a shows the event
sequence for one trial in the task.

After a fixation cross was presented for 800ms, the prior, which consisted
of two fish baskets (left and right), was presented for 1,000ms. The participants
were told to interpret the size of these baskets as the degree of preference that the
fisher had for the left or right lake. After a 50-ms delay during which the fixation
cross was again presented, the likelihoods were presented at the same locations
where the baskets were presented. The likelihood consisted of the proportion
of black and red fishes found within the left and right lakes. A fixed number of
fishes was included in each lake, and the values for the prior and the sensory
evidence associated with the two lakes were symmetrical (for example, ratios
of 2:8 and 8:2 for the left and right, respectively).

The participants were instructed to report their confidence that a red fish
originated from one of the two lakes. A red fish was used for all trials. The
participants replied using a semi-circular scale that ranged from 100% confidence
that the fish had been caught in the left lake to 100% confidence that the fish
had been caught in the right lake. To avoid misinterpretation, we instructed
participants to answer at the extremity of the scale (that is, ‘totally certain’ for
unambiguous trials). RTs were recorded. After the response was collected, the
fixation cross was presented alone during a 200-ms delay before the onset of
the next trial. The prior and likelihood information were manipulated for each trial
and could take the following values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 for the
prior and 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 for the likelihood. The trial
sequence for each block was generated using a pseudo-random algorithm.

Predictions based on simple Bayesian inference. Three distinct variables were
manipulated in the Fisher task. First, the size of the basket reflected the prior
probability for each lake. For example, a basket size ratio of 8:2 corresponded
to a prior probability of 0.8 for the right lake, whereas a 4:6 ratio represented

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14218

10 NATURE COMMUNICATIONS | 8:14218 | DOI: 10.1038/ncomms14218 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


a prior of 0.4. Note that the prior was intentionally qualitative in nature. Thus,
although we were unable to compare different participants, each participant
could have a different interpretation of the mapping between basket size and prior
information (see circular inference model).

Second, the proportion of fishes in each lake reflected the sensory evidence in
the form of the likelihood that the fish originated from the right or left lake. In
contrast to the prior, the likelihoods could be precisely manipulated by changing
the proportion of black and red fishes in each lake. For example, if 40 black
fishes and 10 red fishes were present in the left lake, and 10 black fishes and
40 red fishes were present in the right lake, then the likelihood of a red fish, PR, was
0.80 for the right lake.

Finally, the participant’s response, c, was the normalized position on the
confidence scale (Fig. 1a). To avoid numerical issues, c was rescaled to range
between 0.00001 and 0.99999. The chance logit was defined as Lc ¼ log c

1� c

� �
. Note

that Lc is positive when the participant is confident that the fish comes from the
right lake, negative when the participant is confident that the fish comes from the
left lake, and 0 if the participant is completely uncertain. Lc was reported as
a function of the likelihood logit, Ls ¼ logð PR

1�PR
Þ, with PR representing the

proportion of red fish in the right lake and the log prior logit, Lp ¼ logðSRSLÞ,
where SR and SL correspond to the size of the right and left baskets, respectively.

An optimal Bayesian observer should apply Bayes’ theorem to compute the
posterior probability of the two lakes as the product of the likelihood and the prior
(normalized to a sum to 1). We called this hypothesis the ‘simple Bayes’ model,
which can be expressed in terms of log odds ratios, Lc¼ Lsþ Lp. The Fisher task
predictions of the ‘simple Bayes’ model are provided in Fig. 2a.

Weighted Bayes model. To include the possibility that the participants might
consider the sensory cues (that is, fish colour) and prior information (that is, basket
size) 100% reliable, we interpreted the hierarchical structure of the Fisher task
using a small normative causal model composed of three binary variables
(see Fig. 2, left panels). The fisher’s preference (top variable, xp) imperfectly
predicts the origin of the fish (middle variable, xc). In turn, fish origin imperfectly
predicts the sensory evidence provided by the fish colour and the proportions
(bottom variable, xs). For the sake of simplicity, we assumed that all three variables
could take only one of the two possible states: right lake or left lake (see Fig. 1a).
However, note that a more detailed normative model (for example, one that
included uncertainty about the real proportion of fishes in each lake and the
relative size of the two baskets) would make similar predictions.

