S. T. Gurgel and P. Do-nascimento-jr, Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials, Anesth Analg, vol.112, pp.1384-91, 2011.

S. Jhanji, C. Lee, D. Watson, C. Hinds, and R. M. Pearse, Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications, Intensive Care Med, vol.35, pp.671-678, 2009.

S. M. Lobo, E. Rezende, M. F. Knibel, N. B. Silva, J. A. Paramo et al., Early determinants of death due to multiple organ failure after noncardiac surgery in high-risk patients, Anesth Analg, vol.112, pp.877-83, 2011.

S. Jhanji, A. Vivian-smith, S. Lucena-amaro, D. Watson, C. J. Hinds et al., Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial, Crit Care, vol.14, p.151, 2010.

B. Vallet and E. Futier, Perioperative oxygen therapy and oxygen utilization, Curr Opin Crit Care, vol.16, pp.359-64, 2010.

W. C. Shoemaker, P. L. Appel, and H. B. Kram, Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients, Chest, vol.102, pp.208-223, 1992.

R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds et al., Changes in central venous saturation after major surgery, and association with outcome, Crit Care, vol.9, pp.694-703, 2005.

H. J. Silverman, Lack of a relationship between induced changes in oxygen consumption and changes in lactate levels, Chest, vol.100, pp.1012-1017, 1991.

A. Dubin, G. Murias, E. Estenssoro, H. Canales, J. Badie et al., Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia, Crit Care, vol.6, pp.514-534, 2002.

J. Levraut, J. P. Ciebiera, S. Chave, O. Rabary, P. Jambou et al., Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction, Am J Respir Crit Care Med, vol.157, pp.1021-1027, 1998.

B. Levy, A. Mansart, C. Montemont, S. Gibot, J. P. Mallie et al., Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock, Intensive Care Med, vol.33, pp.495-502, 2007.

J. V. Pope, A. E. Jones, D. F. Gaieski, R. C. Arnold, S. Trzeciak et al., Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis, Ann Emerg Med, vol.55, pp.40-46, 2010.

S. Perz, T. Uhlig, M. Kohl, D. L. Bredle, K. Reinhart et al., Low and "supranormal" central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study, Intensive Care Med, vol.37, pp.52-61, 2011.

T. C. Jansen, J. Van-bommel, F. J. Schoonderbeek, S. Visser, S. J. Van-der-klooster et al., Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial, Am J Respir Crit Care Med, vol.182, pp.752-61, 2010.

A. E. Jones, N. I. Shapiro, S. Trzeciak, R. C. Arnold, H. A. Claremont et al., Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial, JAMA, vol.303, pp.739-785, 2010.

A. Donati, S. Loggi, J. C. Preiser, G. Orsetti, C. Munch et al., Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients, Chest, vol.132, pp.1817-1841, 2007.

E. Futier, R. E. Jabaudon, M. Guerin, R. Petit, A. Bazin et al., Central venous O(2) saturation and venous-to-arterial CO(2) difference as complementary tools for goal-directed therapy during high-risk surgery, Crit Care, vol.14, p.193, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01919297

F. Vallee, B. Vallet, O. Mathe, J. Parraguette, M. A. Silva et al., Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock?, Intensive Care Med, vol.34, pp.2218-2243, 2008.

E. Futier, J. L. Teboul, and B. Vallet, Tissue carbon dioxide measurement as an index of perfusion: what have we missed?, TACC, vol.1, pp.95-104, 2011.

J. L. Teboul, A. Mercat, F. Lenique, C. Berton, and C. Richard, Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine, Crit Care Med, vol.26, pp.1007-1017, 1998.

J. Bakker, J. L. Vincent, P. Gris, M. Leon, M. Coffernils et al., Veno-arterial carbon dioxide gradient in human septic shock, Chest, vol.101, pp.509-524, 1992.

B. Vallet, J. L. Teboul, S. Cain, and S. Curtis, Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia, J Appl Physiol, vol.89, pp.1317-1338, 2000.

W. C. Shoemaker, P. L. Appel, H. B. Kram, K. Waxman, and T. S. Lee, Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients, Chest, vol.94, pp.1176-86, 1988.

L. Gall, J. R. Lemeshow, S. Saulnier, and F. , A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study, JAMA, vol.270, pp.2957-63, 1993.

D. Dindo, N. Demartines, and P. A. Clavien, Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey, Ann Surg, vol.240, pp.205-218, 2004.

E. Bennett-guerrero, I. Welsby, T. J. Dunn, L. R. Young, T. A. Wahl et al., The use of a postoperative morbidity survey to evaluate patients with prolonged hospitalization after routine, moderate-risk, elective surgery, Anesth Analg, vol.89, pp.514-523, 1999.

P. A. Van-beest, M. C. Lont, N. D. Holman, B. Loef, M. A. Kuiper et al., Central venous-arterial pCO(2) difference as a tool in resuscitation of septic patients, Intensive Care Med, vol.39, pp.1034-1043, 2013.

A. B. Groeneveld, Interpreting the venous-arterial PCO2 difference, Crit Care Med, vol.26, pp.979-80, 1998.

B. Lamia, X. Monnet, and J. L. Teboul, Meaning of arterio-venous PCO2 difference in circulatory shock, Minerva Anestesiol, vol.72, pp.597-604, 2006.

G. Gutierrez, A mathematical model of tissue-blood carbon dioxide exchange during hypoxia, Am J Respir Crit Care Med, vol.169, pp.525-558, 2004.

R. Neviere, J. L. Chagnon, J. L. Teboul, B. Vallet, and F. Wattel, Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia, Crit Care Med, vol.30, pp.379-84, 2002.

C. E. Mecher, E. C. Rackow, M. E. Astiz, and M. H. Weil, Venous hypercarbia associated with severe sepsis and systemic hypoperfusion, Crit Care Med, vol.18, pp.585-594, 1990.

, Collaborative Study Group on Perioperative ScvO2 Monitoring. Multicentre study on peri-and postoperative central venous oxygen saturation in high-risk surgical patients, Crit Care, vol.10, p.158, 2006.

E. Rivers, B. Nguyen, S. Havstad, J. Ressler, A. Muzzin et al., Early goal-directed therapy in the treatment of severe sepsis and septic shock, N Engl J Med, vol.345, pp.1368-77, 2001.

J. Textoris, L. Fouché, S. Wiramus, F. Antonini, S. Tho et al., High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality, Crit Care, vol.15, p.176, 2011.

S. J. Shepherd and R. M. Pearse, Role of central and mixed venous oxygen saturation measurement in perioperative care, Anesthesiology, vol.111, pp.649-56, 2009.

E. Futier, J. M. Constantin, A. Petit, G. Chanques, F. Kwiatkowski et al., Conservative vs restrictive individualized goal-directed fluid replacement strategy in major abdominal surgery: a prospective randomized trial, Arch Surg, vol.145, pp.1193-200, 2010.

J. Cuschieri, E. P. Rivers, M. W. Donnino, M. Katilius, G. Jacobsen et al., Submit your next manuscript to BioMed Central and take full advantage of: ? Convenient online submission ? Thorough peer review ? No space constraints or color figure charges ? Immediate publication on acceptance ? Inclusion in PubMed, CAS, Scopus and Google Scholar ? Research which is freely available for redistribution, Intensive Care Med, vol.31, pp.818-840, 2005.