A. Duarri, J. Jezierska, M. Fokkens, M. Meijer, H. J. Schelhaas et al., Mutations in potassium channelkcnd3cause spinocerebellar ataxia type 19, Annals of Neurology, vol.72, issue.6, pp.870-880, 2012.

A. Duarri, J. Jezierska, M. Fokkens, M. Meijer, H. J. Schelhaas et al., Mutations in potassium channelkcnd3cause spinocerebellar ataxia type 19, Annals of Neurology, vol.72, issue.6, pp.870-880, 2012.

Y. Lee, A. Durr, K. Majczenko, Y. Huang, Y. Liu et al., Mutations inKCND3cause spinocerebellar ataxia type 22, Annals of Neurology, vol.72, issue.6, pp.859-869, 2012.

Y. Lee, A. Durr, K. Majczenko, Y. Huang, Y. Liu et al., Mutations inKCND3cause spinocerebellar ataxia type 22, Annals of Neurology, vol.72, issue.6, pp.859-869, 2012.

H. J. Schelhaas and B. Van-de-warrenburg, Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19), The Cerebellum, vol.4, issue.1, pp.51-54, 2005.

H. J. Schelhaas and B. Van-de-warrenburg, Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19), The Cerebellum, vol.4, issue.1, pp.51-54, 2005.

H. J. Schelhaas, D. S. Verbeek, B. P. Van-de-warrenburg, and R. J. Sinke, SCA19 and SCA22: evidence for one locus with a worldwide distribution, Brain, vol.127, issue.1, pp.6E-6, 2004.

H. J. Schelhaas, SCA19 and SCA22: evidence for one locus with a worldwide distribution, Brain, vol.127, issue.1, pp.6E-6, 2004.

J. E. Dixon, W. Shi, H. Wang, C. Mcdonald, H. Yu et al., Role of the Kv4.3 K + Channel in Ventricular Muscle, Circulation Research, vol.79, issue.4, pp.659-668, 1996.

A. Duarri, M. Lin, M. R. Fokkens, M. Meijer, C. J. Smeets et al., Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner, Cellular and Molecular Life Sciences, vol.72, issue.17, pp.3387-3399, 2015.

A. Duarri, M. Lin, M. R. Fokkens, M. Meijer, C. J. Smeets et al., Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner, Cellular and Molecular Life Sciences, vol.72, issue.17, pp.3387-3399, 2015.

C. Cagnoli, C. Michielotto, T. Matsuura, T. Ashizawa, R. L. Margolis et al., Detection of Large Pathogenic Expansions in FRDA1, SCA10, and SCA12 Genes Using a Simple Fluorescent Repeat-Primed PCR Assay, The Journal of Molecular Diagnostics, vol.6, issue.2, pp.96-100, 2004.

C. Cagnoli, C. Michielotto, T. Matsuura, T. Ashizawa, R. L. Margolis et al., Detection of Large Pathogenic Expansions in FRDA1, SCA10, and SCA12 Genes Using a Simple Fluorescent Repeat-Primed PCR Assay, The Journal of Molecular Diagnostics, vol.6, issue.2, pp.96-100, 2004.

M. Rossi, S. Perez-lloret, L. Doldan, D. Cerquetti, J. Balej et al., Autosomal dominant cerebellar ataxias: a systematic review of clinical features, European Journal of Neurology, vol.21, issue.4, pp.607-615, 2014.

M. Rossi, S. Perez-lloret, L. Doldan, D. Cerquetti, J. Balej et al., Autosomal dominant cerebellar ataxias: a systematic review of clinical features, European Journal of Neurology, vol.21, issue.4, pp.607-615, 2014.

J. L. Pedroso, P. Braga-neto, P. V. De-souza, and O. G. Barsottini, The cerebellum in Parkinson?s disease and parkinsonism in cerebellar disorders, Brain, vol.136, issue.9, pp.e248-e248, 2013.

