Z. Zhang, Big data and clinical research: focusing on the area of critical care medicine in mainland China, Quantitative Imaging in Medicine and Surgery, vol.4, issue.5, pp.426-429, 2014.

S. Li, L. Kang, and X. Zhao, A survey on evolutionary algorithm based hybrid intelligence in bioinformatics, BioMed Research International, vol.2014, 2014.

D. I. Sessler, Big Data-and its contributions to peri-operative medicine, Anaesthesia, vol.69, issue.2, pp.100-105, 2014.

R. Margolis, L. Derr, and M. Dunn, The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data, Journal of the American Medical Informatics Association, vol.21, issue.6, pp.957-958, 2014.

Q. Zou, Z. Wang, X. Guan, B. Liu, Y. Wu et al., An approach for identifying cytokines based on a novel ensemble classifier, BioMed Research International, vol.2013, p.11, 2013.

L. Zhao, L. Wong, L. Lu, S. C. Hoi, and J. Li, B-cell epitope prediction through a graph model, BMC Bioinformatics, vol.13, p.20, 2012.

M. L. Berger and V. Doban, Big data, advanced analytics and the future of comparative effectiveness research, Journal of Comparative Effectiveness Research, vol.3, issue.2, pp.167-176, 2014.

, R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2012.

W. J. Mallon, Big data, Journal of Shoulder and Elbow Surgery, vol.22, issue.9, p.1153, 2013.

R. S. Salcido, Big data and disruptive innovation in wound care, Advances in Skin and Wound Care, vol.26, issue.8, p.344, 2013.

T. Ketchersid, Big data in nephrology: friend or foe?, Blood Purification, vol.36, issue.3-4, pp.160-164, 2014.

E. J. Hovenga and H. Grain, Health data and data governance, Studies in Health Technology and Informatics, vol.193, pp.67-92, 2013.

H. Müller, A. Hanbury, and N. A. Shorbaji, Health information search to deal with the exploding amount of health information produced, Methods of Information in Medicine, vol.51, issue.6, pp.516-518, 2012.

D. J. Porche, Men's health big data, American Journal of Men's Health, vol.8, issue.3, p.189, 2014.

W. Callebaut, Scientific perspectivism: a philosopher of science's response to the challenge of big data biology, Studies in History and Philosophy of Science Part C :Studies in History and Philosophy of Biological and Biomedical Sciences, vol.43, issue.1, pp.69-80, 2012.

J. Fan and H. Liu, Statistical analysis of big data on pharmacogenomics, Advanced Drug Delivery Reviews, vol.65, issue.7, pp.987-1000, 2013.

O. Lup?e, M. Crisan-vida, L. Stoicu-tivadar, and E. Bernard, Supporting diagnosis and treatment in medical care based on big data processing, Studies in Health Technology and Informatics, vol.197, pp.65-69, 2014.

S. I. Hay, D. B. George, C. L. Moyes, and J. S. Brownstein, Big data opportunities for global infectious disease surveillance, PLoS Medicine, vol.10, issue.4, 2013.

B. Hamilton, Impacts of big data. Potential is huge, so are challenges, Health Management Technology, vol.34, issue.8, pp.12-13, 2013.

A. Markowetz, K. B?aszkiewicz, C. Montag, C. Switala, and T. E. Schlaepfer, Psycho-informatics: big data shaping modern psychometrics, Medical Hypotheses, vol.82, issue.4, pp.405-411, 2014.

C. G. Chute, M. Ullman-cullere, G. M. Wood, S. M. Lin, M. He et al., Some experiences and opportunities for big data in translational research, Genetics in Medicine, vol.15, issue.10, pp.802-809, 2013.

R. R. Kao, D. T. Haydon, S. J. Lycett, and P. R. Murcia, Supersize me: how whole-genome sequencing and big data are transforming epidemiology, Trends in Microbiology, vol.22, issue.5, pp.282-291, 2014.

K. Sedig and O. Ola, The challenge of big data in public health: an opportunity for visual analytics, Online Journal of Public Health Informatics, vol.5, issue.3, p.223, 2014.

E. Gardner, The HIT approach to big data, Health data management, vol.21, issue.3, pp.34-38, 2013.

K. D. Moore, K. Eyestone, and D. C. Coddington, The big deal about big data, Healthcare Financial Management, vol.67, issue.8, pp.60-68, 2013.

T. Dereli, Y. Co?kun, E. Kolker, Ö. Güner, M. A?irba?li et al., Big data and ethics review for health systems research in LMICs: understanding risk, uncertainty and ignorance-and catching the black swans?, American Journal of Bioethics, vol.14, issue.2, pp.48-50, 2014.

R. S. Litman, Complications of laryngeal masks in children: big data comes to pediatric anesthesia, Anesthesiology, vol.119, issue.6, pp.1239-1240, 2013.

