M. A. Hanson and P. D. Gluckman, Early developmental conditioning of later health and disease: physiology or pathophysiology?, Physiol. Rev, vol.94, pp.1027-1076, 2014.

M. H. Vickers, Early life nutrition, epigenetics and programming of later life disease, Nutrients, vol.6, pp.2165-2178, 2014.

D. J. Barker, The origins of the developmental origins theory, J. Intern. Med, vol.261, pp.412-417, 2007.

R. C. Anderson, The Role of Intestinal Barrier Function in Early Life in the Development of Colitis, 2012.

K. R. Groschwitz and S. P. Hogan, Intestinal barrier function: molecular regulation and disease pathogenesis, J. Allergy Clin. Immunol, vol.124, pp.3-20, 2009.

M. T. Abreu, Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function, Nat. Rev. Immunol, vol.10, pp.131-144, 2010.

W. S. Garrett, J. I. Gordon, and L. H. Glimcher, Homeostasis and inflammation in the intestine, Cell, vol.140, pp.859-870, 2010.

D. R. Littman and E. G. Pamer, Role of the commensal microbiota in normal and pathogenic host immune responses, Cell Host Microbe, vol.10, pp.311-323, 2011.

D. Ley, Early-life origin of intestinal inflammatory disorders, Nutr. Rev, vol.75, pp.175-187, 2017.

S. M. Innis, C. Dai, X. Wu, A. M. Buchan, and K. Jacobson, Perinatal lipid nutrition alters early intestinal development and programs the response to experimental colitis in young adult rats, Am. J. Physiol. Gastrointest. Liver Physiol, vol.26, pp.1376-1385, 2010.

K. V. Reddy and K. A. Naidu, Maternal and neonatal dietary intake of balanced n-6/n-3 fatty acids modulates experimental colitis in young adult rats

, J. Nutr, vol.55, pp.1875-1890, 2016.

F. Barreau, L. Ferrier, J. Fioramonti, and L. Bueno, Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats, Gut, vol.53, pp.501-506, 2004.

E. M. Lennon, Early life stress triggers persistent colonic barrier dysfunction and exacerbates colitis in adult IL-10-/-mice, Inflamm. Bowel Dis, vol.19, pp.712-719, 2013.

R. K. Montgomery, A. E. Mulberg, and R. J. Grand, Development of the human gastrointestinal tract: twenty years of progress, Gastroenterology, vol.116, pp.702-731, 1999.

J. Bilski, The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract, Mediators Inflamm, p.9074601, 2017.

D. Kavanaugh, The intestinal glycome and its modulation by diet and nutrition, Nutr. Rev, vol.73, pp.359-375, 2015.

S. Rautava and W. A. Walker, Commensal bacteria and epithelial cross talk in the developing intestine, Curr. Gastroenterol. Rep, vol.9, pp.385-392, 2007.

R. A. Hodin, S. M. Chamberlain, and S. Meng, Pattern of rat intestinal brushborder enzyme gene expression changes with epithelial growth state, Am. J. Physiol, vol.269, pp.385-391, 1995.

M. Z. Fan, O. Adeola, and E. K. Asem, Characterization of brush border membrane-bound alkaline phosphatase activity in different segments of the porcine small intestine, J. Nutr. Biochem, vol.10, p.29, 1999.

M. Yajima, Bacterial translocation in neonatal rats: the relation between intestinal flora, translocated bacteria, and influence of milk, J. Pediatr. Gastroenterol. Nutr, vol.33, pp.592-601, 2001.

F. Sommer and F. Bäckhed, The gut microbiota--masters of host development and physiology, Nat. Rev. Microbiol, vol.11, pp.227-238, 2013.

I. I. Ivanov, Induction of intestinal Th17 cells by segmented filamentous bacteria, Cell, vol.139, pp.485-498, 2009.

J. L. Round, The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota, Science, vol.332, pp.974-977, 2011.

T. Olszak, Microbial exposure during early life has persistent effects on natural killer T cell function, Science, vol.336, pp.489-493, 2012.

M. L. Fiorotto, D. G. Burrin, M. Perez, and P. J. Reeds, Intake and use of milk nutrients by rat pups suckled in small, medium, or large litters, Am. J. Physiol, vol.260, pp.1104-1113, 1991.

V. Gouyer, Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier, Sci. Rep, vol.5, p.9577, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02380839

L. A. Dieleman, Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines, Clin. Exp. Immunol, vol.114, pp.385-391, 1998.

A. Klindworth, Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res, vol.41, p.1, 2013.

J. G. Caporaso, Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms, ISME J, vol.6, pp.1621-1624, 2012.

J. G. Caporaso, QIIME allows analysis of high-throughput community 30 sequencing data, Nat. Methods, vol.7, pp.335-336, 2010.

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST

, Bioinforma. Oxf. Engl, vol.26, pp.2460-2461, 2010.

J. R. Cole, The Ribosomal Database Project: improved alignments and new tools for rRNA analysis, Nucleic Acids Res, vol.37, pp.141-145, 2009.

E. Pruesse, SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucleic Acids Res, vol.35, pp.7188-7196, 2007.

B. J. Haas, Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons, Genome Res, vol.21, pp.494-504, 2011.

C. Lozupone, M. Hamady, and R. Knight, UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context, BMC Bioinformatics, vol.7, p.371, 2006.

C. Lozupone and R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities, Appl. Environ. Microbiol, vol.71, pp.8228-8235, 2005.

J. D. Storey, A direct approach to false discovery rates, J. R. Stat. Soc. Ser. B

, Stat. Methodol, vol.64, pp.479-498, 2002.