The probability of lake choice as a function of fisher preference,
p xc jxp
� �

; is parameterized by a prior weight, wp, such that
wp ¼ p xc ¼ R jxp ¼ R

� �
¼ p xc ¼ L jxp ¼ L

� �
; wp denotes the reliability

or the trust placed by the participant in the basket size information.
Similarly, p xs jxcð Þ is parameterized by a sensory weight, ws, such that
ws ¼ p xs ¼ R jxc ¼ Rð Þ ¼ p xs ¼ L jxc ¼ Lð Þ and represents the reliability or the
trust placed by the participant in the fish proportion information. In this context,
exact probabilistic inference would predict that

Lc ¼ F Ls;wsð Þþ F Lp;wp
� �

;

where F L;wð Þ ¼ log weL þ 1�w
ð1�wÞeL þw

� �
.

In particular, if the participant trusted both the sensory information and the
prior completely (wp¼ws¼ 1), then this model would be mathematically
equivalent to the simple Bayes model.

Circular inference model. Rather than being taken into account only once and
then added, as in the weighted Bayes model, the sensory evidence and prior can
reverberate in the circular inference model because of the E/I imbalance. Rather
than building a hierarchical neural network model that would include too many
free parameters, we captured the essence of this phenomenon by including only
two additional free parameters: as represents the number of times the sensory
evidence is taken into account redundantly, whereas ap represents the number of
times the prior information is taken into account redundantly.

Each time the sensory evidence is reverberated into a recurrent network, it can
be wrongly considered as new additional evidence. At each reverberation, the
likelihood is multiplied by itself (that is, the logits are summed) resulting in
a redundant contribution, asLs. Through the same reasoning, reverberation of the
prior information would contribute apLp. However, because the participants do not
completely trust either source of information, the effective contributions of
over-counted information can be summarized as F apLp;wp

� �
and F asLs;wsð Þ.

Finally, because these are the results of multiple reverberations up and down
a hierarchical circuit, over-counted information will equally corrupt (be added to)
the top-down and bottom-up components of inference, rendering the likelihood
and prior information completely inseparable. The resulting simplified equation for
the circular inference model is

Lc ¼ F Ls þ F apLp;wp
� �

þ F asLs;wsð Þ;ws
� �

þ F Lp þ F asLs;wsð Þþ F apLp;wp
� �

;wp
� �

Note that this model is equivalent to the weighted Bayes model for as¼ ap¼ 0.
If the weights are also equal to 1, then it is equivalent to the naive Bayes model. In
other words, the two previous models are special cases of the circular inference
model.

To predict the absolute confidence in Fig. 1b,c, we added a small noise term
(with s.d.¼ 0.02) to the likelihood. Note that the ‘absolute confidence’ around
c¼ 0.5 depends on the variance of the responses, not the mean. Because the noise
we added is extremely small, it makes no difference except for patients with
SCZ featuring extreme levels of ascending loops. In trials with zero sensory
evidence, these patients respond randomly at the extremes of the scale, not in the
middle. According to the model, the slope of the logit at approximately 0 is so large
that any small noise pushes the response to the right or left of the scale,
reproducing this behaviour. The predictions of this ‘noiseless’ model are shown in
Supplementary Fig. 2. The noise was not used in the model fitting procedure or any
model results reported elsewhere.

Optimization of the circular inference and weighted Bayes model. The circular
inference model contained four free parameters per participant as; ap;ws andwp

� �
;

whereas the weighted Bayes model contained two (ws and wp). These parameters
were fit on a participant-by-participant basis by minimizing the mean-squared
distance between the predicted and reported chance levels, c (that is, the position of
the participant’s response on the chance scale), on all of the trials with ambiguous
sensory evidence. The mean-squared error appeared appropriate because although
the participants were estimating probabilities, their responses were also corrupted
by their own motor errors, even when they chose the extremes of the scale.
However, we also minimized the KL divergence between c and its prediction. This
yielded similar results (not reported here), including those of all statistical tests that
reached significance.