, BioMed Research International

J. C. Ward, Oncology reimbursement in the era of personalized medicine and big data, Journal of Oncology Practice, vol.10, issue.2, pp.83-86, 2014.

V. Özdemir, K. F. Badr, and E. S. Dove, Crowd-funded micro-grants for genomics and 'big data': an actionable idea connecting small (Artisan) science, infrastructure science, and citizen philanthropy, OMICS, vol.17, issue.4, pp.161-172, 2013.

, Harnessing big data: how to achieve value, Hospitals & Health Networks, vol.88, issue.2, pp.61-71, 2014.

K. Jee and G. Kim, Potentiality of big data in the medical sector: focus on how to reshape the healthcare system, Healthcare Informatics Research, vol.19, issue.2, pp.79-85, 2013.

J. D. Van-horn and A. W. Toga, Human neuroimaging as a 'Big Data' science, Brain Imaging and Behavior, vol.8, issue.2, pp.323-331, 2014.

A. O'driscoll, J. Daugelaite, and R. D. Sleator, Big data' , Hadoop and cloud computing in genomics, Journal of Biomedical Informatics, vol.46, issue.5, pp.774-781, 2013.

, Buyer's brief: cognitive computing in the age of big data, Healthcare Financial Management, vol.68, issue.4, pp.35-36, 2014.

T. H. Davenport and D. J. Patil, Data scientist: the sexiest job of the 21st century, Harvard Business Review, vol.90, issue.10, pp.70-128, 2012.

M. J. Khoury, T. K. Lam, and J. P. Ioannidis, Transforming epidemiology for 21st century medicine and public health, Biomarkers & Prevention, vol.22, issue.4, pp.508-516, 2013.

S. Bonney, HIM's role in managing big data: turning data collected by an EHR into information, Journal of American Health Information Management Association, vol.84, issue.9, pp.62-64, 2013.

C. P. Jayapandian, C. Chen, A. Bozorgi, S. D. Lhatoo, G. Zhang et al., Cloudwave: distributed processing of 'big data' from electrophysiological recordings for epilepsy clinical research using hadoop, AMIA Annual Symposium Proceedings, vol.2013, pp.691-700, 2013.

E. E. Schadt, The changing privacy landscape in the era of big data, Molecular Systems Biology, vol.8, p.612, 2012.

A. Aji, F. Wang, and J. H. Saltz, Towards building a high performance spatial query system for large scale medical imaging data, Proceedings of the 20th International Conference on Advances in Geographic Information Systems (SIGSPATIAL '12), pp.309-318, 2012.

G. O. Matheson, M. Klügl, and L. Engebretsen, Prevention and management of noncommunicable disease: the IOC consensus statement, Clinical Journal of Sport Medicine, vol.23, issue.6, pp.419-429, 2013.

F. M. Afendi, N. Ono, and Y. Nakamura, Data mining methods for omics and knowledge of crude medicinal plants toward big data biology, Computational and Structural Biotechnology Journal, vol.4, issue.5, pp.1-14, 2013.

D. C. Mohr, M. N. Burns, S. M. Schueller, G. Clarke, and M. Klinkman, Behavioral intervention technologies: evidence review and recommendations for future research in mental health, General Hospital Psychiatry, vol.35, issue.4, pp.332-338, 2013.

J. M. Ansermino, From the journal archives: improving patient outcomes in the era of big data, Canadian Journal of Anesthesia, vol.61, issue.10, pp.959-962, 2014.

T. Klingström, L. Soldatova, and R. Stevens, Workshop on laboratory protocol standards for the molecular methods database, New Biotechnology, vol.30, issue.2, pp.109-113, 2013.

J. Mervis, Science policy: agencies rally to tackle big data, vol.335, p.22, 2012.

Y. Mohammed, E. Mostovenko, A. A. Henneman, R. J. Marissen, A. M. Deelder et al., Cloud parallel processing of tandem mass spectrometry based proteomics data, Journal of Proteome Research, vol.11, issue.10, pp.5101-5108, 2012.

J. Karlsson and O. Trelles, MAPI: a software framework for distributed biomedical applications, Journal of Biomedical Semantics, vol.4, issue.1, 2013.

M. R. Bower, M. Stead, B. H. Brinkmann, K. Dufendach, and G. A. Worrell, Metadata and annotations for multi-scale electrophysiological data, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Conference, pp.2811-2814, 2009.

S. Ranganathan, C. Schönbach, J. Kelso, B. Rost, S. Nathan et al., Towards big data science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference, vol.12, p.1, 2011.

M. V. Dileo, G. D. Strahan, M. Bakker, and O. A. Hoekenga, Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome, PLoS ONE, vol.6, issue.10, 2011.

