Optimization of ERK Activity Biosensors for both Ratiometric and Lifetime FRET Measurements - Université de Lille
Article Dans Une Revue Sensors Année : 2014

Optimization of ERK Activity Biosensors for both Ratiometric and Lifetime FRET Measurements

Résumé

Among biosensors, genetically-encoded FRET-based biosensors are widely used to localize and measure enzymatic activities. Kinases activities are of particular interest as their spatiotemporal regulation has become crucial for the deep understanding of cell fate decisions. This is especially the case for ERK, whose activity is a key node in signal transduction pathways and can direct the cell into various processes. There is a constant need for better tools to analyze kinases in vivo, and to detect even the slightest variations of their activities. Here we report the optimization of the previous ERK activity reporters, EKAR and EKAREV. Those tools are constituted by two fluorophores adapted for FRET experiments, which are flanking a specific substrate of ERK, and a domain able to recognize and bind this substrate when phosphorylated. The latter phosphorylation allows a conformational change of the biosensor and thus a FRET signal. We improved those biosensors with modifications of: (i) fluorophores and (ii) linkers between substrate and binding domain, resulting in new versions that exhibit broader dynamic ranges upon EGF stimulation when FRET experiments are carried out by fluorescence lifetime and ratiometric measurements. Herein, we characterize those new biosensors and discuss their observed differences that depend on their fluorescence properties.
Fichier principal
Vignette du fichier
sensors-14-01140.pdf (418.46 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02530825 , version 1 (03-04-2020)

Licence

Identifiants

Citer

Pauline Vandame, Corentin Spriet, Franck Riquet, Dave Trinel, Katia Cailliau-Maggio, et al.. Optimization of ERK Activity Biosensors for both Ratiometric and Lifetime FRET Measurements. Sensors, 2014, 14 (1), pp.1140-1154. ⟨10.3390/s140101140⟩. ⟨hal-02530825⟩

Collections

CNRS UNIV-LILLE
24 Consultations
61 Téléchargements

Altmetric

Partager

More