Sample characteristics analysis. Statistical analyses were conducted using
R 3.3. Significance was considered as Po0.05. Continuous variables were compared
using paired-samples t-tests when normally distributed or using the Wilcoxon rank
sum test (i.e., Shapiro–Wilk test Po0.05). Categorical variables were compared
using Pearson’s w2-test.

Model-free performance analysis. We analysed the absolute confidence of each
group using a general linear mixed model that modelled the parametric effects of
sensory evidence, prior congruency and their interaction as fixed effects with
repeated measures across participants, whereas the participants were treated as
a random factor. Absolute confidence was computed as |(confidence – 0.5)� 2|.
The parametric effect of sensory evidence corresponded to the absolute value of the
log likelihood ratio. The parametric effect of prior congruency corresponded to the
difference between the log prior for the option with larger log likelihood relative to
that for the other option. In this sense, the effect of the relative log prior ratio
modelled the strength of the prior belief congruent with the sensory evidence. The
group-comparison analyses also modelled the fixed effects of group without
repeated measures across participants as well as the two- and three-way interac-
tions with the effects of sensory evidence and prior congruency. We modelled the
variance-covariance matrix of the fixed effects with a simple variance component
that estimated the contribution of the random effect to the variance of the fixed
effects without additional assumptions regarding the contribution to the covaria-
tion across the fixed effects. To describe the significant interactions between the
parametric effects, we performed breakdown analyses restricted to trials with
unambiguous sensory evidence (that is, where the log likelihood ratio¼ 1) and
trials with ambiguous sensory evidence (that is, where the log likelihood ratio o1).
The same set of analyses was conducted on the RTs to reject the hypothesis
concerning the confounding effects of a speed-accuracy trade-off between the two
groups.

Exploration of the jumping-to-conclusions bias. Complementarily, and
to facilitate comparisons with previous findings in the literature, the jumping-to-
conclusions bias (that is, the tendency to make decisions without enough
information), was explored by examining the degree of confidence in the replies.
Three different tests were conducted: (1) a group comparison of the mean con-
fidence level ± the s.d. (Wilcoxon rank sum test); (2) a group comparison of the
number of extreme ratings (Wilcoxon rank sum test); and (3) a group comparison
of choice quality (that is, whether the participants’ choices were in line with the
optimal solution according to Bayes’ theorem; Pearson’s w2-test. These analyses are
presented in Supplementary Fig. 1.

Assessing model fit quality. We used the BIC scores to compare the quality of
the model fits for the three implemented models. We approximated the likelihood
function of all of the models as normally distributed. The reported BIC score
estimates are

BIC ¼ n logðs2Þþ k log nð Þ;

where n is the total number of data points (that is, the total number of trials
combined over all participants), k is the number of free parameters (that is, four
times the number of participants for the circular inference model, two times the
number of participants for the weighted Bayes model and zero for the simple Bayes
model), and s2 is the mean-squared difference between the chance estimate c on
each trial and the model prediction, averaged over all participants.
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Group comparisons using model parameters. To assess the different factors that
might affect group differences in the model parameters, we computed a multilevel
model for mixed designs, with parameter value defined as the dependent variable
and parameter type as the within-participants factor (that is, as, ap, ws and wp).
We also investigated the contribution of WM deficits using a multilevel model with
as, ap, ws, wp and WM as within-participant factors.

The association between the parameters and clinical/non-clinical beliefs.
The associations between the parameter values and the severity scores were
evaluated using two-tailed Pearson’s product moment correlations. The global
psychopathology of the SCZ group was measured using the PANSS total score.
We referred to the five-factor model of the PANSS to assess the specific effects of
the different clinical dimensions observed in SCZ57 (that is, positive, negative,
disorganized, excited and depressed factors). The correlations between these
subscores and the different parameters in the models were also examined.
Multiple testing corrections were made using the false discovery rate method.

To assess the independent association between non-clinical beliefs
(PDI-21 scores) and the participant values of as, ap and loops, we included these
variables along with WM performance in a regression model using backward
selection and replicated the analysis using the ‘all subsets’ method.

Code availability. The Matlab codes implementing the circular inference model
are available in the Supplementary Material.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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