C. S. Greene, J. Tan, M. Ung, J. H. Moore, and C. Cheng, Big data bioinformatics, Journal of Cellular Physiology, vol.229, issue.12, pp.1896-1900, 2014.

L. Dai, X. Gao, Y. Guo, J. Xiao, and Z. Zhang, Bioinformatics clouds for big data manipulation, Biology direct, vol.7, p.43, 2012.

D. Maclean and S. Kamoun, Big data in small places, Nature Biotechnology, vol.30, issue.1, pp.33-34, 2012.

T. B. Murdoch and A. S. Detsky, The inevitable application of big data to health care, The Journal of the American Medical Association, vol.309, issue.13, pp.1351-1352, 2013.

V. Marx, Biology: the big challenges of big data, Nature, vol.498, issue.7453, pp.255-260, 2013.

E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan, Computational solutions to large-scale data management and analysis, Nature Reviews Genetics, vol.11, issue.9, pp.647-657, 2010.

J. B. Cole, S. Newman, F. Foertter, I. Aguilar, and M. Coffey, Breeding and genetics symposium: really big data: processing and analysis of very large data sets, Journal of Animal Science, vol.90, issue.3, pp.723-733, 2012.

, Finding correlations in big data, Nature Biotechnology, vol.30, issue.4, pp.334-335, 2012.

E. Kolker, E. Stewart, and V. Ozdemir, Opportunities and challenges for the life sciences community, OMICS: A Journal of Integrative Biology, vol.16, issue.3, pp.138-147, 2012.

R. P. Troiano, J. J. Mcclain, R. J. Brychta, and K. Y. Chen, Evolution of accelerometer methods for physical activity research, British Journal of Sports Medicine, vol.48, pp.1019-1023, 2014.

E. Feldmann and D. S. Liebeskind, Developing precision stroke imaging, Frontiers in Neurology, vol.5, p.29, 2014.

D. E. Green and E. J. Rapp, Can big data lead us to big savings, Radiographics, vol.33, issue.3, pp.859-860, 2013.

B. A. Huberman, Sociology of science: big data deserve a bigger audience, Nature, vol.482, issue.7385, p.308, 2012.

C. Lynch, Big data: how do your data grow?, Nature, vol.455, issue.7209, pp.28-29, 2008.

S. E. White, De-identification and the sharing of big data, Journal of American Health Information Management Association, vol.84, issue.4, pp.44-47, 2013.

J. Chen, F. Qian, W. Yan, and B. Shen, Translational biomedical informatics in the cloud: present and future, BioMed Research International, vol.2013, 2013.

S. Mavandadi, S. Dimitrov, and S. Feng, Crowd-sourced BioGames: managing the big data problem for next-generation lab-on-a-chip platforms, Lab on a Chip, vol.12, issue.20, pp.4102-4106, 2012.

D. Riley and M. Mittelman, Maps, 'big data, ' and case reports, Global Advances in Health and Medicine: Improving Healthcare Outcomes Worldwide, vol.1, pp.5-7, 2012.

S. Hoffman and A. Podgurski, Big bad data: law, public health, and biomedical databases, Journal of Law, Medicine and Ethics, vol.41, issue.1, pp.56-60, 2013.

J. Cockfield, K. Su, and K. A. Robbins, MOBBED: a computational data infrastructure for handling large collections of event-rich time series datasets in MATLAB, Frontiers in Neuroinformatics, vol.7, p.20, 2013.

S. F. Martin, H. Falkenberg, T. F. Dyrlund, G. A. Khoudoli, C. J. Mageean et al., PROTEINCHALLENGE: crowd sourcing in proteomics analysis and software development, Journal of Proteomics, vol.88, pp.41-46, 2013.

D. B. Lindenmayer and G. E. Likens, Analysis: don't do big-data science backwards, Nature, vol.499, issue.7458, p.284, 2013.

S. Toh and R. Platt, Big data in epidemiology: too big to fail, Epidemiology, vol.24, issue.6, p.939, 2013.

F. X. Castellanos, A. D. Martino, R. C. Craddock, A. D. Mehta, and M. P. Milham, Clinical applications of the functional connectome, NeuroImage, vol.80, pp.527-540, 2013.

J. Currie, Big data' versus 'Big brother': on the appropriate use of large-scale data collections in pediatrics, Pediatrics, vol.131, issue.2, pp.127-132, 2013.

A. Docherty, Big data-ethical perspectives, Anaesthesia, vol.69, issue.4, pp.390-391, 2014.

B. Shen, A. E. Teschendorff, D. Zhi, and J. Xia, Biomedical data integration, modeling, and simulation in the era of big data and translational medicine, BioMed Research International, vol.2014, p.1, 2014.

N. H. Shah, Translational bioinformatics embraces big data, Yearbook of Medical Informatics, vol.7, issue.1, pp.130-134, 2012.