J. L. Pedroso, P. Braga-neto, P. V. De-souza, and O. G. Barsottini, The cerebellum in Parkinson?s disease and parkinsonism in cerebellar disorders, Brain, vol.136, issue.9, pp.e248-e248, 2013.

K. Seidel, B. Küsters, W. F. Den-dunnen, M. Bouzrou, G. Hageman et al., First patho-anatomical investigation of the brain of a SCA19 patient, Neuropathology and Applied Neurobiology, vol.40, issue.5, pp.640-644, 2014.

K. Seidel, B. Küsters, W. F. Den-dunnen, M. Bouzrou, G. Hageman et al., First patho-anatomical investigation of the brain of a SCA19 patient, Neuropathology and Applied Neurobiology, vol.40, issue.5, pp.640-644, 2014.

J. D. Schmahmann and J. C. Sherman, The cerebellar cognitive affective syndrome, Brain, vol.121, issue.4, pp.561-579, 1998.

J. Schmahmann, The cerebellar cognitive affective syndrome, Brain, vol.121, issue.4, pp.561-579, 1998.

X. Lin and T. Ashizawa, Recent progress in spinocerebellar ataxia type-10 (SCA10), The Cerebellum, vol.4, issue.1, pp.37-42, 2005.

X. Lin and T. Ashizawa, Recent progress in spinocerebellar ataxia type-10 (SCA10), The Cerebellum, vol.4, issue.1, pp.37-42, 2005.

R. Köhling and J. Wolfart, Potassium Channels in Epilepsy, Cold Spring Harbor Perspectives in Medicine, vol.6, issue.5, p.a022871, 2016.

R. Köhling and J. Wolfart, Potassium Channels in Epilepsy, Cold Spring Harbor Perspectives in Medicine, vol.6, issue.5, p.a022871, 2016.

K. Smets, A. Duarri, T. Deconinck, B. Ceulemans, B. P. Van-de-warrenburg et al., First de novo KCND3 mutation causes severe Kv4.3 channel dysfunction leading to early onset cerebellar ataxia, intellectual disability, oral apraxia and epilepsy, BMC Medical Genetics, vol.16, issue.1, p.51, 2015.

K. Smets, A. Duarri, T. Deconinck, B. Ceulemans, B. P. Van-de-warrenburg et al., First de novo KCND3 mutation causes severe Kv4.3 channel dysfunction leading to early onset cerebellar ataxia, intellectual disability, oral apraxia and epilepsy, BMC Medical Genetics, vol.16, issue.1, 2015.

D. Brook and J. T. Granados-riveron, Faculty Opinions recommendation of A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult., EEF2 (SCA26), ELOVL4 (SCA34), ELOVL5 (SCA38), FGF14 (SCA27), p.1, 2012.

M. Demos, K. Farrell, T. Nelson, K. Chapman, and L. Armstrong, A NOVEL KCNA1 MUTATION CAUSES EPISODIC ATAXIA TYPE 1 WITH PERSISTENT CEREBELLAR DEFICITS, Neuropediatrics, vol.37, issue.S 1, 2006.

M. Paucar, A new SCA19/SCA22 family with the T377M variant in the KCND3 gene, Frontiers in Cellular Neuroscience, vol.11, pp.1-3, 2017.

, Episodic ataxia type 6, SL2A2 (episodic ataxia), SPTBN2 (SCA5), TGM6 (SCA35), TTBK2 (SCA11), and TMEM240 (SCA21). The SCA panel of 24 genes was designed using SureDesign software (v4.5, Agilent Technologies, 2020.

, Data S1: The V3?V4 hypervariable regions of the 16S rRNA gene were subjected to high-throughput sequencing by Beijing Auwigene Tech, Ltd (Beijing, China) using the Illumina Miseq PE300 sequencing platform (Illumina, Inc., CA, USA), Targeted sequencing: Exon capture of the 24 selected genes and libraries was prepared using the Haloplex kit

, Supplemental Figure S1: Electrophoregrams of the heterozygous KCND3 mutation. the unaffected individual (upper panel) and the c.679_681delTTC p.F227del mutation in a patient